Skip to main content
. 2013 Sep 30;3(12):2105–2114. doi: 10.1534/g3.113.007807

Table 3. Accuracy of predictions for each trial in 2011 using random training sets with 100 independent randomizations.

IB RC RCB_MVNG MVNG
SR_FI GY RR 0.298 ± 0.117 0.296 ± 0.119 0.319 ± 0.114 0.319 ± 0.113
GAUSS 0.312 ± 0.117 0.310 ± 0.120 0.325 ± 0.117 0.326 ± 0.116
TKW RR 0.780 ± 0.056 0.780 ± 0.056 0.777 ± 0.057 0.843 ± 0.040
GAUSS 0.786 ± 0.055 0.786 ± 0.055 0.782 ± 0.056 0.847 ± 0.039
DH RR 0.409 ± 0.109 0.409 ± 0.109 0.405 ± 0.109 0.579 ± 0.123
GAUSS 0.436 ± 0.111 0.436 ± 0.111 0.433 ± 0.111 0.614 ± 0.121
NKS RR 0.479 ± 0.114 0.479 ± 0.114 0.484 ± 0.115 0.665 ± 0.077
GAUSS 0.487 ± 0.119 0.487 ± 0.119 0.492 ± 0.120 0.669 ± 0.075
SR_MWS GY RR 0.236 ± 0.141 0.275 ± 0.147 0.231 ± 0.127 0.347 ± 0.134
GAUSS 0.231 ± 0.144 0.273 ± 0.150 0.260 ± 0.128 0.370 ± 0.132
TKW RR 0.759 ± 0.061 0.762 ± 0.061 0.757 ± 0.058 0.841 ± 0.034
GAUSS 0.764 ± 0.059 0.767 ± 0.059 0.761 ± 0.057 0.845 ± 0.034
DH RR 0.398 ± 0.110 0.399 ± 0.110 0.396 ± 0.110 0.563 ± 0.134
GAUSS 0.423 ± 0.108 0.423 ± 0.108 0.423 ± 0.108 0.604 ± 0.134
NKS RR 0.464 ± 0.115 0.466 ± 0.114 0.458 ± 0.114 0.608 ± 0.088
GAUSS 0.483 ± 0.111 0.485 ± 0.111 0.478 ± 0.111 0.608 ± 0.086

IB, incomplete blocks, field design; RC, row by column model; RCB_MVNG, random complete block model with moving means as covariable; MVNG, linear regression model with moving means as covariable; SR_FI, Santa Rosa under full irrigation; GY, grain yield; RR, Ridge regression kernel; GAUSS, Gaussian kernel; TKW, thousand kernel weight; DH, days to heading; NKS, number of kernels per spike; SR_MWS, Santa Rosa under mild water stress.