Table 3. Accuracy of predictions for each trial in 2011 using random training sets with 100 independent randomizations.
IB | RC | RCB_MVNG | MVNG | |||
---|---|---|---|---|---|---|
SR_FI | GY | RR | 0.298 ± 0.117 | 0.296 ± 0.119 | 0.319 ± 0.114 | 0.319 ± 0.113 |
GAUSS | 0.312 ± 0.117 | 0.310 ± 0.120 | 0.325 ± 0.117 | 0.326 ± 0.116 | ||
TKW | RR | 0.780 ± 0.056 | 0.780 ± 0.056 | 0.777 ± 0.057 | 0.843 ± 0.040 | |
GAUSS | 0.786 ± 0.055 | 0.786 ± 0.055 | 0.782 ± 0.056 | 0.847 ± 0.039 | ||
DH | RR | 0.409 ± 0.109 | 0.409 ± 0.109 | 0.405 ± 0.109 | 0.579 ± 0.123 | |
GAUSS | 0.436 ± 0.111 | 0.436 ± 0.111 | 0.433 ± 0.111 | 0.614 ± 0.121 | ||
NKS | RR | 0.479 ± 0.114 | 0.479 ± 0.114 | 0.484 ± 0.115 | 0.665 ± 0.077 | |
GAUSS | 0.487 ± 0.119 | 0.487 ± 0.119 | 0.492 ± 0.120 | 0.669 ± 0.075 | ||
SR_MWS | GY | RR | 0.236 ± 0.141 | 0.275 ± 0.147 | 0.231 ± 0.127 | 0.347 ± 0.134 |
GAUSS | 0.231 ± 0.144 | 0.273 ± 0.150 | 0.260 ± 0.128 | 0.370 ± 0.132 | ||
TKW | RR | 0.759 ± 0.061 | 0.762 ± 0.061 | 0.757 ± 0.058 | 0.841 ± 0.034 | |
GAUSS | 0.764 ± 0.059 | 0.767 ± 0.059 | 0.761 ± 0.057 | 0.845 ± 0.034 | ||
DH | RR | 0.398 ± 0.110 | 0.399 ± 0.110 | 0.396 ± 0.110 | 0.563 ± 0.134 | |
GAUSS | 0.423 ± 0.108 | 0.423 ± 0.108 | 0.423 ± 0.108 | 0.604 ± 0.134 | ||
NKS | RR | 0.464 ± 0.115 | 0.466 ± 0.114 | 0.458 ± 0.114 | 0.608 ± 0.088 | |
GAUSS | 0.483 ± 0.111 | 0.485 ± 0.111 | 0.478 ± 0.111 | 0.608 ± 0.086 |
IB, incomplete blocks, field design; RC, row by column model; RCB_MVNG, random complete block model with moving means as covariable; MVNG, linear regression model with moving means as covariable; SR_FI, Santa Rosa under full irrigation; GY, grain yield; RR, Ridge regression kernel; GAUSS, Gaussian kernel; TKW, thousand kernel weight; DH, days to heading; NKS, number of kernels per spike; SR_MWS, Santa Rosa under mild water stress.