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ABSTRACT Recently, in 2013 Feder et al. proposed the frequency increment test (FIT), which evaluates
natural selection at a single diallelic locus by the use of time-series data of allele frequencies. This test is
unbiased under conditions of constant population size and no sampling noise. Here, we expand upon the
FIT by introducing a test that explicitly allows for changes in population size by using information from
independent reference loci. Various demographic models suggest that our proposed test is unbiased
irrespective of fluctuations in population size when sampling noise can be ignored and that it has greater
power to detect selection than the FIT if sufficient reference loci are used.
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In population genetics, most data are obtained from a single point in
time. When genetic time-series data are available, the use of such data
to detect and estimate natural selection is an attractive concept. Time-
series data may have direct information about natural selection because
they affect allele frequencies in time. Bollback et al. (2008) introduced
a statistical framework for estimating and testing natural selection by
using time-series data of allele frequencies at a single diallelic locus.
These authors applied their framework to an ancient human DNA
sequence (Hummel et al. 2005) and a sample from an experimental
evolution study of the bacteriophage, MS2 (Bollback and Huelsenbeck
2007).

Recent advances in high-throughput sequencing technology, in-
cluding pooled DNA sequencing, have facilitated the acquisition of
time-series data, and Bollback et al.’s (2008) method has been ex-
tended to more complicated situations. Mathieson and McVean
(2013) applied a lattice model of population subdivision that en-
abled joint estimation of migration rate and spatially varying selection

coefficients. The allele age also is an important parameter in selection
inferences because it can provide information regarding the origin of
a particular phenotype associated with the allele. Malaspinas et al.
(2012) developed a method to estimate the selection coefficient and
the allele age simultaneously. In addition, there has been increasing
numbers of studies in which researchers focus on specific settings in
each evolutionary experiment (e.g., Illingworth and Mustonen 2011;
Gallet et al. 2012; Illingworth et al. 2012).

Feder et al. (2013) reported recently that Bollback et al.’s (2008)
standard x2-based test for selection is biased for realistic data with few
sampled time points. When the number of sampled time points is
sufficiently large, the likelihood ratio statistic (LRS) follows a x2 dis-
tribution. However, the actual number of sampled time points rarely
exceeds a few dozen. Particularly, when the null hypothesis is com-
posite and the profile likelihood is used, the estimation of nuisance
parameters can substantially bias inferences of the parameters of in-
terest (e.g., see Chapter 10 of Pawitan 2001). For the problem de-
scribed in this report, the nuisance parameter is the population size.

To avoid bias, Feder et al. (2013) proposed two methods that both
were modeled under conditions of constant population size and no
sampling noise. In the empirical likelihood ratio test (ELRT), the
population size is preliminarily estimated under neutrality as a first
approximation. The estimated population size then is used to generate
the empirical distribution of the LRS by computer simulation. Neu-
trality then can be evaluated by comparing the observed LRS with the
empirical distribution. Although the ELRT was shown to be unbiased,
this approach can be computationally intensive. To reduce the com-
putational load, Feder et al. (2013) proposed the frequency increment
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test (FIT). The statistic used for FIT is defined as the following: Let
x0; x1; . . . ; xL be the population frequencies of one allele at a diallelic
locus of interest at the sampled time, t0 ¼ 0; t1; . . . ; tL. The sampling
time scales are short compared to the population size. Then the stan-
dardized allele frequency increment,

Yi ¼ xi 2 xi21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xi21ð12 xi21Þðti 2 ti21Þ

p ; i ¼ 1; 2; . . . ; L; (1)

is approximately normally distributed with mean 0 under the null
model, that is, neutral evolution. The variance of Yi is equal to 1/
(2N) in the Wright2Fisher model with N diploids. However, the
variance is unknown because N is unknown. In such a situation,
natural selection can be evaluated by letting

tFITðDataÞ ¼
�Yffiffiffiffiffiffiffiffi
S2=L

p ;

where �Y and S are the sample mean and variance of Yi, respectively.
We then perform a t-test using the fact that tFIT follows the Student’s
t distribution with L 2 1 degrees of freedom under the null model.
This is the FIT.

The FIT treats the nuisance parameter, N, as an unknown param-
eter instead of estimating it. When Yi for any i follows the normal
distribution with the same variance under the null model, the FIT is
an exact and unbiased test. Feder et al. (2013) verified that actual type
I error rates approach the nominal significance level for various pa-
rameter settings. These investigators also demonstrated that the power
of the FIT is equal to or greater than that of the ELRT. Although the
FIT does not account for the sampling process from a population
explicitly, the test was shown to work well even when the sampling
process exists if the sample size is not small.

The FIT is a simple and bias-controlled method to detect selection.
However, it is not clear whether the FIT works well when the
population size fluctuates. Theoretically, under the null model with
fluctuating population size Yi does not follow the same normal dis-
tribution for all i, and therefore, tFIT (Data) does not follow the Stu-
dent’s t distribution.

This study is an extension of Feder et al.’s (2013) FIT that allows
for fluctuations in population size by using reference loci. First, the
FIT’s actual type I error rates in a fluctuating population is investi-
gated. Then, a new test is introduced, the frequency increment test
with reference loci (FITR). Given a fluctuating population size, the
FITR’s actual type I error rates are almost the same as the nominal
significance level. Then, the powers of the FITR and the FIT to detect
natural selection were evaluated. Finally, the simulation method used
in this study was validated and the properties of the FITR in practical
situations were investigated. Model descriptions are presented just
below and added before introducing the FITR.

MATERIALS AND METHODS

Model and simulation methods
Let us consider a population evolving according to the Wright–Fisher
model with fluctuating population size. The population size fluctuates
as a function of generation time, t, and is denoted by N(t). To in-
vestigate the actual type I errors and the powers of Feder et al.’s (2013)
FIT and the FITR introduced in this study, we conducted computer
simulations under the five demographic models shown in Figure 1.
The two alleles at a diallelic locus of interest are denoted by A0 and a0,
respectively. At generation times t0 ¼ 0; t1; . . . ; tL ¼ T , the frequen-
cies of a0 are denoted by x0;0; x0;1; . . . ; x0;L. Here, t0 = 0 and tL = T

are the first and the last sampling times, respectively, and the number
of sampled times is L + 1. The fitnesses of genotypes A0A0, A0a0, and
a0a0 are assumed to be 1, 1þ 0:5s0, and 1þ s0, respectively (i.e., no
dominance is assumed). The population size, N(t), is independent of
the frequency of a0. As described in the next section, the FITR also
uses neutral reference loci.

In the Wright–Fisher model, the allele frequency can be obtained
exactly every generation as a binomial distribution. However, the
generation of these data poses an extreme computational burden that
is impractical for large populations (Figure 1). To avoid this burden
and simulate changes in allele frequencies, we applied the pseudo-
sampling method (Kimura and Takahata 1983), which is an improved
version of the methods of Kimura (1980). In this method, to deter-
mine the allele frequency every generation, a uniform random number
with the same mean and variance as those of the exact binomial
distribution is used when the allele frequency is moderate. When
the allele frequency is high or low, a Poisson random number with
the same mean as that of the exact binomial random number is used.
In this study, a frequency of #5 minor alleles in the population was
used as the criteria for high or low allele frequencies. In addition, the
normal distribution was used instead of the uniform distribution be-
cause the normal distribution better approximates the binomial dis-
tribution, which next-generation allele frequencies follow under the
Wright–Fisher model.

RESULTS AND DISCUSSION

Type I error rate of FIT
Table 1 summarizes the actual type I error rates for Feder et al.’s
(2013) FIT. In demographic model 1 (constant-size model), as shown
by Feder et al. (2013), the actual type I error rates approach the
nominal level. For model 2 (slow-growth model) and model 3 (mod-
erate-bottleneck model), the test becomes somewhat conservative. For
the purposes of controlling type I error, this is a desirable property.
However, in model 4 (rapid-growth model) and model 5 (severe-
bottleneck model), the test tends to be too conservative, causing it

Figure 1 Demographic models used in this study. Model 1: constant-
size model (N(t) = 104); Model 2: slow-growth (grows exponentially
from N(0) = 104 to N(T) = 105); Model 3: moderate-bottleneck model
(Nð0# t,0:5TÞ¼ Nð0:75# t#TÞ¼ 5 ·104 and Nð0:5# t, 0:75TÞ¼
104); Model 4: rapid-growthmodel (grows exponentially from Nð0Þ¼ 104

to NðTÞ ¼ 108); Model 5: severe-bottleneck model (Nð0# t,0:5TÞ ¼
Nð0:75# t#TÞ ¼ 106 and Nð0:5# t,0:75TÞ ¼ 104).
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to have less power to detect selection when the population size is
fluctuating.

Frequency increment test with reference loci (FITR)
Here we propose a new test, the FITR. Consider R reference loci in
addition to the focal locus. It is assumed that these Rþ 1 loci are
evolving independently and that R reference loci are evolving under
neutrality. We denote by xh;0; xh;1; . . . ; xh;L ðh ¼ 1; 2; :::;RÞ the
population frequencies of one allele at the h-th reference diallelic locus
at times t0 ¼ 0; t1; . . . ; tL ¼ T . Recall that x0,i is the allele frequency

of the focal locus at ti. Suppose that N(t) is a step function and let Ni

be the population size from ti2 1 to ti such that Nðti21 , t# tiÞ ¼ Ni.
Note that although the following FITR discussion assumes NðtÞ is
a step function, the same discussion can apply even the case that N(t)
is a continuous function (Figure 1) because Ni can be interpreted as
the variance effective size over the period from ti21 to ti. For this
reason, the FITR is unbiased irrespective of fluctuations in population
size.

n Table 1 Actual type I error rates (%) of FIT

T L Dta Model 1 Model 2 Model 3 Model 4 Model 5

10 2 5 4.99 4.33 4.20 1.05 1.30
100 20 5 4.96 4.81 4.70 3.32 3.42

1000 200 5 4.89 4.90 4.97 4.87 4.87
10 5 2 4.96 4.23 3.99 0.48 0.63

100 5 20 4.90 4.03 4.06 0.44 0.68
1000 5 200 5.30 4.17 4.36 0.49 0.72

Values indicate the actual type I error rates obtained by 100,000 simulations
under a nominal significance level of 5%. The initial allele frequency, x0,0, was
assumed to be 0.5. FIT, frequency increment test.
a

Dt ¼ ti 2 ti2 1 ði ¼ 1; 2; . . . ; LÞ.

n Table 2 Actual type I error rates (%) of FITR

T L Dta
Model 1
(R = 5)b

Model 2
(R = 2)

Model 3
(R = 20)

Model 4
(R = 1)

Model 5
(R = 10)

10 2 5 4.99 5.02 4.95 5.12 5.00
100 20 5 5.09 4.95 5.06 5.05 5.00

1000 200 5 5.07 4.95 5.01 5.02 5.24
10 5 2 4.98 4.94 5.06 4.95 4.94

100 5 20 4.98 5.17 5.20 4.90 5.02
1000 5 200 4.87 5.02 5.06 4.89 5.02

Values indicate the actual type I error rates obtained by 100,000 simulations
under a nominal significance level of 5%. The initial frequencies for all R +1 loci,
xh,0, are assumed to be 0.5. FITR, frequency increment test with reference loci.
a

Dt ¼ ti 2 ti2 1 ði ¼ 1; 2; . . . ; LÞ.
b

The numbers of reference loci, R, are randomly assigned to each demo-
graphic model.

Figure 2 Powers of the FITR and the FIT in various demographic models. Powers of the FIT (black line) and the FITR with R reference loci (colored
lines) are shown as functions of the selection coefficients in the five demographic models. Each point corresponds to the power obtained by
100,000 simulations at the 5% significance level. The duration of sampling time and the number of sampled points were T = 1000 and (L + 1) = 11,
respectively. The intervals between any two adjacent sampled points were the same at Dt ¼ ti 2 ti21 ¼ 100 ði ¼ 1;2; . . . ; LÞ. The initial frequency
for all R+ 1 loci, xh;0, was assumed to be 0.5.
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When xh;i21 is not close to 0 or 1 and
Dti ¼ ti 2 ti21(i ¼ 1; 2; . . . ; L) is small compared with Ni,

Yh;i ¼
Dxh;iffiffiffiffiffiffi

Dti
2Ni

q ; (2)

where

Dxh;i ¼
xh;i 2 xh;i21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xh;i21
�
12 xh;i21

�q ;

follows the standard normal distribution for h = 0 under the null
model and for h ¼ 1; 2; :::;R under the null or alternative models.
We then consider whether the allele frequency change from
ti2 1 to ti for the focal locus, Y0,i, is significant. If Ni is known, we
can test for neutrality using the fact that Y0,i follows the standard
normal distribution. In this case, however, Ni is unknown. Let us
then define a statistic,

tFITRðiÞðData  from  ti2 1   to  tiÞ ¼ Y0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

PR
h¼1Y

2
h;i

q (3)

¼ Dx0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

PR
h¼1Dx

2
h;i

q : (4)

The statistic tFITRðiÞ is independent of Ni, as seen in (4), because Ni in
(3) is canceled out. In addition, tFITRðiÞ is independent of Dti. In (3),
the numerator follows the standard normal distribution, and the
denominator is equal to the square root of the x2 random variable
divided by its degrees of freedom, R. Because the numerator and
denominator are independent, tFITRðiÞ follows a Student’s t distribu-
tion with R degrees of freedom (Fisher 1925). Although we deter-
mined the form of the test statistic, tFITRðiÞ, intuitively, tFITRðiÞ can be
derived as the exact LRS using data, Dxi ¼ ðDx0;i;Dx1;i; . . . ;DxR;iÞ,
in a plausible setting (see Appendix). In other words, the aforemen-
tioned t-test is equivalent to the likelihood ratio test under condi-
tions of normality, as observed in several statistical situations (see,
e.g., Lehmann and Romano 2005).

Next, let us define a statistic using all the data from t0 ¼ 0 to
tL ¼ T , Dx ¼ ðDx0;Dx1; . . . ;DxLÞ,

tFITR ðDataÞ ¼ 1ffiffiffi
L

p
XL
i¼1

tFITRðiÞ (5)

Figure 3 Powers of the FITR and the FIT as functions of
(A) the number of sampling points and (B) the duration
of sampling. Powers of the FIT (black line) and the FITR
with R reference loci (colored lines) are shown for the
demographic models 1 and 5. Each point corresponds
to the power obtained by 100,000 simulations at the 5%
significance level. The selection coefficients were s =
0.002 for model 1 and s = 0.0005 for model 5. The
intervals between any two adjacent sampled points
were the same, Dt ¼ ti 2 ti21 ¼ T=L ði ¼ 1;2; . . . ; LÞ.
The initial frequency for all R+1 loci, xh;0, was assumed
to be 0.5. (A) The duration of sampling time was fixed at
T = 1000. (B) The number of sampled points was fixed at
L = 10. (Note: The FIT curve nearly overlapped with the
FITR curve for L = 5 in Model 1.)
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¼
XL
i¼1

Dx0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
R

PR
h¼1Dx

2
h;i

q ; (6)

tFITR is the standardized sum of tFITRðiÞ overall i. The standardization
factor 1=

ffiffiffi
L

p
allows for a straightforward interpretation of the sta-

tistic because tFITR asymptotically follows the standard normal dis-
tribution as R becomes large. The exact distribution of tFITR with
infinite R is difficult to express explicitly, but the distribution of tFITR

can be obtained empirically by generating L Student’s t random
variables with R degrees of freedom and summing them. This ap-
proach is valid because each tFITRðiÞ follows a Student’s t distribution
with R degrees of freedom. We obtained tFITR using the statistical
package R (http://www.R-project.org) with 100,000 simulations of
tFITR for each combination of R and L. The test using tFITRðiÞ is the
FITR, an exact significance test assuming Yh,i follows the standard
normal distribution. That is, the actual type I error rate of the test is
expected to be close to the nominal significance level regardless of
fluctuations in population size. Unlike tFITRðiÞ, the tFITR statistic is not
the exact LRS, which is very difficult to express explicitly. An ad hoc
interpretation of the test statistic, tFITR, is presented in the Appendix.

Type I error rate of FITR and powers of FITR and FIT
Table 2 shows the actual type I error rates of the FITR. As expected,
for all demographic models, the actual type I error rates are close to
the nominal level. Figure 2 shows the powers of the FITR and the FIT
as a function of the strength of selection. In all demographic models,
including the constant-size model, the FITR had more power than the
FIT if five or more reference loci were used. For model 2 (slow-growth
model) and model 3 (moderate-bottleneck model), the power of the
FIT was acceptable. However, for model 4 (rapid-growth model) and
model 5 (severe-bottleneck model), the power of the FIT was relatively
small, and the FITR demonstrated much larger power than the FIT.

Figure 3A displays the powers of the FITR and the FIT as func-
tions of the number of sampling points, L. In many cases, the powers
approached certain asymptotic values with increasing L. In this case,
the values of L for which the powers approached their asymptotes
were relatively small (e.g., L = 10 or 20). The powers of the FITR for
R = 1 or 2 in Model 1 decreased somewhat as the sampling points
increased. This trend also was observed for the FITR with R = 1 and for
the FIT in Model 5. The powers of the FITR and the FIT as functions of
the duration of sampling time, T, are given in Figure 3B. For all cases,
the powers increased with increasing T, as expected. For Figure 3,
A and B, the FITR had more power than the FIT if 10 or more reference
loci were used even in the constant-size model. This difference in power
was more obvious for model 5 (severe-bottleneck model).

Applying the simulation method and FITR to
practical situations
The FITR was developed and evaluated for type I error rate and power
under ideal conditions of “selectively neutral” reference loci evolving
independently of the focal locus and of each other, allele frequencies at

n Table 3 Results obtained by binomial sampling with various
recombination fractions

T L Dta rb
Neutral (s0 = 0) Selective (s0 = 0.05)

Binomialc Pseudod Binomialc Pseudod

[Model 19]e

10 2 5 Free 5.19 5.06 20.45 21.05
0.1 4.66 2 19.90 2
0.01 4.97 2 19.33 2
0 5.14 2 19.85 2

20 5 5 Free 5.00 4.94 36.06 36.48
0.1 4.97 2 36.05 2
0.01 4.95 2 37.08 2
0 4.84 2 35.76 2

[Model 59]f

5 1 5 Free 5.07 5.01 8.57 8.34
0.1 4.93 2 8.80 2
0.01 5.08 2 8.09 2
0 5.41 2 8.13 2

10 5 2 Free 4.59 4.99 64.32 65.73
0.1 5.27 2 64.23 2
0.01 4.80 2 62.55 2
0 4.98 2 63.21 2

Values indicate the rejection rates (%) obtained by 10,000 simulations for
binomial sampling or by 100,000 simulations for pseudo-sampling under
a nominal significance level of 5%.
The number of reference were R = 10 The initial frequencies for all R + 1 loci,
xh,0, are assumed to be 0.5.
a

Dt ¼ ti 2 ti2 1 ði ¼ 1; 2; . . . ; LÞ.
b

r, recombination fraction per generation between two adjacent loci of R + 1
loci. “Free” refers to free recombination.

c
Binomial, the binomial sampling.

d
Pseudo, the pseudo-sampling method used in this study.

e
Model 19, the constant-size model with N = 100.

f
Model 59, the severe bottleneck model with N(t) reduced to 1/200 of that in
Model 5.

Figure 4 The effects of selection at reference loci on
the power of the FITR. The powers of the FITR under
various selection strengths, s0, at focal loci are shown as
functions of the selection coefficient, shðh 6¼ 0Þ, at ref-
erence loci for demographic models 1 and 5. Each point
corresponds to the power obtained by 100,000 simula-
tions at the 5% significance level. The number of refer-
ence loci, the duration of sampling time, and the
number of sampled points were R = 10, T = 1000,
and (L + 1) = 11, respectively. The intervals between
any two adjacent sampled points were the same at
Dt ¼ ti 2 ti21 ¼ 100 ði ¼ 1;2; . . . ; LÞ. The initial fre-
quency for all R þ 1 loci, xh;0, was assumed to be 0.5.
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reference loci 6¼ 0 or 1, definable FITR statistics, and exactly known
population allele frequencies. In practice, these ideal conditions may
be violated. Before this section, the computer simulation method used
in this study had not been validated. Here, we discuss the applicability
of the simulation and describe cases that violate the aforementioned
assumptions.

For the determination of allele frequencies in successive gener-
ations at R + 1 loci, the exact binomial sampling is computationally
intensive and impractical for realistic population sizes (Figure 1).

Therefore, we used a pseudosampling method to simulate the bino-
mial sampling process (Wright2Fisher model). Even for a small, con-
stant-size (n = 20) Wright2Fisher population, the fixation times for
a mutant obtained by the pseudosampling were consistent with those
obtained by binomial sampling (Kimura 1980). However, we consid-
ered only relatively short time scales, and the performance of the
pseudo-sampling method was not obvious.

In Table 3, the rows denoted by r = “free” correspond with an
assumption of free recombination (i.e., evolving independently)

n Table 4 Effects of allele frequencies at the reference loci

T L Dta xh,0b (h 6¼ 0)

Model 1 Model 5

Neutral
(s0 = 0)

Selective
(s0 = 0.002)

Neutral
(s0 = 0)

Selective
(s0 = 0.0005)

1000 2 500 0.5 4.86 (10.00) 50.03 (10.00) 5.05 (10.00) 82.93 (10.00)
0.1 5.55 (9.84) 52.00 (9.84) 5.00 (10.00) 82.98 (10.00)
0.05 6.69 (8.70) 53.11 (8.70) 5.28 (10.00) 82.85 (10.00)
0.01 5.55 (3.37) 28.03 (3.37) 6.77 (7.84) 80.47 (7.84)

1000 10 100 0.5 4.91 (10.00) 53.49 (10.00) 4.93 (10.00) 97.44 (10.00)
0.1 5.05 (9.84) 54.03 (9.85) 4.99 (10.00) 97.52 (10.00)
0.05 5.18 (8.70) 53.95 (8.70) 4.99 (10.00) 97.34 (10.00)
0.01 5.26 (3.38) 34.35 (3.38) 5.46 (7.84) 96.87 (7.83)

Values indicate rejection rates (%) obtained by 100,000 simulations under a nominal significance level of 5%. Values in parentheses correspond to the mean number of
reference loci used to calculate the FITR statistics. The number of reference loci at t0 were R = 10. The initial frequency of the focal locus, x0,0, was assumed to be 0.5.
a

Dt ¼ ti 2 ti2 1 ði ¼ 1; 2; . . . ; LÞ.
b

xh,0, the allele frequencies of the reference loci at t0.

Figure 5 The effects of sampling error on the power of
the FITR. The powers of the FITR under various
sampling regimes are shown as functions of the selec-
tion coefficients for demographic models 3 and 5. All, or
5000, 1000, 500, or 100 individuals in a population were
assumed to be sampled. Sampling was assumed to be
conducted by binomial sampling at each (R + 1) locus
and at each (L + 1) time point. Each point corresponds
to the power obtained by 100,000 simulations at the 5%
significance level. The number of reference loci, the
duration of sampling time, and the number of sampled
points were R = 10, T = 1000, and (L + 1) = 3 (upper
graphs) or 11 (lower graphs), respectively. The intervals
between any two adjacent sampled points were the
same at Dt = ti–ti-1 = 500 (top graphs) or 100 (bottom
graphs) (i = 1,2,. . .,L). The initial frequency for all R þ 1
loci, xh;0, were assumed to be 0.5.
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among R + 1 loci. Rejection rates simulated by the exact binomial
sampling and by the pseudosampling are given. Demographic Models
1 and 5 with reduced population sizes were used (see Table 3, legend).
We did not observe any differences in the results generated by the
binomial sampling vs. the pseudosampling under neutral or selective
cases. These findings support the applicability of pseudo-sampling to
our problem of concern.

Next, we considered the case in which the reference loci and focal
loci were not independent. We limited our analysis to the case in
which R + 1 loci were in linkage equilibrium (LE) at t=0. For closely
linked loci, linkage disequilibrium (LD) is a distinct possibility. In
addition, selection at the focal locus can drastically promote LD
(e.g., Sabeti et al. 2002). However, for example, empirical studies of
human genomes suggest that LD can be extended, at most, to several
megabase pairs from the selective locus (e.g., Saunders et al. 2005).
Because the genome is large compared with the megabase pairs scale, we
can select R reference loci such that R + 1 loci are in LE. For this reason,
our discussion is limited to the case in which R + 1 loci are in LE.

In Table 3, the rows indicated by r = 0.1, 0.01, and 0 describe
results corresponding to a case in which the per-generation recombi-
nation fraction between any two adjacent loci are 0.1, 0.01, and 0,
respectively. At t = 0, R + 1 loci are assumed to be in LE. That is,
the alleles at R + 1 loci are randomly combined to form haplotypes.
The simulations were conducted by the exact binomial sampling.
For the neutral or selective cases, we observed no obvious differences
between free recombination and limited recombination (r = 0.1, 0.01,
and 0; Table 3). That is, the type I error rates and powers were
maintained regardless of recombination fractions.

A case in which the reference loci are under selection is evaluated
in Figure 4. The selection model is the same because the focal loci and
R loci are under the same degree of selection. That is, for all hð6¼ 0Þ
loci, the fitnesses of genotypes AhAh, Ahah, and ahah are assumed to be
1, 1 + 0.5sh, and 1 + sh (s1 = s2 = ��� = sR), respectively. The effects of
selection at the reference loci are conservative for type I error rates
(see the case of s0 = 0 in Figure 4). The results of Model 1 suggest that
if Nsh , 5, there is little difference in rejection rates compared to the
neutral case. Including Model 5, if the condition sh # 1/2s0 is met, the
power is not decreased. That is, the power is not highly sensitive to
selection at the reference loci. Nevertheless, we recommend using
synonymous sites or noncoding regions as references.

We next considered a situation in which allele frequencies at the
reference loci were low at t = 0 and some allele frequencies could
become 0 or 1 by t = T. When allele frequencies became 0 or 1, the
statistic, tFITR, in (6) could not be defined. Therefore, it was practical
to remove these loci from the calculation of tFITR. Table 4 indicates
how rejection rates are changed by the data handling. Values in pa-
rentheses indicate the average number of reference loci used to cal-
culate the FITR statistics. For L = 2 the type I error rate was inflated by
a few percent (e.g., 6.69% at most, Model 1) possibly because changes
in allele frequencies at reference loci are biased toward smaller values
when loci are removed for which the frequencies of alleles become
0 or 1. These apparently reduced changes in allele frequencies could
bring about overestimates of change at the selective locus. For L = 10
the inflation of the type I error rate becomes small. In general, to
prevent inflation of the type I error rate, loci having moderate fre-
quencies of alleles (e.g., $10%) should be used in this test.

The effects of sampling error on the type I error rate and power of
the FITR are shown in Figure 5. In general, the effects of sampling
error on the type I error rate were conservative. As expected, the
power decreased as the number of sampled individuals increased.
The degree of power reduction differed for different demographic

models or values of L. This finding reflects that the power is influ-
enced by the relative magnitudes of changes in allele frequencies at
R + 1 loci and sampling errors. As L increased, the relative changes in
allele frequencies to the sampling errors decreased. Thus, power was
more reduced for larger L. Regarding the demographic models, the
population size of Model 5 was larger than that of Model 1. Therefore,
the relative changes in allele frequencies to the sampling errors were
larger in Model 5, and the degree of power is large in Model 5.

In this study, we proposed a neutrality test, the FITR, to
accommodate fluctuations in population size using reference loci.
Our test is an extension of Feder et al.’s (2013) FIT. By computer
simulation, the actual type I error rate of the FITR was nearly equal to
the nominal significant level regardless of fluctuations in population
size when sampling noise could be ignored. The FITR detected selec-
tion with remarkable power under conditions of rapid growth (model
4) and severe bottleneck (model 5). Even under a model of constant
population size, the FITR using 10 or more reference loci had more
power than the FIT.

We also discussed the performance of the FITR in practical
situations. The effects of selection at the reference loci were small
unless selection was strong. Our findings indicated that when R + 1
were in LE, those loci should be considered independent of each other.
In addition, loci with moderate frequencies of alleles should be used as
references. Our findings may facilitate the development of more so-
phisticated methods using independent reference loci, including
a method that can quantify (estimate) the strength of selection. These
methods will enable appropriate inferences about natural selection in
real and dynamic populations. Figure 5.
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APPENDIX

Suppose that there are two segregating alleles, denoted by Ah and ah, at the h-th locus ðh 2 ð0; 1; 2; . . . ;RÞÞ. The fitnesses of genotypes AhAh,
Ahah, and ahah are assumed to be 1; 1þ 0:5sh; and 1þ sh, respectively. As described in the main text, the case of h = 0 corresponds to the
focal locus. When Dti ¼ ðti 2 ti21Þ is small compared with Ni, the change in the allele frequency of ah, xh;i 2 xh;i21, from ti21 to ti approximately
follows a normal distribution,

xh;i 2 xh;i2 1 � N

�
Dti
2

shxh;i21ð12xh;i21Þ;
Dtixh;i2 1ð12 xh;i21Þ

2Ni

�
:

The normalized change, Dxh;i ¼ ðxh;i 2 xh;i21Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh;i21ð12 xh;i21Þ

p
, is approximately

Dxh;i � N

�
Dti
2

sh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh;i21

�
12 xh;i21

�q
;

Dti
2Ni

�
:

Then the probability density of Dxh;i, fh;iðDxh;i; sh;NiÞ, under sh and Ni is

fh;i
�
Dxh;i; sh;Ni

� � ffiffiffiffiffiffiffiffiffiffi
Ni

pDti

r
exp

 
2

Ni

Dti

 
Dxh;i 2

Dti
2

sh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh;i21ð12xh;i21Þ

q !2!
:

Considering Dxh;i for all h 2 ð0; 1; 2; . . . ;RÞ, the joint probability density of Dxi ¼ ðDx0;i; Dx1;i⋯;DxR;iÞ, fiðDxi; s;NiÞ, under
s ¼ ðs0; s1;⋯; sRÞ and Ni.

fiðDxi; s;NiÞ �
 

Ni

pDti

!Rþ1
2

exp

 
2

Ni

Dti

XR
h¼0

 
Dxh;i 2

Dti
2

sh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh;i21ð12xh;i21Þ

q !2!
: (A1)

i) tFITRðiÞ is the exact LRS using data Dxi

We will show that tFITRðiÞ given by (3) or (4) is the exact statistic using data Dxi to test H0 : sh ¼ 0 (for all h) against H1 : s0 6¼ 0 and sh ¼ 0
ðh 6¼ 0Þ in the likelihood ratio test framework.

In our model, the likelihood ratio test is a test for which we reject H0 if

l ¼
fi
�
Dxi; 0; Ňi

�
fi
�
Dxi; ð̂s0; 0Þ; N̂i

�, c ðconstantÞ: (A2)

Otherwise, we accept H0. Here, Ň i is the maximum likelihood estimator (MLE) of Ni under H0, and N̂i and ŝ0 are the MLEs of Ni and s0
under H1.

Under H0, the probability density of Dxh;i is given by

fiðDxi; 0;NiÞ ¼
 

Ni

pDti

!Rþ1
2

exp

 
2

Ni

Dti

XR
h¼0

Dx2h;i

!

from (A1). Solving

@lnfi
@Ni

¼ Rþ 1
2Ni

2
1
Dti

XR
h¼0

Dx2h;i ¼ 0;

we get

Nˇi ¼ ðRþ 1ÞDti
2
PR

h¼0Dx
2
h;i

:

Then
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fi
�
Dxi; 0;N

ˇ
i

�
¼
 

Ňi

pDti

!Rþ1
2

exp

�
2
Rþ 1
2

�

Under H1, the probability density of Dxh;i is given by

fiðDxi; ðs0; 0Þ;NiÞ ¼
 

Ni

pDti

!Rþ1
2

exp

 
2

Ni

Dti

�
Dx0;i2

Dti
2

s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0;i21ð12x0;i21Þ

q �2

2
Ni

Dti

XR
h¼1

Dx2h;i

!

from (A1). Solving

@lnfi
@Ni

¼ Rþ 1
2Ni

2
1
Dti

�
Dx0;i2

Dti
2

s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0;i21ð12x0;i21Þ

q �2

2
1
Dti

XR
h¼1

Dx2h;i ¼ 0 and

@lnfi
@s0

¼ Ni

�
Dx0;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0;i21ð12 x0;i21Þ

q
2

Dti
2

s0x0;i21ð12 x0;i21Þ
�

¼ 0;

we get

N̂i ¼ ðRþ 1ÞDti
2
PR

h¼1Dx
2
h;i

 and

ŝ0 ¼ 2Dx0;i
Dti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0;i2 1ð12 x0;i2 1Þ

p :

Then

fi
�
Dxi; ð̂s0; 0Þ; N̂i

�
¼
 

N̂i

pDti

!Rþ1
2

exp

�
2
Rþ 1
2

�
:

Thus, ðA2Þ is equivalent to

l ¼
fi
�
Dxi; 0; Ňi

�
fi
�
Dxi; ð̂s0; 0Þ; N̂i

� ¼
0
@ Ňi

N̂i

1
A

Rþ1
2

¼

0
BBB@
1=PR

h¼0 Dx
2
h;i

1=PR
h¼1 Dx

2
h;i

1
CCCA

Rþ1
2

¼
 PR

h¼0 Dx
2
h;iPR

h¼1 Dx
2
h;i

!2 Rþ1
2

¼
 
1þ Dx20;iPR

h¼1 Dx
2
h;i

!2 Rþ1
2

, c:

With some algebra, we let a new constant c9 ¼ Rc2
2

Rþ1 2R

Dx20;i
1
R

PR
h¼1Dx

2
h;i

. c9:

Finally, we get

Dx0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

PR
h¼1Dx

2
h;i

q ¼ tFITRðiÞ , 2 c$; c$,
Dx0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R

PR
h¼1Dx

2
h;i

q ¼ tFITRðiÞ

where c$ ¼ ffiffiffiffi
c9

p
. Therefore, tFITR(i) as given by (3) or (4) is the exact LRS using data Dxi.

ii) Ad hoc interpretation for tFITR as a test statistic using the data Dx

As R grows, the t distribution for tFITR(i) approaches the normal distribution with mean s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiDtix0;i2 1ð12 x0;i2 1Þ=2

p
and variance 1,

tFITRðiÞ ¼
Y0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R

PR
h¼1Y

2
h;i

q � N
�
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiDtix0;i2 1

�
12 x0;i2 1

�
=2

q
; 1
�
:

Unfortunately, s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiDtix0;i2 1ð12 x0;i2 1Þ=2

p
varies with Ni, Dti, and x0;i2 1. When x0;i2 1 ¼ 0:5; 0:4; 0:3;

0:2; 0:1; and 0:05;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0;i21ð12 x0;i21Þ

p ¼ 0.50, 0.490, 0.458, 0.400, 0.300 and 0.218, respectively. Nevertheless, the values
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of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0;i21ð12 x0;i21Þ

p
are roughly the same if x0;i2 1 are far from 0 or 1. In addition, the values of

ffiffiffiffiffi
Ni

p
and

ffiffiffiffiffiffi
Dti

p
vary with i. However, we try

to consider s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiDtix0;i21ð12 x0;i21Þ=2

p
as a constant m, such that

tFITRðiÞ � Nðm; 1Þ:

Consider a test H0:m = 0 against H1:m 6¼ 0 using L i.i.d samples from the distribution. The LRS is given by the sum of tFITRðiÞ,
XL
i¼1

tFITRðiÞ . That

is, when R is large and the variation of the value for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiDtix0;i21ð12 x0;i21Þ

p
is not large, tFITR given by (5) or (6) is expected to be close to the LRS.
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