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ABSTRACT Immune-related genes are often characterized by adaptive protein evolution. Selection on immune
genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of
a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set
of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of
selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene
family, tested their involvement in the immune defense, and related our results to explosive speciation and
adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs
and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid
Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between
immune response parameters and expression levels of three Hivep loci. This work provides the first evidence
for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host–
pathogen interactions within an adaptive radiation.
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The interplay between hosts and their parasites (i.e., macroparasites,
bacteria, and viruses) represents one of the strongest biological inter-
actions (Haldane 1949). Pathogens impose strong selection pressures
on their hosts and have the potential to rapidly change the genotypic
composition of host populations, which may ultimately alter the struc-
ture of entire ecosystems (Thompson 1988; Ebert and Hamilton 1996;
Keesing et al. 2010). To counteract the permanently evolving pathogen
virulence, hosts evolve resistance through diverse immune response
mechanisms (Hamilton 1980). These include the discrimination be-
tween self and nonself, facilitating the recognition of pathogen-derived
epitopes (Altizer et al. 2003; Boots et al. 2008). Invertebrates and

vertebrates share the architecture of the innate immune system, i.e.,
a conserved immediate defense mechanism including Toll-like recep-
tors, lysozymes, and cellular defenses (Janeway et al. 2001). Immune
memory, however, is the hallmark of the adaptive immune system of
vertebrates (Cooper and Alder 2006; Flajnik and Kasahara 2010). The
unique somatic diversification of receptors of the immunoglobulin
family during ontogeny [i.e., V(D)J recombination] mediates a dra-
matic increase in the number of foreign pathogen epitopes that the
adaptive immune system can remember and attack (Janeway et al.
1996; Zhu et al. 2012).

Because of the constant interplay between host–parasite adaptation
and counteradaption, immune genes are commonly characterized by
signatures of positive selection through elevated rates of adaptive pro-
tein evolution (Hughes and Nei 1988; Hughes and Nei 1989; Jansa
et al. 2003; Schlenke and Begun 2003; Sawyer et al. 2004; Nielsen et al.
2005; Jiggins and Kim 2007; Sackton et al. 2007; Tschirren et al. 2011).
Selection on immune system diversification can be particularly strong
when hosts encounter novel pathogens that induce primary immune
challenges. This is the case after the colonization of a new habitat or
upon the exploitation of vacant ecological niches (Scharsack et al.
2007; Matthews et al. 2010; Jones et al. 2012). For instance, it has
been shown that migratory birds that encounter two or more different
parasite faunas have larger immune defense organs (e.g., bursa and
spleen) than closely related resident birds (Møller and Erritzøe 1998).
Freshwater sticklebacks differ in their immune competence potential
depending on their ecotype (e.g., lower parasite diversity in rivers than
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in lakes) (Scharsack et al. 2007), which is furthermore supported by
a correlation between major histocompatibility complex (MHC) geno-
type and foraging habitat in benthic and limnetic ecomorphs (Matthews
et al. 2010). Given the recognized evolutionary importance of the
immune system (Janeway et al. 2001; Rodríguez et al. 2012) and the
range of available functional and theoretical knowledge, the next step
would be to assess to which degree immune genes contribute to, or
even trigger, macroevolutionary events such as divergence, rapid spe-
ciation, and adaptive radiation.

East African cichlid fishes are a classic example of adaptive
radiation (Schluter 2000). Because of their great numbers of closely
related endemic species and their high levels of phenotypic and eco-
logical diversity, cichlids are an important model system to study the
genetic basis of diversification, adaption, and speciation (Kornfield and
Smith 2000; Kocher 2004; Seehausen 2006; Salzburger 2009; Santos
and Salzburger 2012). Previous studies of cichlid adaptive radiations
have mainly focused on the understanding of ecologically important
traits (and their genetic basis), such as the feeding apparatus (Terai
et al. 2002b; Albertson et al. 2005; Fraser et al. 2008; Fraser et al. 2009;
Muschick et al. 2011; Muschick et al. 2012), as well as on sexually
selected traits such as coloration and pigmentation (Terai et al. 2002a;
Terai et al. 2003; Salzburger et al. 2007; Roberts et al. 2009). Fewer
studies have addressed the evolution of the immune system or, more
generally, physiology in relation to diversification and rapid speciation
in cichlids (Blais et al. 2007; Gerrard and Meyer 2007; Dijkstra et al.
2011). Dijkstra et al. (2011), for example, showed that divergence in
coloration is accompanied by differentiation in immune function in
Lake Victoria cichlids, and divergence in alleles of the MHC has pre-
viously been proposed as trigger of speciation in Lake Malawian cichl-
ids through MHC-mediated mate choice (Blais et al. 2007). Several
genes related to the immune system, including MHC loci, have been
found to show signs of positive selection in East African cichlids
(Gerrard and Meyer 2007), suggesting a role for immune genes during
cichlid adaptive radiations.

In this study, we focused on the function and molecular character-
ization of a novel family of immune genes in (cichlid) fishes, which have
been implicated to have immunological and developmental functions in
mammals and insects (Seeler et al. 1994; Wu et al. 1996; Torres-Vazquez
et al. 2001). In a previous study that focused on a candidate gene family
for neural crest-derived structures in cichlids (i.e., the endothelin family
of ligands and receptors), we detected strong signatures of positive
selection in a gene adjacent to one of the focal loci, the zinc finger
protein human immunodeficiency virus type I enhancer-binding pro-
tein 1 (Hivep1) (Diepeveen and Salzburger 2011).Hivep1 is a transcrip-
tion factor with functions in a variety of biological and developmental
processes, e.g., HIV-1 gene expression (Maekawa et al. 1989; Muchardt
et al. 1992; Seeler et al. 1994), in the Decapentaplegic signaling pathway
important for cell fate specification during embryogenesis (Grieder
et al. 1995; Dai et al. 2000; Marty et al. 2000; Torres-Vazquez et al.
2001), in V(D)J recombination of immunoglobulins (Wu et al. 1993;
Wu et al. 1996), and in MHC enhancer binding (Baldwin et al. 1990;
William et al. 1995). Although a single copy of this gene is found in
Drosophila, mammals are typically characterized by three copies (Hicar
et al. 2001; Dürr et al. 2004). Teleost fish, however, possess up to five
duplicates (see Braasch et al. 2009), which is in accordance with the 3R
hypothesis of a teleost-specific genome duplication event after the 2R
duplications in the vertebrate linage (Sidow 1996; Taylor et al. 2003;
Meyer and Van De Peer 2005; Volff 2005).

The goal of the current study was threefold. First, we characterized
the signatures of selection (i.e., dN/dS ratios) in the five Hivep paralogs
in 40 East African cichlid fish species to determine whether adaptive

protein evolution is commonly observed in the Hivep gene family. To
this end, we performed phylogenetic analyses of the Hivep loci and
estimated dN/dS ratios on both codon sites and in individual cichlid
lineages. Second, we examined the role of the Hivep paralogs in the
immune defense in the cichlid Astatotilapia burtoni. We evaluated the
functional connection between Hivep expression levels and several
cellular immune parameters after an experimental vaccination with
Vibrio anguillarum bacteria. This fish pathogen was chosen to simu-
late a novel immune challenge, as the host was expected to be immu-
nologically naïve against these Vibrio bacteria. Finally, we examined
putative pleiotropic developmental functions through analyses of cis-
regulatory regions to obtain insights into other functions of the Hivep
paralogs in teleosts that could be linked to the observed signatures of
adaptive protein evolution and related our findings to the explosive
speciation events in East African cichlid fishes.

MATERIALS AND METHODS

Sampling, DNA and RNA extraction, and
housing conditions
Samples for the DNA analyses were collected during two expeditions
to Lake Tanganyika in 2007 and 2008 using a standard operating
procedure described by Muschick et al. (2012). In total, 40 different
cichlid species from 14 different lineages, including all major cichlid
lineages in East Africa (so-called tribes) (Muschick et al. 2012) were
examined (Supporting Information, Table S1). RNA for the gene ex-
pression assays was extracted from gill, brain, and liver tissue of adult
A. burtoni (laboratory strain, both sexes; see Experimental Vaccination
section). DNA and RNA extractions were performed as described
elsewhere (Diepeveen and Salzburger 2011), with one exception: the
tissue homogenization during the RNA extraction was performed on
a BeadBeater (FastPrep-24; MP). Animals being part of the experi-
mental vaccination study were kept under standard conditions (12 hr
light, 12 hr dark, 25�) in the animal facilities at the Zoological Institute
in Basel before transportation to the Helmholtz Centre for Ocean
Research Kiel, where they were kept under the following conditions:
14 hr light; 10 hr dark; and 25� for $38 hr before the start of the
experimental vaccination.

Loci, PCR amplification, and sequencing
Previously, five nuclear Hivep paralogs (i.e., Hivep1, Hivep2a, Hivep2b,
Hivep3a, and Hivep3b) were identified in teleost fishes (Braasch et al.
2009). Ensemble (versions 61 and 67) sequences from the following
species were downloaded: zebrafish (Danio rerio); cod (Gadus morhua);
medaka (Oryzias latipes); spotted green pufferfish (Tetraodon nigroviridis);
fugu (Takifugu rubripes); tilapia (Oreochromis niloticus); and stickleback
(Gasterosteus aculeatus) (Table S2). For two loci, we performed in-house
tblastx searches on the server of the Zoological Institute (University of
Basel) to determine Hivep protein sequences in the preliminary cichlid
genomes of A. burtoni, Neolamprologus brichardi, and Pundamilia
nyererei (BROAD Institute, unpublished data). These teleost and cichlid
sequences were aligned with Codon Code Aligner 3.7.1 (CodonCode
Corporation) to determine exon–intron structure and to design cichlid-
specific primers (Table S3).

Subsequent PCR and sequencing reactions were performed as
described elsewhere (Diepeveen and Salzburger 2011). PCR products
were visualized with GelRed (Biotium) on a 1.5% agarose gel. Sequen-
ces were aligned and visually inspected using Codon Code Aligner
3.7.1 (CodonCode Corporation) and exon/intron boundaries were
determined based on homology with the obtained other teleost sequences.
Total sequenced regions (TSR), protein-coding regions, and concatenated
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(TSRs of all five loci) data sets were constructed. All generated cichlid
Hivep sequences have been deposited into GenBank (GenBank
KF049218–KF049416) (Table S1).

Phylogenetic analyses and tests for selection pressure
Phylogenetic analyses and tests for selection pressure were performed
as described elsewhere (Diepeveen and Salzburger 2011; Diepeveen
et al. 2013). In short, models of nucleotide substitution were chosen
based on likelihood ratio tests (LRTs) conducted in jModeltest 0.1.1
(Guindon and Gascuel 2003; Posada 2008) and used in maximum
likelihood searches in PAUP� (Swofford 2002) and Bayesian Inference
in MrBayes 3.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huel-
senbeck 2003) for each individual paralog and for the concatenated
dataset. Bootstrap analyses with 100 replicates were performed in
PAUP� and MrBayes was run for 10,000,000 generations. Tylochromis
polylepis and/or Oreochromis tanganicae were used as the outgroup in
these analyses (Salzburger et al. 2002). The consensus tree based on
the concatenated dataset was used as a common input tree in the
subsequent analyses.

Both site and branch-site models, as implemented in Codeml,
Phylogenetic Analysis by Maximum Likelihood (PAML) 4.2 (Yang
1997; Yang 2007), were used to test for selection pressure. The non-
synonymous/synonymous substitution rate ratio, v or dN/dS, the pro-
portion of sites assigned to an v category, the p0,1,2, and the p and q
parameters of the b distribution were estimated for all five datasets
under different models. LRTs of the following model comparisons
were performed to detect sites under positive selection: M1a (nearly
neutral) with M2a (positive selection); M7 (b) with M8 (b and vs

$1); and M8a (b and vs = 1) with M8. The comparison between M0
(one ratio) and M3 (discrete) was used as a test of variable v among
sites. Posterior probabilities for site classes were calculated with the
Bayes empirical Bayes (BEB) (Yang et al. 2005). Next, LRTs between
the null model (vs = 1) and the alternative model (vs $1) were
performed to determine if focal, or foreground, lineages evolved under
non-neutral evolution. These foreground branches were chosen based
on the results from the phylogenetic and PAML analyses.

Subsequent sliding window analyses (window size = 20) were
performed with TreeSAAP (selection on amino acid properties) 3.2
(Woolley et al. 2003) for the four loci for which positively selected sites
were observed with the PAML analyses (Hivep1, Hivep2b, Hivep3a, and
Hivep3b). Amino acids were categorized based on 31 physicochem-
ical properties to identify regions of positive selection. Selection on
amino acids was subsequently screened for positive destabilizing se-
lection by means of categorizing the substitutions into eight categories
(categories 1–8) based on the magnitude of radicality (i.e., 1 is the
most conservative amino acid substitutions and 8 is the most radical).
The three highest categories (6–8; P # 0.001) were used as indicative
of radical amino acid substitutions. Next, these substitutions were
analyzed with the program SIFT (sorting intolerant from tolerant)
(Ng and Henikoff 2003) to screen for possible effect on protein
function.

Analyzing cis-regulatory regions
The five Hivep sequences from A. burtoni were compared with the
obtained teleost sequences of O. niloticus, O. latipes, T rubripes,
T. nigroviridis, and D. rerio with mVISTA (Mayor et al. 2000; Frazer
et al. 2004). Sequences were globally aligned with Shuffle-LAGAN
(Brudno et al. 2003) and the minimum sequence similarity was set to
50%. Intragenic conserved noncoding elements were predicted and
analyzed with rVISTA (Loots et al. 2002) to identify potential tran-
scription factor binding sites.

Experimental vaccination and immune
response measurements
To examine the expression patterns of the Hivep paralogs after an
experimental vaccination, we exposed adult cichlid fish of the species
A. burtoni to Vibrio bacteria following Roth et al. (2011). V. anguillarum
was physically isolated from the stomach of freshly caught broad-nosed
pipefish (Syngnathus typhle) (Roth et al. 2012). Strain confirmation
was performed via sequencing of the 16S rRNA, recA, and pyrH loci
(GenBank reference numbers provided in Roth et al. 2012). On day 1
of the experiment, fish of both sexes were randomly assigned to either
the experimental treatment (12 individuals) or the control treatment
(11 individuals) and injected intraperitoneally with either 50 ml heat-
killed (60 min at 65�) V. anguillarum (phylotype S6M4; 106 cells/ml
dissolved in phosphate-buffered saline (PBS), i.e., experimental treat-
ment) or 50 ml PBS (i.e., control treatment), respectively, according to
the methods of Roth et al. (2012). Fish were tagged subcutaneously
with visible implant elastomer tags (Northwest Marine Technology)
according to treatment and kept in a single aquarium system. After
�21 hr of exposure, fish were killed with MS222 and weight and
standard length were noted as in Birrer et al. (2012). Blood was collected
from the caudal vessel in heparinized capillaries (Na-heparinized; Brand
GMBH + Co. KG), followed by extraction of the head kidneys and
spleen, which were forced through a 40-mm nylon sieve to prepare cell
suspensions for subsequent cellular immune measurements. All steps
were performed on ice. Cells were washed twice with RPMI medium
(10 min, 600 rpm, 4�) and resuspended in a final volume of 450 ml.

The number of lymphocytes and monocytes (as proxies for immune
response in the form of inflammation and/or stress to the treatment)
were measured in blood, head kidneys, and spleen tissues by means
of flow cytometry (FACSCalibur; Becton Dickinson) with pre-assessed
cichlid-specific settings for each tissue type. The proportions of mono-
cytes, lymphocytes, and the lymphocyte/monocyte ratio were calculated.
Furthermore, the activity of the relative number of lymphocytes in the
G2-M and synthesis (S) phases of the proliferation cycle compared to
the relative number of lymphocytes in the G0-1 phase was measured
by killing cells in ethanol and subsequent labeling of the DNA with
propidium iodide (Sigma Aldrich) as described by Roth et al. (2011).
Lymphocytes were identified by their characteristic FSC/SSC pattern
(i.e., cell volume and inner complexity). Proliferating cells in the G2-M

phase were distinguished from G0-1 and S phase cells by a more intense
red fluorescence because of their higher DNA content. To test whether
the obtained data were normally distributed, D’Agnostino and Pearson
omnibus normality tests as implemented in GraphPad Prism version
5.0a for Mac OS X (http://www.graphpad.com) were conducted. Out-
liers with values outside 2 SDs from the mean were removed (i.e., up to
three individuals per treatment group and tissue type).

The experiment was performed according to current national
legislation of the Ministerium für Landwirtschaft, Umwelt und länd-
liche Räume des Landes Schleswig-Holstein (project entitled “Effects
of global change on the immunological interaction of pipefish and
cichlids with their natural bacteria communities”). One fish from the
control treatment died during the experiment.

Gene expression assays and analyses
Gill, brain, and liver tissues of the 22 experimental animals were extracted
and directly stored in RNA later (Invitrogen). RNA extraction and
reverse-transcriptase were conducted as described elsewhere (Diepeveen
and Salzburger 2011). Subsequent gene expression analyses were per-
formed by means of quantitative PCR on a BioMark HD system
at the Genetic Diversity Centre of the ETH Zurich, following the
manufacturer’s protocol. Levels of gene expression were measured in
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Figure 1 Phylogenetic hypotheses based on maximum likelihood for the concatenated dataset and the individual Hivep loci consisting of 40 taxa.
(A) Concatenated dataset (13,543 base pairs (bp); best-fitting model of nucleotide substitution: HKY+I+G). Lineages are recovered with maximum
support values, whereas relationships within and between lineages are supported with relative high values. The horizontal dotted line separates
the five most basal species from the derived lineages: the lamprologines, the eretmodines, and the species belonging to the C-lineage, with the
latter marked by the vertical dotted line. (B) Hivep1 (3440 bp; TPM1uf+I+G) well-resolved with all major lineages recovered with high support
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48.48 dynamic array integrated fluidic circuits with EvaGreen DNA
binding dye. Primers were designed and tested for the five focal Hivep
loci, two housekeeping loci [i.e., elongation factor 1 (EF1) and ribosomal
protein SA 3 (RpSA3)] (Colombo et al. 2013) and four control loci with
demonstrated immune-related functions [i.e., allograft inflammatory
factor 1 (AIF1), anti-inflammatory response (Watano et al. 2001); co-
agulation factor II receptor-like 1 (F2RL1), inflammation and immunity
(Rothmeier and Ruf 2012); interleukin 10 (IL10), immunosuppres-
sion (Jankovic and Trinchieri 2007); Toll-like receptor 5 (TLR5), path-
ogen recognition (Janeway and Medzhitov 2002; Akira et al. 2006)]
(Table S3). Data were visualized, amplification plots were checked,
and outliers were removed with the Fluidigm Real-Time PCR analysis
software version 3.1 (Fluidigm). Further comparative analyses were
performed with the qBasePLUS2 software package (Biogazelle). EF1
and RpSA3 were used as reference targets for the multiple reference
gene normalization approach as implemented in qBasePLUS2 software
(Biogazelle). Three different positive controls were included in this
study; RNA was extracted from whole nonexperimental A. burtoni
juveniles and two mixes composed of nine samples (gill, liver, and
brain tissues of three randomly chosen individuals) each for the con-
trol group and the experimental group separately. Variation between
PCR replicates and deviation of normalization factors were checked
and outliers with values outside 2 SDs from the mean were removed.
Data were controlled for inter-run variation.

Unpaired t tests were performed for the control immune genes
expression levels between the control and experimental treatment
groups with the qBasePLUS2 software (Biogazelle). To test for a corre-
lation between the expression of Hivep paralogs [i.e., quality-controlled
and normalized relative quantities (CNRQ, here just RQ)] and the
immune response measurements, Pearson correlations were calculated
in GraphPad Prism in the control and experimental treatment groups.

RESULTS

Phylogenetic analyses of cichlid Hivep sequences
To examine the molecular evolutionary history of the Hivep paralogs,
we performed maximum likelihood and Bayesian Inference phyloge-
netic analyses based on the total sequenced region per locus, and the
concatenated dataset including all loci. The phylogenetic topologies of
the obtained partial cichlid Hivep gene sequences and the concate-
nated dataset of 13.5 kb are displayed in Figure 1, A–F. Generally, the
observed topologies of the gene trees, and the concatenated tree in
particular, correspond with the available species trees (Salzburger et al.
2002; Takahashi 2003; Salzburger and Meyer 2004; Clabaut et al.
2005; Salzburger et al. 2005; Muschick et al. 2012), with T. polylepis,
O. tanganicae, B. graueri, B. microlepis, and T. nigrifrons as most basal
species, followed by the Lamprologini, the Eretmodini, and the species
belonging to the "C-lineage" (Salzburger et al. 2002; Clabaut et al.
2005; Day et al. 2008) (Figure 1). As previously observed (Diepeveen

and Salzburger 2011), E. cyanostictus was found at a different position
within the C-lineage, whereas this species has been commonly re-
solved outside the C-lineage in previous studies (Salzburger et al.
2002; Clabaut et al. 2005; Day et al. 2008). Also, the relationships
between the individual lineages of the C-lineage altered between the
individual gene trees. Long branches were observed for T. polylepis,
the lamprologines, individual lamprologine species, different branches
within the ectodines in several gene trees, and for the haplochromines
in Hivep2b and T. nigrifrons in the Hivep3a gene tree.

Selection pressure on sites and branches
To investigate signatures of selection pressure in the Hivep paralogs,
we used site and branch-site models (Yang 1997, 2007) to obtain, e.g.,
nonsynonymous/synonymous substitution rate ratios (dN/dS). The
maximum likelihood parameter estimations for v, p0,1,2 and p, and
q under different evolutionary models can be found in Table 1 for all
five Hivep loci. Estimations of v under the one ratio model (M0)
suggest that the Hivep genes evolved under purifying selection, with
v ranging from 0.093 (Hivep2a) to 0.303 (Hivep1). A small proportion
of sites, 1.4% (Hivep2a) to 11.8% (Hivep3b), was estimated to have
evolved neutrally (v = 1) under the neutral model (M1a). By using
models that allow v to vary among sites (M2a, M3, and M8), up to
4.3% of sites were detected to have evolved with v . 1 in Hivep1,
Hivep2b, Hivep3a, and Hivep3b, with more than 89.4% of sites evolv-
ing under purifying selection.

Likelihood ratio tests of several model comparisons (Table 2) were
performed to detect positively selected amino acids. This approach
resulted in the rejection of the null models in the M1a vs.M2a, M7 vs.
M8, and M8a vs. M8 comparisons for all loci except Hivep2a. Posi-
tively selected sites were detected with the BEB for Hivep1 (16 sites),
Hivep2b (2 sites), Hivep3a (18 sites), and Hivep3b (13 sites).

LRTs of the branch-site analyses were performed to test whether
focal lineages evolved under non-neutral evolution. Significant LRTs
were only observed for Hivep3b (Table 3), indicating that although the
v ratios do vary among sites for three of the other four Hivep loci,
they do not seem to vary significantly among lineages. For Hivep3b,
the following two branches were observed with v . 1: the derived
lineages (excluding the five basal species; P , 0.001) and the haplo-
chromines (P = 0.031) (Table 3 and Figure 1).

Sliding windows and amino acid
substitution characteristics
To visualize regions with elevated dN/dS values and to connect such
regions with the physiochemical properties of the respective amino
acid substitutions, we performed sliding window analyses. The sliding
window plots of Hivep1, Hivep2b, Hivep3a, and Hivep3b are depicted
in Figure 2, A–D. Regions of positive selection (z-score $ 3.09 corre-
sponding with P # 0.001) were observed for all four loci, with highest

values. (C) Hivep2a (3143 bp; TIM2+G). The lamprologines plus the five most basal species are found basal of the C-lineage plus Eretmodini. All
major lineages are monophyletic, except the Cyphotilapiini. (D) Hivep2b (1517 bp; TrN+I+G). Mostly unresolved tree with a basal polytomy,
excluding the two outgroup species from all other species. Polytomous relationships were further found for the haplochromine and ectodine
lineages. (E) Hivep3a (2142 bp; TPM1uf+G). The lamprologines plus the five most basal species are found basal of the C-lineage plus Eretmodini.
(F) Hivep3b (3301 bp; HKY+I+G). The lamprologines are positioned within the C-lineage. Black arrows represent the two branches for which v. 1
was found in the branch-site analyses and their lineage-specific amino acid substitutions. Bootstrap values (PAUP�) and Bayesian posterior
probabilities (MrBayes) .50% are shown, respectively, above and below the branches. Cichlid lineage names and a color key for the six cichlid
lineages with more than one species included in this study are provided in the gray box in (A). Abbreviations of species names consist of the first
three characters of the genus name followed by the first three characters of the species name (Table S1 shows full species names). Branch lengths
of T. polylepis were shortened by 50% in all phylogenies and for T. nigrifrons in (E).
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z-scores for Hivep2b, and the most numerous regions with a z-score$
3.09 observed for Hivep3a. Interestingly, not all of these retrieved
regions of positive selection correspond with the obtained positively
selected sites as identified by the PAML analyses and vice versa. Rel-
ative few regions of positive selection are observed in the ZAS domains
that contain the zinc fingers that bind specific DNA motifs. Notable
exceptions are the ZAS-N domain of Hivep2b and the ZAS-C domain
of Hivep3b (Figure 2); the latter is furthermore characterized by a pos-
itively selected site identified by the PAML analyses. Most commonly
observed positively selected amino acid properties among the four
paralogs affect the alpha-helical tendencies, the compressibility, the
equilibrium constant (ionization of COOH), and the surrounding
hydrophobicity. The SIFT analyses of the observed substitutions to
screen for possible effect on protein function showed that all sub-
stitutions are tolerant and thus have no predicted damaging effect
on function (data not shown).

Analyzing cis-regulatory regions
We investigated noncoding regions within the Hivep paralogs for
potential cis-regulatory elements to determine possible binding sites
for transcription factors, indicative of putative functional involvement
in signaling pathways. Vistaplots of Hivep1, Hivep2a, Hivep2b, and
Hivep3b are depicted in Figure S1, A–D. Because of a limited number
of retrieved teleost sequences for Hivep3a, the Vistaplot was not in-
formative for this locus and was therefore excluded from further anal-
yses. For all four analyzed loci, conserved noncoding elements (CNEs)
were observed in A. burtoni. Interestingly, a similar pattern of two
CNEs surrounding a single exon was observed in all loci (arrows in
Figure S1). Although this pattern seems common among teleost fish
for Hivep1 and Hivep2a, for Hivep2b and Hivep3b this pattern seems
to be restricted to cichlid fishes (O. niloticus is the reference sequence
in these analyses). A third cichlid-specific CNE was observed in a sub-
sequent intron in both Hivep1 and Hivep2a, whereas for Hivep3b two
more cichlid-specific CNEs were identified.

Because the particular pattern of two CNEs surrounding an exon
was observed in all four analyzed loci, the subsequent search for potential
transcription factor binding sites was mainly focused on these regions
to determine any overlap in possible function of these regions. The
analyses resulted in similar hits among Hivep paralogs and suggested
a possible association between the Hivep paralogs and different types
of signaling pathways involved in, e.g., sex determination [androgen
receptor (AR); pre-B-cell leukemia transcription factor 1 (PBX1); sex-
determining region Y protein (SRY)], immune system [B-cell lymphoma
6 protein (BCL6); H2.0-like homeobox protein (HB24); signal trans-
ducer and activator of transcription1,3,5a (STAT1,3,5a)], developmental
patterning [homeobox protein Hox-A3 (Hoxa3); homeobox protein
MSX-1 (Msx1)], and several members of the paired box protein Pax
(PAX) and bone morphogenetic protein (BMP) pathways.

Experimental vaccination and immune
response measurements
We performed experimental vaccinations to test whether the Hivep
paralogs are involved in an induced immune response. The experimen-
tal vaccination was realized by exposure to heat-killed V. anguillarum
for �21 hr, following the methods of Birrer et al. (2012). Several
immune response measurements were performed to determine induc-
tion of immune defense dynamics. The lymphocyte/monocyte ratio
and the relative number of lymphocytes in the G2-M and S phases of
the proliferation cycle were measured in blood, spleen, and head
kidney (Figure 3). Data were normally distributed. The experimental
treatment resulted in an elevated lymphocyte/monocyte ratio in bloodn
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(P = 0.008; unpaired t test) and spleen (P = 0.018), indicative of
a higher proportion of cells from the adaptive immune system (i.e.,
immune response). A higher proportion of lymphocytes in the S and
G2-M phases was found in the head kidney of the experimental group
(P = 0.005), indicative of induced lymphocyte proliferation.

Gene expression assays
We measured the expression levels of four control immune loci, AIF1,
F2RL1, IL10, and TLR5 in liver and gill tissues. These relative expres-
sion levels are depicted in Figure 4. For AIF1 and TLR5, we found
significantly higher levels of relative expression in liver (P = 0.014 and
P , 0.001; unpaired t test) and gills (P , 0.001 and P = 0.006) in the
experimental treatment group.

To analyze the effect of Vibrio exposure on the expression levels of
the Hivep paralogs in detail, we assessed their expression levels in

relation to an immune response parameter (i.e., lymphocyte/mono-
cyte ratio) per treatment group (i.e., control and experimental). Four
correlations were significant between the lymphocyte/monocyte ratio
of the spleen and the relative expression of Hivep1 (liver; Pearson r =
0.798, P = 0.018), Hivep1 (gills; Pearson r = 0.794, P = 0.011), Hivep2a
(Pearson r = 0.745, P = 0.021), and Hivep3b (Pearson r = 0.852, P =
0.007) (Figure 5). In these cases, the expression level of the Hivep
paralogs thus correlates positively with the level of the immune re-
sponse parameter.

DISCUSSION
In this study, we examined the molecular evolutionary history of the
Hivep gene family members in relation to their presumed immune-
related function in a renowned model system for evolutionary biology,
the East African cichlid fishes. We performed comparative phylogenetic

n Table 2 LRT statistics of three site model comparisons and positively selected sites

Locus Test LRT (2Δl) P Selected Sites (BEB)�

Hivep1 M1a vs. M2a 210.047 ,0.001 37S, 49Q, 61V, 81N, 106T, 114R, 130T, 248A, 292Q, 472Q, 530V,
546L, 558T, 582P, 587H, 656N

M7 vs. M8 210.084 ,0.001 37S, 49Q, 61V, 81N, 106T, 114R, 130T, 248A, 292Q, 472Q, 530V,
546L, 558T, 582P, 587H, 656N

M8a vs. M8 210.024 ,0.001 See M7 vs. M8 comparison
Hivep2a M1a vs. M2a 0.000 1.000 0

M7 vs. M8 0.000 1.000 0
M8a vs. M8 0.007 0.932 0

Hivep2b M1a vs. M2a 35.537 ,0.001 143P
M7 vs. M8 37.555 ,0.001 143P, 330Q

M8a vs. M8 34.250 ,0.001 See M7 vs. M8 comparison
Hivep3a M1a vs. M2a 304.843 ,0.001 62S, 63A, 64A, 82S, 141A, 200S, 265I, 329Q, 343P, 371D, 436V,

445A, 484T, 565E, 573T, 703P
M7 vs. M8 307.001 ,0.001 62S, 63A, 64A, 82S, 141A, 168N, 200S, 265I, 329Q, 343P, 371D, 436V,

437K, 445A, 484T, 565E, 573T, 703P
M8a vs. M8 307.003 ,0.001 See M7 vs. M8 comparison

Hivep3b M1a vs. M2a 111.745 ,0.001 87E, 112G, 218H, 286T, 326S, 335I, 352G, 392G, 399P, 401P,
403R, 447I, 511K

M7 vs. M8 113.003 ,0.001 87E, 112G, 218H, 286T, 326S, 335I, 352G, 392G, 399P, 401P,
403R, 447I, 511K

M8a vs. M8 111.749 ,0.001 See M7 vs. M8 comparison

LRTs resulted in the rejection of the null models in the M1a vs.M2a, M7 vs.M8, and M8a vs.M8 comparisons for all loci except Hivep2a. Positively selected sites were
detected for Hivep1, Hivep2b, Hivep3a, and Hivep3b. LRT, likelihood ratio test; BEB, Bayes empirical Bayes; Hivep, human immunodeficiency virus type I enhancer-
binding protein.
a

P = 0.01 (bold) and P = 0.05 (italic).

n Table 3 Parameter estimations and LRTs for the null and alternative hypotheses of the branch-site model for two different cichlid
lineages for Hivep3b

Clade Model Site Class 0 1 2a 2b LRT (P)

DL Model A (Null) Proportion 0.766 0.123 0.096 0.015
Background v 0.000 1.000 0.000 1.000
Foreground v 0.000 1.000 1.000 1.000

Model A (Alternative) Proportion 0.897 0.087 0.014 0.001 18.509 (,0.001)
Background v 0.070 1.000 0.070 1.000
Foreground v 0.070 1.000 7.974 7.974

HC Model A (Null) Proportion 0.725 0.167 0.088 0.020
Background v 0.000 1.000 0.000 1.000
Foreground v 0.000 1.000 1.000 1.000

Model A (Alternative) Proportion 0.806 0.185 0.008 0.002 4.628 (0.031)
Background v 0.000 1.000 0.000 1.000
Foreground v 0.000 1.000 24.33 24.33

LRTs of the branch-site analyses indicate that Hivep3b evolved under non-neutral evolution (v. 1) in the following two focal lineages: the derived lineages (excluding
the five basal species) and the haplochromines. LRT, likelihood ratio test; Hivep, human immunodeficiency virus type I enhancer-binding protein; DL, derived lineage;
HC, Haplochromini.
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analyses and detailed screens of dN/dS ratios, analyzed putative cis-
regulatory regions within the loci, and, in particular, investigated the
expression levels of the Hivep paralogs after an experimental vaccina-
tion with V. anguillarum. We show, for the first time to our knowledge,
that the Hivep paralogs play a putative role in the response to vaccina-
tion in fish, and that they are characterized by signatures of long-term
positive selection. Our findings regarding the Hivep paralogs indicate
that they are important candidate genes for immune-related functions
in teleost fish and suggest broader implications in relation to speciation
events, such as the adaptive radiations in East African cichlid fishes.

Exposure to V. anguillarum causes an immune response
in A. burtoni

To test whether the exposure to a vaccination with heat-killed
V. anguillarum resulted in an upregulation of the cellular fish immune
response, we measured lymphocyte/monocyte ratios, the proportions
of proliferating lymphocytes, and the expression levels of four control

immune genes with demonstrated functions in the inflammatory re-
sponse and immunity (Watano et al. 2001; Janeway and Medzhitov
2002; Akira et al. 2006; Jankovic and Trinchieri 2007; Rothmeier and
Ruf 2012) (see Materials and Methods section). Consistent with an
elevated immune response upon Vibrio vaccination, we found an in-
creased lymphocyte production in the head kidney, the organ where
clonal lymphocyte production takes place (Rombout et al. 2005;
Abdel-Aziz et al. 2010). We also found a higher proportion of lym-
phocytes both in blood and spleen, indicating lymphocyte migration
toward peripheral organs. Although lymphocytes are transported via
blood, the spleen is the major lymphoid tissue associated with the
clearance of blood-borne antigens (Press and Evensen 1999; Whyte
2007). Finally, the significant upregulation of both AIF1 and TLR5 in
the Vibrio-exposed group indicates activation of the immune system
(Watano et al. 2001; Janeway and Medzhitov 2002; Akira et al. 2006).
However, we did not find a significant upregulation for two other
immune genes with demonstrated functions in the immune response,

Figure 2 Sliding window plots and radical amino acid properties for four Hivep paralogs. (A) For Hivep1, multiple sliding windows were observed
with z-score $ 3.09. For several positively selected sites identified with PAML, no radical substitutions were found and vice versa. (B) In Hivep2b,
four regions of positive selection are observed of which two correspond with positively selected sites identified by the PAML analyses. (C) The
observed regions of positive selection for Hivep3a are characterized by many different physicochemical properties. (D) Many radical amino acid
substitutions were found for Hivep3b that correspond with most of the positively selected sites identified by PAML analyses. Each physicochem-
ical amino acid property is individually color coded (see Figure S2 for details). Black diamonds (♦) represent positively selected amino acid sites
obtained by the PAML analyses and red circles around them represent positively selected radical nonsynonymous substitutions (category 6-8).
The dotted line at z-score = 3.09 represents P = 0.001, whereas z-score = 1.64 represents P = 0.05. Red rectangles represent the following ZAS
domains: Hivep1 ZAS-C; Hivep2b ZAS-N, ZAS-C; Hivep3a ZAS-N; and Hivep3b ZAS-N, ZAS-C.
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F2RL1 and IL10 (Déry et al. 1998; Savan et al. 2003; Rothmeier and
Ruf 2012). These were possibly missed by the choice of our measuring
time point (21 hr after vaccination), as suggested by Savan et al.
(2003), who found elevated IL10 expression in carp liver tissue after
LPS stimulation only within the first 6 hr of incubation.

Hivep expression levels correlate with cellular immune
response parameters in an East African cichlid fish
Although several functions of the Hivep paralogs have been demon-
strated in the fruitfly, Xenopus frog, human, and mouse (Wu 2002),
the Hivep paralogs have, so far, not been examined in teleost fishes.
We tested, for the first time, whether there is a correlation between
immune response parameters and the expression level of the Hivep
paralogs in fish as an indicator of putative function(s) in the immune
response.

Although our study does not determine the exact function of the
Hivep paralogs within the immune response, the positive correlations
between the lymphocyte/monocyte ratio and the expression levels of
three Hivep paralogs indicate that the expression of —at least—
Hivep1, Hivep2a, and Hivep3b is upregulated upon the experimental
vaccination. This implies that Hivep paralogs play a role during the
immune response of fish. These results provide, to our knowledge, the
first indication of an immunological function of the Hivep paralogs in
teleost fish, which is congruent with preliminary findings in pipefish
(O. Roth, personal communication). The Hivep gene family thus
offers a potential novel family of immune genes for teleost fish that,
when their functions are characterized in more detail, can be used in
future immunological screens.

Other functional implications
The experimental vaccination did not lead to upregulated expression
levels of all five Hivep paralogs. We found no correlation between the
expression levels of Hivep2b and Hivep3a and the immune response
measurements. These paralogs either have immunological functions
beyond the scope of our experimental design or are not involved in
the immune response in teleost fishes. Previously, it had been shown
that Hivep genes are involved in functions other than the immune
system in insects and vertebrates, e.g., in murine osteoclastogenesis
(Liu et al. 2011), in BMP/Dpp signaling (Grieder et al. 1995; Dai et al.
2000; Marty et al. 2000; Torres-Vazquez et al. 2001; Yao 2006; Saita
et al. 2007; Yin et al. 2010), and in the development of the nervous
system (Campbell and Levitt 2003; Takagi et al. 2006). Interestingly,
several of the potential transcription factor binding sites identified
within the observed CNEs correspond with these known functions
of Hivep paralogs. For instance, we found multiple hits for compo-
nents of the BMP signaling pathway, as well as several other devel-
opmental patterning loci, suggesting a putative role of the Hivep
paralogs in developmental patterning and bone formation in cichlid
fishes. Hivep paralogs have been found to play a role in the specifi-
cation of Drosophila wing and halter discs (Torres-Vazquez et al.
2001), multiple dpp-dependent patterning events of both Drosophila
ectoderm and mesoderm (Arora et al. 1995), and male tail patterning
in Caenorhabditis elegans (Liang et al. 2007). The roles of Hivep in
the BMP pathway, possibly through alternative splicing (Hicar et al.
2001; Hong and Wu 2005; Yin et al. 2010), together with several
indications of functions in appendage specification and patterning
make them candidate genes for fin patterning and anal fin egg-spot

Figure 3 Immune response measurements after the experimental vaccination in A. burtoni adults. Lymphocyte/monocyte ratios (top) and
proportions of cells in the S and G2-M phases (bottom) measured in blood (left), spleen (center), and head kidney (right) for the control treatment
(white boxplot) and experimental treatment (Vibrio; gray boxplot). �P , 0.05; ��P , 0.01. Depicted are the median, lower and upper quartiles
(box), and the minimum and maximum observed values (error bars).
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formation, a sexually selected trait involved in courtship and spawn-
ing behavior and intrasexual communication of haplochromine
cichlid species (Wickler 1962; Hert 1989; Salzburger et al. 2005;
Salzburger 2009; Theis et al. 2012). Future detailed expression
and functional analyses should elucidate whether the Hivep paralogs
are involved the development of egg spots in haplochromine cichlid
fishes.

Implications of positive selection on Hivep paralogs,
immune genes, and speciation events
Positive selection, or adaptive sequence evolution, is the hallmark of
evolutionary change and molecular adaptation. By comparing the
nonsynonymous substitution rate (dN) to the synonymous substitu-
tion rate (dS) of protein coding genes, the selection regime (i.e., neu-
tral, purifying or positive) per amino acid can be inferred (Yang and
Bielawski 2000). This method is widely used and has led to the iden-
tification of many cases of positive selection (Yang and Bielawski
2000). Genes involved in (evading) defensive systems or immunity

are typically found with signatures of positive selection (Endo et al.
1996; Yang and Bielawski 2000; Schlenke and Begun 2003; Nielsen
2005; Nielsen et al. 2005; Biswas and Akey 2006; Yang 2006; Jiggins
and Kim 2007; Montoya-Burgos 2011). As discussed, several func-
tions within the immune response have been described for the Hivep
paralogs in other species, and our detailed inferences of the dN/dS
ratios provide evidence for positive selection acting on four out of
five Hivep paralogs. Interestingly, signs of positive selection have been
found before in vertebrate Hivep paralogs. Hivep2 has been found
with a signature of positive selection in Tetraodon (Montoya-Burgos
2011) and the cow lineage (Toll-Riera et al. 2011), whereas Hivep3
showed signs of positive selection in the human lineage (Vamathevan
et al. 2008). At least for the human Hivep paralog, it has been sug-
gested that the immune function is the cause for the signature of
positive selection. Together, these results indicate that it is likely that
the immune-related functions of the Hivep paralogs are the cause for
the elevated dN/dS ratios observed across vertebrate lineages, including
the 14 cichlid lineages examined here.

Figure 4 Gene expression assays for the control immune genes in A. burtoni adults. The relative gene expression levels (relative quantities) of
AIF1, F2RL1, IL10, and TLR5 measured in liver (top) and gills (bottom) for the control treatment (white bars) and experimental treatment (Vibrio,
blue bars). �P , 0.05; ��P , 0.01; ���P , 0.001. Depicted are the mean and the 95% CI (error bars).

Figure 5 Correlations between immune response measurements and Hivep gene expression levels in A. burtoni adults. The relative gene
expression levels [relative quantities (RQ)] of Hivep1, Hivep2a, and Hivep3b measured in gills and/or liver correlated with the observed lympho-
cyte/monocyte ratios measured in spleen for the control treatment (open circles and dashed fitted trend) and experimental treatment (closed
circles and black fitted trend lines). Significant correlations were only observed for the experimental group: Hivep1 (liver; Pearson r = 0.798, P =
0.018); Hivep1 (gills; Pearson r = 0.794, P = 0.011); Hivep2a (Pearson r = 0.745, P = 0.021); and Hivep3b (Pearson r = 0.852, P = 0.007).
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Positively selected genes are typically only loosely connected to
reproductive isolation in Drosophila (Wu and Ting 2004). This is in
contrast to the vertebrate MHC loci, known for their signatures of
positive selection (Hughes and Nei 1988; Hughes and Nei 1989; Yang
and Bielawski 2000; Montoya-Burgos 2011), which have been pro-
posed as pleiotropic speciation genes (Eizaguirre et al. 2009). Because
these genes are involved in adaptation to novel habitats in response to
different pathogenic communities and assortative mating via mate
choice, their pleiotropic effects are hypothesized to induce and accel-
erate speciation (Eizaguirre et al. 2009). Our work shows that several
of the Hivep paralogs also have putative pleiotropic roles in immune
defense and an important sexually selected trait—the anal fin egg-spot
in East African haplochromine cichlids—subject to mate choice (Hert
1989; Couldridge 2002; but see Theis et al. 2012). Mate choice for the
most attractive male anal fin could thus select a certain Hivep geno-
type and thereby facilitate adaptation to pathogenic environments at
the same time. Similar to the MHC loci, the Hivep paralogs might
have played important roles during the explosive speciation events of
cichlid fishes and therefore are exciting new putative speciation genes.

Hivep3b: Selective patterns in haplochromines and
other derived cichlid lineages
That we found evidence of lineage-specific positive selection acting on
Hivep3b indicates that this locus underwent adaptive protein evolu-
tion in both the derived cichlid lineages, including the lamprologines,
eretmodines, and the C-lineage, and the most species-rich cichlid lin-
eage, the haplochromines. Adaptive protein evolution underlies the
adaptive evolution of traits and is thus ultimately responsible for species
divergence and evolutionary innovation (Yang 2006). Interestingly, the
elevated dN/dS ratios were observed in lineages that are characterized by
explosive speciation and diversification events (Salzburger et al. 2005;
Day et al. 2008), which can be seen as further support for the hypoth-
esis that the pleiotropic functions of the Hivep paralogs —Hivep3b
specifically— can be linked to speciation events. During such events
genes could have been recruited to perform altered functions to gen-
erate novel or modified traits, which ultimately may have played a role
in the divergence between species. A lineage-specific amino acid sub-
stitution in Hivep3b was observed for all the haplochromines (position
112 G/ R) and the derived lineages (position 87 E/ D), as well as
several substitutions in a subset of the species belonging to these
lineages. Functional analyses are now needed to test whether these
substitutions have a fitness advantage for these species and, above all,
their function in these cichlid lineages.
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