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SUMMARY
A key objective in the clinical development of a medicinal drug is the determination of an
adequate dose level and, more broadly, the characterization of its dose response relationship. If the
dose is set too high, safety and tolerability problems are likely to result, while selecting too low a
dose makes it difficult to establish adequate efficacy in the confirmatory phase, possibly leading to
a failed program. Hence, dose finding studies are of critical importance in drug development and
need to be planned carefully. In this paper we focus on practical considerations for establishing
efficient study designs to estimate relevant target doses. We consider optimal designs for
estimating both the minimum effective dose and the dose achieving a certain percentage of the
maximum treatment effect. These designs are compared with D-optimal designs for a given dose
response model. Extensions to robust designs accounting for model uncertainty are also discussed.
A case study is used to motivate and illustrate the methods from this paper.
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1. Introduction
There are varying degrees of consequences associated with selecting a “wrong” dose level
during the drug development process. For example, after having marketed a specified dose
of a drug it may become apparent that the level was set too high. This phenomenon has been
documented by the U.S. Food and Drug Administration (FDA), who reported that
approximately 10% of drugs approved between 1980-1989 have incurred dose changes -
mostly decreases - of greater than 33% [1]. Alternatively, the compound may fail regulatory
approval due to an unacceptably high risk/benefit ratio. In such settings two losses will
result: (i) patients will never receive the incremental (or potentially ground-breaking)
advancement in medical treatment and (ii) the missed opportunity results in substantial
financial losses for the pharmaceutical company. The selection of dose level(s) for the
confirmatory studies, and hence for potential release on the market, is thus a key decision
involving serious ethical and financial consequences. For a recent discussion of issues and
challenges arising in clinical dose finding studies we refer to [2].
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The importance of properly conducted dose response studies is reflected by the early
publication of the ICH E4 guideline [3], which is the primary source of regulatory guidance
in this area. The guideline states in its introductory section that the purpose of dose response
information is “to find the smallest dose with a discernible useful effect or a maximum dose
beyond which no further beneficial effects is seen, but practical study designs do not exist to
allow for precise determination of these doses”. The ICH E4 guideline stresses the
importance of obtaining good dose response information by estimating relevant target doses.
The smallest dose with a discernible useful effect is often characterized as the minimum
effective dose (MED), that is, the smallest dose producing a clinically relevant response that
can be declared statistically significantly different from placebo response [1]. The MED can
be estimated using either modeling approaches [4] or multiple testing strategies [5, 6]. The
maximum useful dose, beyond which no further beneficial effect is seen, can similarly be
estimated using multiple testing strategies [7] or modeling approaches when estimating the
smallest dose achieving 100p% of the maximum treatment effect in the observed dose range
(EDp, 0 < p < 1) [8].

As suggested by the quote above, study designs allowing for precise estimation of relevant
target doses are hard to derive and, if available, often not applied in clinical practice. In this
article we focus on the design of clinical dose finding studies producing the information
needed to efficiently and reliably characterize the benefit of a drug over a dose range of
interest. In particular, we consider efficient designs for estimating either the MED or the
EDp. Given a fixed total number of patients, we determine the necessary number of dose
levels, their location within the dose range under investigation, and the proportion of
patients allocated to each dose level, such that the asymptotic variance of the target dose
estimate is minimized.

The methods in this paper can be used in at least two distinct ways. First, relative
efficiencies can be calculated for practically feasible designs. Clinical teams can then
balance the possibly additional financial and logistical costs associated with the resulting
optimal designs (larger total number of dose levels, the need for producing additional dose
levels not considered in previous studies, etc.) against the benefit of an increased
information value resulting from larger precision in target dose estimation. The relative
efficiencies can be directly translated into relative sample size requirements and are thus
easy to communicate to clinical teams and decision boards. Second, asymptotic confidence
intervals for target doses can be constructed, which give quantifiable information on the
uncertainty about the dose estimate under a particular dose response model. In fact, current
practice dictates that sample sizes are calculated based on power requirements to detect dose
response. The resulting sample sizes, however, are often inappropriate for estimating a target
dose with a reasonable precision. Pre-specifying the width of the confidence interval for a
target dose and calculating backwards the necessary sample sizes to achieve the required
precision thus puts current practices into a different perspective. Even if the resulting sample
sizes might not be realistic, the methods in this paper can be used to quantify the uncertainty
about the target dose estimate, so that the decision makers can better balance the costs and
risks based upon the available information. In the remainder of this paper, we formalize
these ideas and emphasize practical considerations.

2. A dose finding study for an anti-asthmatic drug
This example refers to a real Phase II study for the asthma indication. The primary objective
is to support selection of a dose for the Phase III program. Several active dose levels plus a
placebo arm are to be used in the trial, with patients being randomized to one of the
treatments (parallel group design). The primary efficacy endpoint is the change from
baseline after 14 days of treatment in forced expiratory volume measured over one second,
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FEV1. A placebo effect of 60 mL is assumed with a maximum expected treatment effect
increase over placebo response of 280 mL and a standard deviation of σ = 350 mL. The
clinically relevant benefit over the placebo effect is set to Δ = 200 mL. That is, an increase in
treatment effect of less than 200 mL over placebo response is considered clinically
irrelevant.

At the design stage, the clinical team was unsure about the true dose response shape and
could in particular not rule out a non-monotonic profile (such as an umbrella shape). After
discussions with the clinical team, several dose response models with associated shapes
were identified as plausible to describe the data at study end. The full model specifications
of the candidate dose response models are given in Table I and displayed graphically in
Figure 1. We refer to [4, 9] for details on the use of candidate models in dose response
studies and the elicitation of best guesses for the model parameters.

The choice of the dose response models in Table I is tailored to the dose finding study
considered here. Many other non-linear regression functions could have been employed
instead [10]. One may also argue in favor of using a single, flexible model characterizing a
large variety of dose response shapes, such as the four-parameter logistic or sigmoidal Emax
model [11]. However, such an approach may involve at least two problems: (i) most dose
response studies include less than five doses, in which case a model fit with four parameters
often leads to numerical convergence problems; (ii) even the four-parameter logistic or
sigmoidal Emax models do not cover exhaustively the dose response space as they miss, for
example, umbrella shapes with downturns at higher doses. Here, we follow the principle of
parsimony and use candidate models with a relatively small number of parameters to address
model uncertainty.

The uncertainty about the true, but unknown dose response model at the design stage of the
study can be seen in Figure 1. The candidate models cover essentially the entire space of
potential dose response shapes, including two different parameter specifications for the Emax
model and an umbrella shape (through the beta model) to cover potential down-turns in
effect at larger doses. The potential impact of model uncertainty becomes evident, when
comparing the MED across the candidate models. For example, the MED is 53.2 μg for the
first Emax model, but 357.1 μg for the linear model. Specifying a single dose response model
in the study protocol (with the aim to either determine the experimental design or to specify
the final analysis) is thus not advisable because of the uncertainty about the true model and
the potential impact on the dose estimates. Given these considerations, the question is how
to determine the number of dose levels k, the individual dose levels d1, …, dk, the allocation
ratio at each dose level, and the total sample size n. In Section 3 we discuss methods to
address these questions and illustrate the results in Section 4 when re-visiting the case study.

3. Efficient designs for target dose estimation
In this section we consider D-optimal designs for a given dose response model as well as c-
optimal designs minimizing the variance of MED or EDp estimates. We use the Emax model
to illustrate the various designs, although the results can be extended to other common dose
response models, such as those shown in Table I. Extensions to robust designs accounting
for model uncertainty are also discussed.

3.1. Notation
We consider the non-linear regression model

(1)
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where Yij denotes the response of patient j at dose di, i = 1, …, k, j = 1, …, ni, and εij the
residual errors, assumed as independent and normal distributed with common variance σ2.
Further, f(d, ϑ) denotes the true, but unknown dose response model determined through the
parameter vector ϑ = (ϑ0, ϑ1, ϑ0)T = (ϑ0, ϑ1, …, ϑℓ)T ∈ ℝℓ+1, where aT denotes the
transpose of a vector a. Note that we assume f to be partially linear, which applies to
commonly used dose response models. When discussing optimal designs below, we will
often refer only to the standardized, non-linear function f0(di, ϑ0). Example model
specifications for the function f(d, ϑ) are given in Table I.

Let ḏ (d̄) denote the lowest (highest) dose within the dose range [ḏ, d̄] under investigation,
where in most cases ḏ = 0 is the placebo dose (there may be exceptional active-controlled
studies, where ḏ > 0). For a given clinically relevant effect Δ and a model f(d, ϑ), the MED
is defined as

The MED does not always exist, as no dose in (ḏ, d̄] may produce an improvement of Δ over
f(ḏ, ϑ). We restrict the MED to lie within the interval (ḏ, d̄] in order to avoid problems
arising from extrapolating beyond the dose range under investigation. We estimate the MED
by

(2)

where ϑ̂ denotes the non-linear least squares estimate of ϑ. Other estimates for the MED are
available. For example, [15] required that the MED is significantly better than placebo. They
included the condition Ld > if(ḏ, ϑ̂) in (2), where Ld denotes the lower 1 − γ confidence
bound for the expected value f(d, ϑ̂) at dose d. As this estimate leads asymptotically to the
same design optimization problem as (2), we do not consider it further. Sometimes,
optimization is restricted to a finite set of dose levels, which essentially reduces the design
problem to finding the optimal patient allocation to the fixed dose levels d1, …, dk. We
investigate this problem when re-visiting the case study in Section 4. Finally, conditions on
higher doses are sometimes imposed, such as the requirement that all doses higher than the
MED have to be effective as well. Such conditions are rather strong and not always met in
practice (e.g. if umbrella shapes with downturns at higher doses occur); see [2] for further
details.

Let h(d, ϑ) = f(d, ϑ) − f(ḏ, ϑ) denote the effect difference at d ∈ (ḏ, d̄] and ḏ. Following [2],
we define the EDp as

where dmax = argmaxd∈(ḏ, d̄]h(d, ϑ) denotes the dose corresponding to the maximum effect
difference in the interval (ḏ, d̄]. We estimate EDp by
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where d̂max = argmaxd∈(ḏ,d̄]h(d, ϑ̂). Including the significance condition  leads

asymptotically to the same design optimization problem, where  denotes the lower 1 − γ
confidence bound for the expected value h(d, ϑ) at dose d. Interestingly, the EDp does not
depend on the parameters for the linear model f(d, ϑ) = ϑ0 + ϑ1 d and estimation becomes

obsolete, i.e. . From a design perspective any design is thus optimal
for estimating the EDp in the linear model.

Finally, let

denote an experimental design with relative patient allocation wi at dose di, i = 1, …, k.

Following [13], the weights wi ≥ 0, with , are not necessarily multiples of 1/n. In
practice, for a given total sample size n, a design ξ is implemented by rounding the

quantities win to integers, say ni, with  (approximate design theory). We further

define by  the information matrix of the design ξ in the
regression model (1), where

denotes the gradient of the response function f with respect to the parameter vector ϑ. The
matrix M(ξ, ϑ) can be interpreted as a precision measure of the parameter estimate ϑ̂ based
on the design ξ. “Larger” values of M(ξ, ϑ) indicate better (i.e., more precise) estimates of ϑ.

An optimal design minimizes an appropriate functional of the matrix M(ξ, ϑ), which is
called optimality criterion in the design literature. Although analytical results exist in some
cases, most designs have to be determined numerically. Table II summarizes the models and
criteria considered in this paper, for which an analytical solution of the design problem can
be derived. All optimal designs derived in this section are locally optimal designs in the
sense of [12] and require an initial guess of the unknown parameters. Application of these
designs is well justified in Phase II studies, where prior information is often available; see
also the discussion in Section 2.

3.2. Optimal designs for MED estimation
Using Elfving’s theorem [14], Dette et al. [15] investigated optimal designs to estimate the
MED for several practically relevant dose response models. They derived general results,
but omitted some of the explicit expressions for the individual models. In the following we
derive the necessary expressions for the situations considered in the present paper. To keep
the discussion concrete and to illustrate the basic concepts, we focus on the Emax model

(3)
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Here, ϑ0 denotes the placebo effect, ϑ1 the asymptotic maximum treatment effect achieved
at an infinite dose, and ϑ2 the ED50 [4]. The motivation to focus on the Emax model is its
ubiquitous use in clinical practice. For example, it can be justified on the relationship of
drug-receptor interactions and therefore deduced from the chemical equilibrium equation
[16].

We consider first the gradient g(d, ϑ) = (1, d/(d + ϑ2),−ϑ1d/(d + ϑ2)2)T of f(d, ϑ) with
respect to ϑ for the Emax model (3). Figure 2 plots the partial derivatives as a function of the
dose d for the two Emax models specified in Table I. The Emax 1 model, which has smaller ϑ2
(= ED50) value and steeper increase to the plateau level, has considerably larger values for
the first derivatives at smaller doses than the Emax 2 model. This will be reflected in the
calculation of optimal designs accounting for the dose ranges with the potentially largest
amount of information.

The variance of the MED-estimate  for a general dose response model f is given by
σ2ΨMED(ξ, ϑ)/n, where ΨMED(ξ, ϑ) = bT (ϑ0, …, ϑℓ)M−(ξ, ϑ)b(ϑ0, …, ϑℓ), M− denotes a
generalized inverse matrix and the vector b denotes the gradient of the function

 with respect to ϑ [15]. For the Emax model (3) we have

A design  is called MED-optimal if it minimizes ΨMED(ξ, ϑ) among all designs ξ for
which the MED is estimable. Such optimal designs can be calculated explicitly for common
dose response models with 2 or 3 model parameters; otherwise, numerical optimization

methods have to be used [15]. For the Emax model (3) the optimal design  is either a
two-point or a three-point design, depending on - loosely speaking - the relative position of
the MED: If the Emax model increases steeply at smaller doses and the threshold Δ is small,
two points are not sufficient to guarantee a precise MED estimate. Note that if a two-point
design is optimal for the Emax model, the non-trivial support point matches the expected
MED. Consequently, the optimal designs for the two Emax models specified in Table I are
given by

The second support point d2 is considerably smaller for the Emax 1 than for the Emax 2 model,
which is consistent with Figure 2. In practice, two-point designs are insufficient to estimate
an Emax model, which has 3 parameters and thus requires at least three support points. In
such situations we recommend using a slight modification of the optimal design by
allocating a small fraction of patients to an additional dose. In the previous example, one
could use

instead of  and , respectively.
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Extending the results from [15], one can also derive analytical expressions for the variance

of  under the optimal design , see Table II for the expressions. Applying these

formulas to our numerical example from Table I, we obtain  for the

Emax 1 model and  for the Emax 2 model.

In addition, we can calculate an (asymptotic) confidence interval for the MED. Relying on
large sample normal approximations and Slutsky’s Theorem, the asymptotic (1 − α)100%
confidence interval is

(4)

where z1−α/2 denotes the 1−α/2 quantile of the standard normal distribution. Optimal designs

, which minimize ΨMED(ξ, ϑ), consequently minimize the expected width of the
confidence interval for the MED. If we plug in the expected standard deviation of σ = 350
from Section 2, set α = 0.05 and assume a total of n = 100 patients, we obtain the expected
confidence intervals [−60.92; 167.32] for the Emax 1 and [−101.89; 408.09] for the Emax 2
model. As expected, the Emax 1 model allows one to estimate the MED more precisely than
the Emax 2 model, since it is considerably steeper around the expected MED. The large width
of the confidence intervals is remarkable, which in case of the Emax 2 model covers almost
the entire dose range under investigation. In Section 4 we discuss how to calculate the
necessary sample size for a dose finding study to meet a pre-specified precision of 
based on (4).

3.3. Optimal designs for EDp estimation
We now consider optimal designs to estimate the EDp for a given 0 < p < 1. Similar as for

the MED estimation problem, the variance of the EDp-estimate  for a general dose
response model f is given by σ2ΨEDp(ξ, ϑ)/n, where ΨEDp(ξ, ϑ) = cT(ϑ0, …, ϑℓ)M−(ξ,
ϑ)c(ϑ0, …, ϑℓ), M(ξ, ϑ) is defined in Section 3.1, and the vector c denotes the gradient of the

function f−1(f(ḏ, ϑ) + p(f(dmax, ϑ) − f(ḏ, ϑ))) with respect to ϑ. A design  is called EDp-
optimal if it minimizes ΨEDp(ξ, ϑ) among all designs ξ. Using Elfving’s theorem [14], such
optimal designs can be calculated analytically for common dose response models with 2 or 3
model parameters; otherwise, numerical optimization methods have to be used [17]. It can
be shown that the vector c(ϑ) depends neither on ϑ0 nor on ϑ1 and consequently is of the
form c(ϑ) = γ(0, 0, c2, …, cℓ−1)T for some constant γ. This implies that EDp-optimal designs
do not depend on p for dose response models with 3 parameters.

As before, we use the Emax model (3) to illustrate the explicit expressions. We have

and the optimal design  is given by
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where

(5)

does not depend on p [17]. The support points in (5) coincide with those for the MED-
optimal design if the latter has three dose levels (see Table II). Applying (5), the optimal
designs for the two Emax models specified in Table I are given by

for any 0 < p < 1. The second support point d2 is considerably smaller for the Emax 1 than for
the Emax 2 model, which is consistent with the previous findings for the MED estimation
problem. Although the EDp-optimal design does not depend on p, this quantity enters in the

asymptotic variance of  under the EDp-optimal design , see Table II.

Figure 3 plots  as a function of p for the two Emax models specified in
Table I. For most p ∈ (0, 1), the Emax 1 model leads to considerably smaller variances of

 than the Emax 2 model. Recall from Section 3.2 the values  for the

Emax 1 model and  for the Emax 2 model. Thus, the MED is estimated
with larger variance under the MED-optimal design than the EDp under the EDp-optimal
design for the Emax 2 model for all p ∈ (0, 1). The same is true for the Emax 1 model when p

< 0.75. Note that the maximum value of  is numerically the same for both
Emax models in Figure 3. Finally, asymptotic confidence intervals for the EDp can be
constructed similar to (4).

3.4. D-optimal designs for dose response estimation

So far we investigated c-optimal designs to minimize the variance of either  or .
One may argue that optimal designs for one target dose are inefficient for another target
dose. Instead, D-optimal designs may be considered, which operate on the determinant of
the information matrix M(ξ, ϑ) and minimize the volume of the confidence ellipsoid for the
model parameters, thus focusing on the entire dose response relationship rather than on a
single dose [11]. Closed form expressions can often be derived by standard arguments using
the equivalence theorem for D-optimality [18], such as for the linear and the Emax model.
For the other models considered in Table I, D-optimal designs have to be determined
numerically.

It can be shown that for the Emax model (3) the D-optimal design is

where d(ϑ) is defined in (5). The support points of  coincide with those for the EDp-
optimal design [17]. This indicates that for the Emax model D-optimal designs are rather
efficient to estimate the EDp and vice versa. For the two Emax models specified in Table I,
we obtain
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We now investigate the relative performance of MED-, EDp- and D-optimal designs.
Relative efficiencies can be calculated that are proportional to the sample size needed for a
given design ξ to achieve the same precision as a reference design. If, for example, the
relative efficiency of ξ* versus ξ is 0.5, the optimal design ξ* would need only half of the

patients to achieve the same precision, leading to  shorter
confidence intervals (e.g. for MED or EDp). For our purposes, the relative efficiencies are
defined by

In Table III we use the Emax 1 model to show the efficiencies of the different designs; the
efficiencies for the Emax 2 model are similar and therefore omitted. The MED-optimal
design is supported at only two points and does not allow estimation of all model

parameters. We therefore use the modified design  from Section 3.2, allocating
10% of the patients to the highest dose. We observe reasonable D- and EDp-efficiencies for
the EDp- and D-optimal design, respectively. The MED-efficiencies for these designs are
66% and 73%. On the other hand, the MED-optimal design has a rather poor performance to
estimate the EDp. This is because the EDp is difficult to determine as it depends both on the
target and the maximum response.

Relative efficiencies can also be used to investigate the behavior of optimal designs when
the initial model parameters have been misspecified. For example, if in the MED estimation
problem the true parameters for the Emax model are given ρ1 = 300 and ρ2 = 25, the slightly

modified optimal design  calculated under the assumption that the parameters
are given by ϑ1 = 294 and ϑ2 = 25 has 88% efficiency for estimating the MED. This
calculation can be extended to perform a sensitivity analysis by systematically investigating
a variety of scenarios. Table IV summarizes the efficiency results

 for selected values of ρ = (ρ1, ρ2), where

 for short. The local MED-optimal design  remains very
efficient for a broad range of parameter values ρ1 and ρ2. Robustness with respect to
misspecification of the initial model parameters has also been reported elsewhere [9, 15].

3.5. Robust designs
All designs considered so far are locally optimal in the sense that they are constructed for a
particular dose response shape. That is, the optimality of a design ξ* holds for the dose
response model f and associated parameter vector ϑ. Dette et al. [15] investigated the
robustness of MED-optimal designs with respect to their assumptions and concluded that
locally optimal designs are moderately robust with respect to a misspecification of the model
parameters, but highly sensitive to a misspecification of the regression function.

We recommend using model robust designs in practice, which are less sensitive to the
choice of the regression model. The following considerations are generic and hold for
robustifying either MED-, EDp-, or D-optimal designs. The key idea is to assume m
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regression models f1(d, ϑ(1)), …, fm(d, ϑ(m)), calculate optimal designs for each of these
models using the methods above and finally aggregate the information to construct a robust
design. In the following we apply two generic approaches from the literature [19, 20] to
aggregate this information. We illustrate the relative performance of both types of robust
design when revisiting the case study in Section 4. Since the results are generic, we drop in
the following the subscripts indicating whether MED-, EDp-, or D-robust designs are
considered.

We first consider standardized maximin designs, which maximize the minimum efficiency
of a given design relative to the optimal designs for the m regression models under
investigation. That is, given the m regression functions fj(d, ϑ(j)) specified through the

parameters ϑ(j) with associated optimal designs , j = 1,…,m, a design is called
standardized maximin optimal if it maximizes min{eff1(ξ),…, effm(ξ)} among all designs ξ,
where effj(ξ) denotes the efficiency of a design ξ in the jth model (j = 1,…,m) with respect to
the corresponding optimal design. The standardized maximin design can therefore be
thought of as safeguarding against the worst case scenario, since the minimum relative
efficiency is maximized.

An alternative approach is to assign probabilities α1, …, αm, with , to each of

the m regression models and subsequently maximize the weighted sum ,
leading to so-called compound optimal designs. The model probabilities may reflect the
clinical team beliefs about the importance or likelihood for a particular model. If no prior
information is available and all models are equally relevant, a reasonable choice is to use
equal weights α1 = … = αm = 1/m. Note that response-adaptive designs could be used,
where data of an ongoing clinical study is used to update the prior information about the
weights αj in order to calculate a compound design for subsequent cohorts of patients. Such
flexibility is not available for standardized maximin designs.

Following [21, 22], we combine the different optimality criteria through efficiencies instead
of optimality criteria depending directly on the information matrices. The reason is that for a
given design the values of a particular criterion are usually of different magnitude for
different models. For example, it is indicated in [15] that the variance of  in the Emax
model is at least twice as large than the corresponding variance in the logistic model.
Consequently, if these quantities would be used in a compound or maximin criterion for
these two models, the resulting robust design would be dominated by the MED-optimal
design for the Emax model and have poor properties for estimating the MED in the logistic
model. The consideration of efficiencies avoids this problem, because the value of a
criterion for each model is calculated relatively to the best value, which could be obtained
by the choice of an experimental design. We refer to [21] for further discussion regarding
standardized optimal designs.

4. Application to case study
We now revisit the case study from Section 2 to apply some of the results from the previous
section. For simplicity, we keep the discussion focused on estimating the MED, since the
considerations below apply equally to other problems. Recall the open design questions, that
is, the determination of the number of dose levels k, the individual dose levels d1,…, dk, the
allocation ratio at each dose level, and the total sample size n. Given the inherent model
uncertainty problem, we calculate both maximin and compound designs based on the m = 5
dose response models specified in Table I. Since no model is assumed to be more likely than
others, equal prior weights αi = 1/5 are assigned to each model. In practice, the choice of
dose levels to be investigated in a clinical study is often restricted by manufacturing or other
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constraints. That is, not all doses from the continuous interval [ḏ, d̄] can be investigated in a
clinical study. In the current study, such logistical considerations let the clinical team
randomizing the patients to the four active dose levels 62.5, 125, 250, and 500 μg and
placebo (denoted in the following as actual dose levels and indicated by open dots in Figure
1). Since restricting the space of admissible doses impacts the final design choice, we
consider maximin and compound designs for both the unrestricted and the restricted case:

A. Unrestricted search for a robust design over the continuous interval [ḏ, d̄] = [0,
500].

B. Search restricted to the actual dose levels 0, 62.5, 125, 250, and 500 μg.

C. Search restricted to the dose levels obtained in (A).

For scenarios (B) and (C) the design search is restricted to determine the allocation ratios wi
for the given dose levels.

Table V provides the results for the six different cases. Consider first the maximin designs in
the upper half of Table V. Allowing for an unrestricted design search in [ḏ, d̄] under
scenario (A), the maximin design is a five-point design, allocating roughly 36%, 20%, 22%,
6% and 16% of the patients to the dose levels 0, 49, 177, 452 and 500 μg, respectively. The
right columns in Table V give the efficiency of the maximin design relative to the optimal
designs for each model on the unrestricted design space. If we restrict the design search to
the actual dose levels, we obtain the results given under scenario (B). The relative
efficiencies under scenario (B) are uniformly smaller than those under scenario (A), because
we are not optimizing with respect to the dose levels. The standardized maximin optimal
designs from strategy (C) differ to those from strategy (A), because the locally optimal
designs for the individual models (which are required for the efficiency calculations) are
different in both cases.

Similar conclusions hold for the compound designs in the lower half of Table V. For
scenario (A), the compound designs lead to larger efficiencies for the beta, Emax and logistic
model as compared to the maximin designs, while the smallest efficiency is obtained for the
linear model. Note that the designs derived under scenarios (A) and (C) coincide because we
used logarithms of the efficiencies in the definition of the compound optimality criterion.
Consequently, the locally optimal designs for the individual models have no impact on the
optimization problem.

Optimal or robust designs are often not directly applicable in practice, because either the
resulting dose levels are “odd” and not feasible in practice or the allocation weights are
unrealistic. For example, in practice it would be difficult to follow the recommendation for
scenario (C) in the upper half of Table V and allocate 0.9% of the patients to dose 452.21
μg. Instead, robust or optimal designs should be considered as benchmarks, to which other,
practically feasible designs can be compared. In addition, constraints on the minimum
number of patients can be incorporated, thus ensuring a minimum weight wi for each dose
di. Continuing the example with the 0.9% allocation, one could require that, for example, at
least 5% of the patients are allocated to each dose, i.e. wi ≥ 0.05. This gives the new weights
0.327, 0.219, 0.210, 0.050, and 0.194 for the dose levels d1, …, d5, respectively.

We now focus on the remaining question about the total number of patients for the dose
finding study. Current practice suggests that the sample size is based on power calculations
to detect a true treatment effect [9]. Broadly speaking, the responses at the different dose
levels di are fixed and the probability to achieve a significant dose response signal at study
end is calculated for a given suitable test procedure. Another approach is to focus on the
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dose estimation problem, using a pre-specified minimum precision for the target dose
estimate to calculate the sample size, as discussed now.

One possibility to quantify the precision is to pre-specify the expected width of a confidence
interval for the target dose estimate of interest, such as given in (4) for the MED estimation
problem, and by backward calculation determine the number n of patients required to
achieve this value. Assume, for example, that the Emax 1 model specified in Table I is the

true underlying model and that we apply the optimal design  from Section 3.2.
If we require the width of the expected confidence interval for the MED estimate to be less
than or equal to 100 μg (and thus cover 20% of the dose range under investigation), then n =
520 patients are necessary and allocated according to the weights wi = ni/n determined by

. While such an approach is helpful to communicate the idea of justifying a
sample size based on a pre-specified precision, in practice the resulting confidence intervals
are likely to be too short because of model uncertainty. Bootstrap methods can be used to
obtain confidence intervals accounting for this additional variability.

Another possibility to quantify the precision is simulating a large number of clinical trials
based on initial assumptions, estimate the target dose at each simulation run, and report the
resulting empirical distribution of the dose estimates. Figure 4 displays the histograms of
MED estimates for the dose response models in Table I based on equally allocating 230
patients to the actual doses and applying the MCP-Mod procedure described in [23]. For
these plots the estimated MED values were rounded to the next dose investigated in the
study. Clearly, there is considerable variability in the estimated values, depending on the
true dose response shape, how well the true MED is captured by the doses under
investigation, the total sample size and its allocation, etc. We believe that such
considerations help the clinical teams to better compare different experimental designs and
understand the implications of the individual options.

5. Discussion
In this paper we presented MED-, EDp- and D-optimal designs for common dose response
models. The results can be extended to other estimation problems and regression models.
The asymptotic designs have generally good finite sample properties and are moderately
robust with respect to an initial misspecification of the model parameters. However, the
designs are considerably sensitive to a misspecification of the regression model. From a
drug development perspective, model uncertainty is a key characteristic and cannot be
underestimated. Thus, if a clinical team decides to apply locally optimal design for a
particular dose response model, it should be aware of the inherent risks, in case that the true
underlying dose response model is not the assumed one. If the information on the dose
response model is too vague, we instead recommend using robust designs to address model
uncertainty. By construction, such designs are not optimal for any single dose response
model, but lead to an overall high efficiency. We described robust designs based on
standardized maximin or compound optimality criteria as a viable alternative to optimal
designs for a single dose response model. Other approaches are available to minimize the
impact of model uncertainty. Optimal discrimination designs have been investigated, that
allow differentiating among several non-linear regression models [24, 25]. Response-
adaptive designs have also been proposed, which allow for interim looks during an ongoing
study, use the accumulated information to correct the initial assumptions and design the
subsequent stages of the trial accordingly [11, 26, 27]. Future research will be devoted to
apply these methods and compare the results with those obtained here.

Further considerations beyond those discussed in this paper may become relevant when
applying optimal designs in clinical dose finding studies. Phase III studies are often
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conducted with a dose that has already been used in Phase II, which limits the choice of dose
levels for Phase II studies. In particular, the MED is not necessarily the dose to be continued
in Phase III. But its estimation provides important information as to the lower bound of all
useful doses: any dose smaller than the MED can be discarded, because it does not provide
sufficient clinical effect. The final decision, which doses to carry forward into Phase III
often includes aspects beyond the efficacy of the drug under investigation. Safety
considerations are particularly important and we refer to [28] for optimal designs accounting
for both efficacy and safety. A similarly important consideration is the inclusion of
covariates at the design stage. For example, it is common practice to perform covariate-
adjusted analyses in clinical trials where the response is change from baseline and the
baseline value is included as a covariate. It would be an interesting topic of further research
to investigate optimal designs accounting for covariates, which have not been observed at
the planning stage of a clinical study.
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Figure 1.
Graphical display of the dose response models from Table I. Open dots indicate the dose
levels actually used in the study (0, 62.5, 125, 250, and 500 μg). Horizontal dashed line:
clinical relevance threshold Δ on top of placebo response.
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Figure 2.
Partial derivatives for the two Emax models specified in Table I. Left plot: d/(d + ϑ2); right
plot: −ϑ1d/(d + ϑ2)2.
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Figure 3.

The function  for the two Emax models specified in Table I.
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Figure 4.
Histograms of MED estimates for the dose response models specified in Table I. Horizontal
lines indicate the position of the true MED under a particular model. “Miss.” gives the
proportion of simulations, where the MED could not be estimated.
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Table I

Candidate dose response models as a function of dose d. For the beta model B(α, β) = (α + β)α+β/(αα × ββ).

Model Full model specification Parameter ϑ = (ϑ0, …, ϑℓ)

linear ϑ0 + ϑ1d (60, 0.56)

beta ϑ0 + ϑ1 B (ϑ2, ϑ3) (d/ϑ4)ϑ2 (1 − d/ϑ4)ϑ3 (60, 280, 1, 1, 600)

Emax 1 ϑ0 + ϑ1d/(ϑ2 + d) (60, 294, 25)

Emax 2 ϑ0 + ϑ1d/(ϑ2 + d) (60, 340, 107.14)

logistic ϑ0 + ϑ1/{1 + exp[(ϑ2 − d)/ϑ3]} (49.62, 290.51, 150, 45.51)
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Table III

Relative efficiencies of D-, EDp- and MED-optimal designs for the Emax 1 model.

Design Relative efficiency

effD(ξ) effEDp (ξ) effMED(ξ)

1 0.8889 0.7334

0.9449 1 0.6587

0.7142 0.3551 0.9401
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