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Abstract

Despite significant advances in characterizing the structural properties of complex networks, a 

mathematical framework that uncovers the universal properties of the interplay between the 

topology and the dynamics of complex systems continues to elude us. Here we develop a self-

consistent theory of dynamical perturbations in complex systems, allowing us to systematically 

separate the contribution of the network topology and dynamics. The formalism covers a broad 

range of steady-state dynamical processes and offers testable predictions regarding the system's 

response to perturbations and the development of correlations. It predicts several distinct 

universality classes whose characteristics can be derived directly from the continuum equation 

governing the system's dynamics and which are validated on several canonical network-based 

dynamical systems, from biochemical dynamics to epidemic spreading. Finally, we collect 

experimental data pertaining to social and biological systems, demonstrating that we can 

accurately uncover their universality class even in the absence of an appropriate continuum theory 

that governs the system's dynamics.

I. Introduction

Despite the profound diversity in the scale and purpose of networks observed in nature and 

technology, their topology shares several highly reproducible and often universal 

characteristics [1–8]: many real networks display the small world property [9], are scale-free 

[10], develop distinct community structure [11], and show degree correlations [12, 13]. Yet, 

when it comes to the dynamical processes that take place on these networks, diversity wins 

over universality [14–16]. To be sure, advances in our understanding of synchronization [17, 

18], spreading processes [19–21] or spectral phenomena [22] have offered important clues 

on the interplay between network topology and network dynamics. We continue to lack, 

however, a general predictive framework that can treat a broad range of dynamical models 

using a unified theoretical toolbox. Indeed, currently each network-based dynamical process, 

from reaction dynamics in cellular metabolism to the spread of viruses in social networks, is 

studied on its own terms, requiring its dedicated analytical formalism and numerical tools. 

This diversity of behavior raises a fundamental question: are there common patterns in the 

dynamics of various complex systems? Alternatively, could the current diversity of 
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modeling platforms and dynamical characteristics reflect an inherent and ultimately 

unbridgeable gulf between different dynamical systems?

We illustrate the depth of this problem by focusing on the dynamics of a system with N 

components (nodes), where each node i is characterized by an activity xi(t), following

(1)

providing a rather general deterministic description of systems governed by pairwise 

interactions. The first term on the r.h.s. of (1) describes the self-dynamics of xi, accounting 

for processes like influx, degradation or reproduction. The second captures i's interactions 

with its neighbors, in which Aij is the adjacency matrix and Q(xi, xj) describes the dynamical 

mechanism governing the pairwise interactions. With the appropriate choice of the nonlinear 

W(xi) and Q(xi, xj) Eq. (1) can be mapped exactly into several dynamical models explored in 

the literature (Table I), like (a) epidemic processes ( ), where xi represents the probability 

of infection [23–25], (b) biochemical dynamics ( ), in which xi represents the concentration 

of a reactant [26–29] (c) birth-death processes ( ) [30–32], in which xi represents the 

population at site i and (d) regulatory dynamics ( ) in which xi is the expression level of a 

gene [33, 34].

The traditional probing of the dynamics of a complex system is achieved through 

perturbation experiments, that explore changes in the activity xi of node i in response to 

changes induced in the activity of node j. Hence we focus on the system's linear response by 

inducing a permanent perturbation dxj on the steady state activity xj and following the 

subsequent changes in all xi through the correlation matrix [28] (Secs. S.II and S.VI)

(2)

In biology Gij represents the impact of a perturbed gene j on a target gene i; in social 

systems Gij captures the influence of an individual j on i. There is ample empirical evidence 

from gene expression [35–39] to metabolism [40] and neuronal systems [41] that the 

distribution of pairwise node-node correlations, or P(Gij), is fat tailed, a phenomena that 

lacks quantitative explanation. Our measurements support this: we obtained Gij for the four 

dynamical systems described in Table I, in each case finding that P(G) ∼ G−ν (Figs. 1a1 - a4 

and S5a1 - a3). We find systematic differences in ν, however: for  and  ν = 2 and for 

and ε ν = 3/2. We also find that the distribution P(G) is independent of the nature of the 

underlying network (scale-free, Erdős-Rényi or networks provided by experimental data), 

suggesting that ν is determined only by the dynamical laws that govern these systems.

To obtain a more detailed understanding of a system's response to perturbations, we also 

explored several other frequently pursued dynamical measures.
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Impact and stability

We define i's impact as

(3)

capturing the average response of i's neighborhood to i's perturbation. Similarly, we define 

i's stability as

(4)

in which the denominator captures the magnitude of i's response to individual perturbations 

of i's nearest neighbors. If i responds strongly to neighboring perturbations, then Si is small, 

indicating that node i is unstable. Hence Ii captures the influence of node i on its 

neighborhood, while Si captures the inverse process, the neighborhood's influence on i. In 

Figs. 1b1 - c4 and S5b1 - c3 we show the stability and impact distributions, P(S) and P(I), 

for the four dynamical models, finding a seemingly inconsistent behavior: for ε P(S) and 

P(I) are bounded when P(k) is bounded (Erdős-Rényi) and fat-tailed when P(k) is fat-tailed 

(scale-free); for  P(I) follows a similar behavior, but P(S) is always bounded, regardless 

of P(k); for  and  both P(S) and P(I) are always bounded.

Propagation

In a network environment a perturbation does not stay localized, but can reach distant nodes. 

To track the spread of perturbations we use the distance dependent correlation function [27–

29]

(5)

where Kj(l) is the group of all nodes at distance l from j. Equation (5) describes the 

magnitude of the perturbations experienced by all nodes at distance l from the source. The 

decay rate of Γ(l) determines whether perturbations penetrate the network or remain 

localized in the source's vicinity. We find that for  and  Γ(l) shows no decay, 

documenting a conservative process in which the original perturbation propagates without 

loss, a phenomena well documented in [27–29]. For  and  we observe dissipation, where 

perturbations decay exponentially as they penetrate the network (Figs. 1d1 - d4 and S5d1 - 

d3).

Global cascades

The cascade size Ci represents the number of target nodes whose activity changes beyond a 

threshold following a perturbation of node i. A cascade can include all genes whose 
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expression levels significantly changed following a genetic perturbation or all individuals 

who adopt an innovation. The distribution of cascade sizes induced by perturbations, P(C), 

is frequently measured in social [42–44] technological [45, 46] and biological [41, 47] 

systems, finding that P(C) is often fat-tailed, an observation whose origins remain unclear. 

Our simulations (Figs. 1e1 - e4 and S5e1 - e3) indicate that P(C) depends on the interplay 

between the topology and dynamics: for ,  and  P(C) is driven by P(k), hence these 

systems develop heterogeneous cascades with a fat-tailed P(C) on a scale-free network but a 

bounded P(C) on a random network. Protein dynamics ( ), however, has uniform cascades, 

characterized by a bounded P(C), independent of the network topology.

Together the four functions discussed above provide a comprehensive description of the 

system's behavior, capturing local dynamics (Si, Ii), propagation to distant nodes (Γ(l)) and 

the global response of the system to perturbations (Ci). Yet, they also illustrate the rather 

diverse dynamical behaviors Eq. (1) can generate, capturing the true diversity in the 

response to perturbations observed in real systems. While these differences are clearly 

encoded somehow in the functional form of W(xi) and Q(xi, xj) in (1), currently we have no 

way of predicting how a system responds to perturbations from the analytical formulation of 

the underlying dynamics. Hence our goal here is to develop an analytical formalism that 

bridges the structure of (1) and the diverse dynamical outcomes documented in Fig. 1. We 

focus on dynamics for which we can factorize Q(xi, xj) as

(6)

in which f(xi) describes the impact of i's activity on itself and g(xj) describes the impact of i's 

neighbors on xi. (A discussion of the expected behavior for systems that do not obey (6) is 

offered in Sec. S.VI). We show that the leading terms of these two functions, as expressed 

by the Laurent expansions

(7)

and

(8)

where f−1(x) is the inverse function of f(x), uniquely determine the dynamics of the system 

(1) around its steady state and allow us to analytically predict each of the dynamical 

characteristics documented in Fig. 1. As only a small number of leading terms controls the 

expansions (7) and (8), we predict the existence of several broad universality classes that 

govern network dynamics. Finally, by demonstrating the validity of our results for two 

experimentally collected datasets, we offer evidence of a deep universality in network 

dynamics that crosses particular domains of inquiry.
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II. Local Dynamics: Stability and Impact

We start by inducing a small perturbation, dxj, around the steady state solution of (1), 

allowing us to write the response of j's nearest neighbor i as (Sec. S.III.A - B)

(9)

where xi ∼ f−1(1/ki) (xj ∼ f−1(1/kj)) is the steady state activity of i (j). For large ki (kj) Gij will 

be dominated by the leading terms of (7) and (8). Denoting the leading terms of (7) and (8) 

by n0 and m0 respectively, and the leading non-vanishing terms by n1 and m1, we show that 

Si (4) and Ii (3) depend on node i's degree as (Sec. S.III.C - D)

(10)

(11)

where δ = n1 − n0 and φ = δ − m1 + 1. The value of δ allows us to identify two dynamical 

universality classes:

Uniform stability (δ = 0, Fig. 2a)

If in (7) n1 = n0, we have δ = 0 in (10), and the stability of a node is independent of its 

degree, implying that hubs and less connected nodes respond similarly to perturbations in 

their immediate vicinity.

Heterogeneous stability (δ > 0, Fig. 2b)

The only other possibility is that n0 = 0 and n1 > 0 in (7), predicting δ = n1. Since δ > 0, 

according to (10) hubs are more stable to local perturbations than small nodes. In other 

words, the higher the degree of a node, the less responsive it is to changes in its immediate 

neighborhood.

These dynamical universality classes determine the shape of P(S). For uniform stability (δ = 

0) Si is independent of ki, hence P(S) is independent of the degree distribution, P(k). Thus 

P(S) is bounded, independently whether P(k) is scale-free or Poisson, hence all nodes have 

comparable dynamical stability (Fig. 2a). In contrast, for heterogeneous stability (δ > 0), Si 

increases with ki, hence if P(k) is fat-tailed, then P(S) will be also fat-tailed (Fig. 2b). Table I 

lists δ derived for the four dynamical models, predicting δ = 0 for ,  and  (Fig. 2a1 - 

a3), and δ = 1 for  (Fig. 2b1). These predictions are in excellent agreement with the 

observed P(S), depending on P(k) for δ > 0 and being independent of P(k) for δ = 0 (Fig. 

1c1-c4).

The value of φ in (11) predicts two additional dynamical universality classes:
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Uniform impact (φ = 0, Fig. 2c)

If φ = 0 in (11), the local impact (3) is degree independent, hence a node's perturbation has 

roughly the same impact on its neighbors, regardless of whether the perturbed node is a hub 

or a peripheral node. In this case P(I) is bounded, regardless of the degree distribution P(k). 

Table I indicates that  and  belong to this universality class, hence for these models 

 (Fig. 2c1 - c2) and P(I) is bounded as predicted (Fig. 1b1 and b3).

Heterogeneous impact (φ ≠ 0, Fig. 2d)

In this case the impact of a node is affected by its degree, hubs having a stronger (weaker) 

impact on the network when φ > 0 (φ < 0). Therefore P(I) depends on P(k), being fat-tailed 

if P(k) is fat-tailed and bounded if P(k) is bounded. This universality class includes  (φ = 

3/2) and  (φ = 1), as confirmed by Figs. 2d1 - d2 and 1b2 and b4.

For scale-free networks we also predict the specific form of P(I) and P(S) (Sec. S.VII.E), 

showing a perfect agreement with the simulations (Fig. 1b2, b4 and c4, red solid lines).

Taken together, we predict that the exponents δ and φ (11) and hence the behavior of P(S) 

and P(I), characterizing the system's local response to perturbations, are determined only by 

the functional form of f(x) and g(x). Consequently, δ and φ are independent of the system's 

topology and of the microscopic details of the dynamical equation (1). Together they 

determine four dynamical universality classes that can fully account for the diverse 

dynamical behavior observed though P(S) and P(I) in Fig. 1b1 - c4.

III. Propagation: Conservative vs. Dissipative Dynamics

We now turn to the propagation of perturbations, deriving Γ(l) (5) for large networks (N → 

∞) with an arbitrary degree-distribution P(k). In such networks the number of nodes at 

distance l from a node follows [5]

(12)

where

(13)

is the average nearest neighbor degree. For networks satisfying (12), for l < 〈l〉 (Sec. S.IV)

(14)

where β = m1 − m0 up to a logarithmic correction, which depends on microscopic details of 

(1), e.g. rate constants (see Sec. S.IV.E). While α is determined by the network topology, the 

dissipation rate β is determined solely by the dynamics through the expansion (8), resulting 

in two distinct dynamical behaviors:
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Conservative dynamics (β = 0, Fig. 3b)

If the leading term in (8) is m0 ≠ 0 we have m1 = m0, predicting β = 0, and Γ(l) = 1. Hence 

the total magnitude of a local perturbation is sustained as it propagates through the network, 

describing a conservative process. In this case the individual correlations Gij will decay with 

l, but this decay is driven entirely by the topological expansion of the network (12), 

distributing the original perturbation over an exponentially increasing number of nodes. 

Taking g(x) and f(x) from Table I we predict that  and  belong to this universality class, 

as confirmed by the non-decaying Γ(l) in Fig. 1d1 - d2.

Dissipative dynamics (β > 0, Fig. 3c)

If the leading term in (8) is m0 = 0, we have β = m1 > 0. This implies an exponential decay 

of Γ(l), describing a dissipative process. Now the decay of Gij has two origins: the 

dissipation of the perturbation and its distribution over an exponentially growing number of 

nodes. Such dissipative propagation is predicted for  and , both with β = m1 = 1 (Table I), 

in perfect agreement with the results of Fig. 1d3 - d4 (solid lines).

These two universality classes also determine the distribution of pairwise correlations, P(G) 

(Fig. 1a1 - a4). Using the fact that the average individual correlation at l is G(l) = Γ(l)/K(l), 

we can write P(G)dG = P[l(G)] (dl/dG)dG, where P(l) ∼ eαl is the probability that a 

randomly selected node pair is at distance l. According to (14) and (12) l(G) ∼ −ln G/(β + 

1)α, so P(G) follows (Sec. S.IV.D)

(15)

where

(16)

For conservative dynamics (β = 0) we have ν = 2, and for dissipative dynamics (β > 0) we 

have 1 < ν < 2, where the smaller is ν, the stronger is the dissipation. Equation (16) predicts 

ν = 2 for  and  (β = 0), and ν = 3/2 for  and  (β = 1), in perfect agreement with Fig. 

1a1 - a4.

Equations (14) - (16) uncover the dependence of the correlation function on the network 

topology (α) and the dynamics (β), and their impact on the distribution of the pairwise 

correlations (ν). Like δ and φ, the value of β and ν is universal, being independent of the 

topology and the microscopic details of (1). Note that we can measure P(G) without 

knowing the network topology, hence we can use (16) to obtain β and Γ(l) (14) even if we 

lack a map of the system, a result of strong empirical importance as for many systems of 

interest we lack an accurate network map (see Sec. S.IX.A).
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IV. Global Dynamics: Cascades

Our analysis up to this point revealed two independent universalities: the first captures a 

node's local response to changes in its immediate neighborhood (Si, Ii), and the second 

captures the propagation to distant nodes (Γ(l), P(G)). The full impact of a perturbation, as 

captured by the cascade size Ci [41–47], is a combination of these two. Indeed, we can show 

that (Sec. S.V)

(17)

where

(18)

which, like all the previously predicted exponents, is intrinsic to the system's dynamics. The 

dependence of Ci on the local impact (φ) and the propagation (β), gives rise to four classes 

of behavior (Fig. 4b1 - b4). For example, for , a conservative system (β = 0) with uniform 

local impact (φ = 0), (18) predicts ω = 0, indicating that Ci is independent of ki, and hence 

P(C) is bounded independently of the nature of P(k) (Figs. 1e1 and 4b3). For  we have a 

conservative system (β = 0) with heterogeneous local impact (φ = 3/2), predicting ω = φ = 

3/2 (Fig. 4b4). As Ci scales with ki, we predict heterogeneous cascades in which P(C) is 

determined by P(k), being fat-tailed if P(k) is fat-tailed (Fig. 1e2). The cascade 

heterogeneity is driven by the local dynamics through the heterogeneous local impact, hence 

ω = φ and P(C) ∼ P(I). Regulatory dynamics ( ) is characterized by uniform local impact 

(φ = 0), and dissipative dynamics (β = 1), having ω = 1/2, predicting heterogeneous cascades 

(Figs. 1e3 and 4b1). As opposed to , the cascade heterogeneity is a consequence of the 

propagation dynamics (β), rather than the local impact. This explains the surprising disparity 

between the local and the global behavior observed for : while P(I) is bounded (Fig. 1b3), 

namely all nodes have comparable impact on their immediate neighbors, P(C) could be fat-

tailed (Fig. 1e3). Finally, the heterogeneous local impact (φ = 1) of , coupled with the 

dissipative dynamics (β = 1) leads to heterogeneous cascades with ω = 1 (18) (Figs. 1e4 and 

4b2). For scale-free networks we can also predict the specific form of P(C) (Sec. S.VII.E), 

in perfect agreement with the simulations (Fig 1e2 - e4, solid lines).

V. Dynamical Universality from Experimental Data

In many systems of practical importance the analytical form of the dynamics is unknown, 

hence we cannot predict the system's behavior from (1). Yet, the link we established 

between the universal exponents δ, φ, β and ω, and the macroscopically accessible P(S), 

P(I), P(G) and P(C) distributions allows us to determine a system's universality class even 

without knowing the analytical formulation of its dynamics. To demonstrate this we 

collected experimental data pertaining to social and biological systems, allowing us to show 

how to determine their dynamical universality class.
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Human Dynamics

We used the temporal activity pattern of a user during email communication as a proxy for 

human dynamics, where xi(t) represents the number of emails sent by user i during a six 

hour interval [48]. We calculated  for each user pair (Sec. S.VIII.A). In Fig. 

5a1 - b1 we show the stability and impact vs. ki, finding that for large ki,  and 

 as predicted in Eqs. (10) and (11), with δ = 2.4 ± 0.2 and φ = 2.1 ± 0.1. As δ > 0 and 

φ > 0 this represents heterogeneous stability and impact, for which we expect P(S) and P(I) 

to be fat-tailed (Fig. 5a2 - b2). We also measured P(G), finding ν = 2.0 ± 0.1 (Fig. 5c2), 

predicting that the dynamics is conservative (β = 0), independently confirmed by the non-

decaying Γ(l) (Fig. 5c1). The empirically obtained values for φ and β allow us to predict that 

ω = 2.1 (18), leading to heterogeneous cascades. The cascade heterogeneity is driven by the 

local dynamics (φ > 0, β = 0), and hence we expect that P(C) ∼ P(I), confirmed by the 

empirical results. We also predict the precise form of P(S), P(I) and P(C) (solid lines) from 

the empirically measured scale-free P(k) (γ = 2.0), finding an excellent agreement with the 

empirical results (Sec. S.VII.E).

Cellular dynamics

We used high throughput microarray data collected for S. cerevisiae, to measure the impact 

of 55 genetically perturbed genes on the remaining 6, 222 genes [49]. In this system, not 

only is the dynamics unknown, but we also lack an accurate map of the underlying physical 

interactions. Still, we can directly measure the distributions P(S), P(I), P(G) and P(C) (Sec. 

S.VIII.B). We find that while P(S) is bounded, P(I) is fat-tailed, suggesting that expression 

patterns are described by uniform stability and heterogeneous local impact (Fig. 5e - f). The 

correlation distribution follows (15) with ν = 2.0 ± 0.1 (Fig. 5g), predicting a conservative 

dynamics with β = 0. The heterogeneous local impact (φ > 0) together with the conservative 

dynamics (β = 0) predict ω > 0 in (18), hence P(C) describes heterogeneous cascades, as 

observed in Fig. 5h. Since β = 0 the cascade heterogeneity is governed by the local impact 

(ω = φ), as supported by the fact that P(C) ∼ P(I). Taken together the two systems indicate 

that we can obtain the relevant dynamical class from the direct measurement of the system's 

dynamical response to perturbations.

VI. Summary and Outlook

Predicting the behavior of a complex system requires a joint quantitative description of the 

system's structure and dynamics. Much of the advances obtained to date were system 

dependent, suggesting that each dynamical system requires its unique suite of analytical and 

numerical tools to understand its behavior [14–16, 27, 28]. Here we developed a self-

consistent formalism that defies this wisdom. We bridge topology and dynamics, predicting 

that a complex system's response to perturbations is driven by a small number of universal 

characteristics. This universality defines a minimal set of relevant exponents, δ, φ, ν, β and 

ω, which can be all uniquely derived from the dynamical rules that govern the system. Our 

demonstration of the existence of distinct dynamical universality classes offers new avenues 

for future empirical and theoretical work. On the empirical side, the small number of 

possible dynamical behaviors suggests that the direct measurement of P(G), P(S), P(I), P(C) 
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and Γ(l) could provide crucial insights on the system's dynamics, potentially allowing us to 

infer the leading terms of the dynamical functions f(xi) and g(xj) (6) from empirical data. 

This would allow to develop an effective continuum theory for systems whose dynamics 

remains unknown, drawing a connection between the empirically accessible quantities and 

the system's mechanistic description.

The fact that our formalism also works for the two experimental systems indicates that the 

conclusions we derived from Eq. (1) are rather general, applying to systems of yet unknown 

dynamics as well. This is not unexpected: our main finding is that no matter what is the 

detailed structure of W(xi) and Q(xi, xj), the number of distinct dynamical patterns Eq. (1) 

can display is finite, governed by the leading terms of the Laurent expansions of Eqs. (7) 

and (8). Hence any dynamical system that follows (1), independent of the precise form of 

W(xi) and Q(xi, xj), should be classifiable into one of the predicted universality classes.

That being said, further work is needed to generalize our approach to non-stationary 

phenomena and to dynamical processes that cannot be cast in the form (1). Such a program 

could either place non-stationary systems within the framework developed above or could 

unlock an even richer set of dynamical characteristics. For example, threshold models used 

in social networks [50] and Boolean network models [51], whose node activities are 

discrete, are not obviously accounted for by (1). Aided by the increasing availability of 

empirical data, this approach could bring us closer to the construction of a powerful 

dynamical theory of complex systems, impacting numerous disciplines, from cell biology to 

human dynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The observed dynamical behavior of model systems
We used the response of a system to external perturbations to determine the five functions 

that capture the local dynamics between neighbors, the propagation of perturbations to more 

distant nodes and the global cascades, using numerical simulations. (a1) - (a4) For all four 

models we find that P(G) ∼ G−ν, independent of the network topology (Erdős-Rényi, scale-

free or empirical). For  and  ν = 2 and for  and ε ν = 3/2, in perfect agreement with the 

prediction of (15) and (16) (solid red lines). (b1) - (c4) The impact and stability 

distributions, P(I) and P(S), show diverse behavior: for  and  both P(I) and P(S) are 

bounded independently of P(k), for  P(I) is fat-tailed on a scale-free network while P(S) is 

bounded, and for  both are fat-tailed. For scale-free networks (P(k) ∼ k−γ) we can predict 

P(S) and P(I) using P(K = ky) ∼ K−Y, where Y = (γ + y − 1)/y (solid red lines, Sec. S.VII.E), 

in agreement with simulations. (d1) - (d4) The propagation of perturbations is captured by 

the correlation function Γ(l) (5):  and  exhibit conservative propagation, as perturbations 

penetrate the network without loss;  and  exhibit dissipative propagation, as perturbations 

decay exponentially with l. The theoretical prediction (14) (solid red lines) is in agreement 

with the numerical results. For l > 〈l〉 the effect of the perturbation drops sharply, as the 

propagation has exhausted most nodes in the network (gray circles), and Eq. (14) is no 

longer valid (see Sec. S.IV where we analytically predict the behavior of Γ(l) for l > 〈l〉). 

(e1) - (e4) The global impact of a perturbation is captured by the cascade size. While in 

three of the models ( , , and ε P(C) is driven by P(k), being consequently fat-tailed or 

bounded,  has a bounded P(C) independently of the network topology. The results are 

consistent with the theoretical prediction of (17) and (18). The theoretical prediction for 

scale-free networks (solid red lines) is in agreement with the numerical results.
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Fig. 2. Local dynamics: Stability and Impact
The stability Si, characterizing a node's response to perturbations in its vicinity, features two 

dynamical universality classes. (a) Uniform stability: if δ = 0 in (10), the stability is 

independent of the node's degree and P(S) is bounded, regardless of the form of P(k). As 

predicted,  (a1),  (a2) and  (a3) belong to this class, featuring . Hence 

regardless of whether the underlying network is random (ER), scale-free (SF) or an 

empirical network (yeast protein-protein interaction (PPI) network [52]; yeast transcriptional 

regulatory network (TRN) [53]; see Sec S.VII) P(S) will be bounded (Fig. 1c1 - c3). (b) 

Heterogeneous stability: if δ > 0 in (10), Si depends on ki and P(S) is driven by P(k), being 

fat-tailed if P(k) is fat-tailed. For  (b1) we predict δ = 1 (solid green line), in agreement 

with results obtained for both model and empirical networks (Email [48]), indicating that 

P(S) ∼ P(k) (Fig. 1c4). Where appropriate, here and in what follows, we used logarithmic 

binning to display the scaling of Si [54]. Impact, Ii, characterizes the influence of i on its 

immediate neighbors. (c) Uniform impact, observed for φ = 0 in (11), leads to a bounded 

P(I).  (c1) and  (c2) belong to this class( ), a prediction supported by their 

bounded P(I) (Fig. 1b1 and b3). (d) Heterogeneous impact, observed when φ ≠ 0 in (11), for 

which P(I) is driven by P(k). For  (d1) we predict φ = 3/2 and for  (d2) φ = 1, in perfect 
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agreement with the numerical results. As Ii depends on ki in this class P(I) is driven by P(k) 

(Fig. 1b2 and b4).
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Fig. 3. Propagation of perturbations
(a) The propagation to distant nodes is governed by the structure of g(f−1(x)) through the 

leading terms of (8), which determine the dissipation rate, β, in (14). (b) Conservative 

dynamics: If the leading term in (8) is m0 ≠ 0 we have β = 0, predicting a conservative 

propagation, in which perturbations penetrate the network without loss. As a result Γ(l) = 1 

(14) and P(G) ∼ G−2 (15). We predict that  and  are in this class, as confirmed by results 

in Figs. 1a1 - a2 and d1 - d2. (c) Dissipative dynamics: If the leading terms in (8) are 

g(f−1(x)) ∼ b0 + xm1 we have β = m1 > 0 in (14), leading to a dissipative propagation, in 

which perturbations decay exponentially with network distance. As a result P(G) ∼ G−ν (15) 

where 1 < ν < 2 (16). For  and  we predict β = 1 and hence ν = 3/2, in perfect agreement 

with the results of Figs. 1a3 - a4 and d3 - d4.
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Fig. 4. Cascade sizes
(a) The cascade size is jointly driven by two mechanisms: the local impact of a node on its 

nearest neighbors (Ii) and the propagation from the neighbors to the rest of the network 

(Γ(l)). Hence , where ω is determined by both φ and β (18). (b) Four classes of 

dynamical behavior emerge: (b1) For  we have β = 1 and φ = 0, predicting ω = 1/2, and 

hence heterogeneous cascades with P(C) driven by P(k), as confirmed by Fig. 1e3. Here the 

local dynamics is uniform (Fig. 1b3), and yet, remarkably, the global cascades can be 

heterogeneous due to the dissipative propagation (β > 0). (b2) For  we have β = φ = 1, 

predicting ω = 1, a heterogeneous cascade dynamics, as shown in Fig. 1e4. (b3) For  we 

have β = φ = 0, and hence ω = 0, predicting uniform cascades. Here even if P(k) is fat-tailed, 

P(C) will be bounded, so that the dynamical behavior is largely independent of the 

topological heterogeneity (Fig. 1e1). (b4) For  we have β = 0 and φ = 3/2, predicting ω = 

3/2, a heterogeneous cascade dynamics, as shown in Fig. 1e2. The heterogeneity in this case, 

in which β = 0, is driven by the local dynamics and hence P(C) ∼ P(I) (Fig. 1b2).
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Fig. 5. Uncovering the dynamical universality class from empirical data
Human Dynamics: We constructed Gij from the correlations in the usage patterns of users in 

an email network [48] (Sec. S.VIII.A). (a1) The stability vs. ki follows  with δ = 2.4 

± 0.2, predicting heterogeneous stability. (a2) As expected for heterogeneous stability, the 

system features a fat-tailed P(S). (b1) - (b2) The local impact vs. ki follows  with φ = 

2.1 ± 0.1, predicting heterogeneous impact with a fat-tailed P(I). (c1) The correlation 

function Γ(l) does not decay, indicating conservative dynamics. (c2) As expected for 

conservative dynamics, P(G) ∼ G−ν with ν = 2. (d1) - (d2) From the measured β and φ we 

predict ω = 2.1 in (17) and hence expect a fat-tailed P(C). As β = 0 we also expect that P(C) 

∼ P(I). Indeed, we find that P(C) ∼ C−1.5 and P(I) ∼ I−1.5, in agreement with the prediction 

for a scale-free network (Sec. S.VII.E). For large ki the cascades saturate due to the finite 

size of the network (N = 2, 668). Cellular Dynamics: To test our predictions for a biological 

system we collected perturbation data in which 55 yeast genes were perturbed, measuring 

their impact on the rest of the 6, 222 genes, giving rise to a 6, 222 × 55 correlation matrix, 

Gij [49]. Lacking the wiring diagram we could not measure δ, φ, β and ω directly. Yet, we 

can identify the universality class by measuring P(I), P(S), P(G) and P(C), which do not 

require knowledge on the underlying topology (Sec. S.VIII.B). (e) P(S) indicates uniform 

stability (δ = 0); (f) P(I) indicates heterogeneous impact (φ ≠ 0), in which P(I) ∼ I−1; (g) 
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P(G) has ν = 2, indicating conservative dynamics (β = 0); (h) From the inferred values of φ 

and β we predict ω > 0, foreseeing heterogeneous cascades, a prediction supported by the 

fat-tailed P(C) ∼ C−1. As β = 0, we expect that cascade heterogeneity is driven by the local 

dynamics, also supported by the fact that P(C) ∼ P(I).
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