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The present paradigm of atherogenesis proposes that low density lipoproteins (LDLs) are trapped in subendothelial space of
the vascular wall where they are oxidized. Previously, we showed that oxidation is not restricted to the subendothelial location.
Myeloperoxidase (MPO), an enzyme secreted by neutrophils and macrophages, can modify LDL (Mox-LDL) at the surface of
endothelial cells. In addition we observed that the activation of the endothelial cells by angiotensin II amplifies this process. We
suggested that induction of the NADPH oxidase complex was a major step in the oxidative process. Based on these data, we
asked whether there was an independent association, in 121 patients, between NADPH oxidase modulators, such as angiotensin
I1, adiponectin, and levels of circulating Mox-LDL. Our observations suggest that the combination of blood angiotensin I, MPO
activity, and adiponectin explains, at least partially, serum Mox-LDL levels.

1. Introduction current paradigm of early atherosclerosis claims that low-

density lipoprotein (LDL) particles are trapped in the suben-
Atherosclerosis is an inflammatory disease involving a  dothelial space of the vascular wall where they can be
crosstalk between vascular cells, monocytes, proinflamma-  oxidized. The precise physiological process for LDL oxidation
tory cytokines, chemokines, and growth factors [1-3]. The  in vivo is still largely unknown and the occurrence of LDL
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oxidation outside the lesion sites has not definitively been
ruled out yet.

Evidence accumulated during the last decade has sug-
gested implication of myeloperoxidase (MPO) in inflam-
mation leading to atherogenesis. MPO is produced by
macrophages and neutrophils [4] and via its chlorination
activity, MPO produces hypochlorous acid (HOCI) from
hydrogen peroxide (H,O,) and chloride anion (Cl™). HOCI
can oxidize protein-bound amino acid residues among which
the formation of 3-chlorotyrosine is considered as specific of
the activity of MPO as the latter is the only human enzyme
able to produce HOCIL. In the context of atherogenesis, MPO,
3-chlorotyrosine, and MPO-dependent modified LDL (Mox-
LDL) have all been detected in human atherosclerotic lesions
and in the bloodstream [5-8].

We previously demonstrated that Mox-LDL generation
could occur in vitro at the surface of the endothelial cells
suggesting that it was not restricted to the subendothelial
space in vivo [9]. The triad made up by endothelial cell,
circulating LDL and MPO, allowed a synergic mechanism
for producing Mox-LDL. The starting point of this reaction
is the generation of superoxide anion (O, ) by the mem-
brane bound nicotinamide-adenine-dinucleotide phosphate
(NADPH) oxidase. O, is further dismutated into H,0, a
substrate for MPO to produce HOCL. We recently reported,
in two different clinical situations, that this indeed enables
MPO to rapidly modify LDL and serum proteins by oxida-
tions [8, 10]. Furthermore, NADPH oxidase is activated and
upregulated by angiotensin II (ANGII) via the ANGII type I
(AT1) receptor present at the surface of endothelial cells [11].
This enzymatic complex therefore plays a central role in the
Mox-LDL generation [9].

Based on these data, we wondered whether there was
an independent association between NADPH oxidase mod-
ulators, such as ANGII, adiponectin [12], and levels of
circulating Mox-LDL. To test this hypothesis, we report the
data observed in a cohort of male patients (n = 121)
consulting for lower urinary tract symptoms (LUTS). Indeed,
LUTS is associated with the erectile dysfunction, which is an
early predictive sign for atherosclerotic cardiovascular events
[13].

2. Material and Methods

2.1. Patients. Subjects were 121 males with a mean age of 58.8+
10.8 who consulted for lower urinary tract symptoms (LUTS)
at the Erasme University Hospital. This study conforms with
the Declaration of Helsinki and its protocol was approved
by the Ethics Committee of the Erasme University Hospital.
Finally, all subjects gave their written informed consent.

2.2. Standard Analyses. Blood samples were centrifuged for
10 minutes at 4000g and the supernatant was collected
and frozen. Blood tests were performed at the Laboratory
of Experimental Medicine of the University Hospital of
Charleroi, Site A. Vésale, Unit 222, ULB. The following
parameters were measured: C-reactive protein (CRP), blood
glucose, total cholesterol, triglycerides, HDL-cholesterol
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(standard laboratory techniques PLC), and adiponectin.
LDL-cholesterol levels were calculated using the Friedewald
formula (LDL-chol (mg/dL) = T-chol-HDL-chol-TG/5).

2.3. MPO and Mox-LDL Analyses. Mox-LDL was measured
using a sandwich ELISA kit [9]. The specificity of the
antibody was further assessed by analyzing LDL oxidized
with peroxynitrite (0, 10, 100, and 1000 M) and comparing
with LDL oxidized by MPO/hydrogen peroxide/chloride.
Other oxidants produced by MPO such as HOSCN/~ OSCN,
HOBr/”OBr, and HOI/"OI (from MPO/hydrogen perox-
ide/corresponding halide) were also used to oxidize LDL and
to test the specificity of LDL. It resulted in the fact that the
antibody is highly specific for Mox-LDL.

The active and total MPO contents in plasma were
measured using the licensed SIEFED and ELISA (ELIZEN
MPO, Zentech SA, Belgium) methods [14]. By using these
two techniques, we are able to distinguish active and total
MPO contents in plasma and to determine the specific
activity of MPO (MPO activity/MPO antigen ratio).

2.4. Angiotensin 1I, Adiponectin, and Interleukin-8 Analyses.
ANGII was determined in plasma by a radioimmunoassay
kit (BioSource, Nivelles, Belgium). IL-8 and adiponectin
concentrations were quantified using ELISA tests (Becton
Dickinson).

2.5. Statistic. Data were analyzed using the SigmaPlot 12.0
software (Systat, San Jose, CA). Results were considered
statistically significant with a two-tailed P < 0.05. Two
models of multiple linear regression analysis were tested
using a backward stepwise selection of explicative variables.

3. Results and Discussion

The purpose of the present study was to explore whether there
is an independent association between ANGII (an NADPH
modulator), adiponectin, and levels of circulating Mox-LDL.
In this context we analyzed various parameters within 121
male subjects who consulted for the first time for LUTS.
Table 1 shows the means and SD of the parameters measured
or calculated within patients.

Table 2 describes two models of multivariate analysis
of backward regression in these subjects. The standardized
regression coeflicients are given for each model. As shown in
Table 2, in the first model (Model 1) we set Mox-LDL as the
dependent variable, while the independent variables included
the parameters described above. Significant linear correla-
tions were found between Mox-LDL levels and ANGII,
and MPO activity (both positively) and also adiponectin
content (negatively). In the second model (Model 2) the Mox-
LDL/ApoB ratio (an estimation of the proportion of MPO-
modified LDL in the bloodstream) was set as dependent
variable and the same set of above parameters as independent
variables. The same variables as in Model 1 were found to
predict the Mox-LDL/ApoB ratio.

Our observations suggest that the combination of blood
ANGII, MPO, activity and adiponectin explains at least
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TABLE 1: Patient parameters.

N =121 Mean SD
Age (years) 59 11
BMI (kg/m?) 26 4
Glycemia (mg/dL) 107 48
Total cholesterol (mg/dL) 209 39
Triglycerides (mg/dL) 184 142
HDL cholesterol (mg/dL) 53 18
LDL cholesterol (mg/dL) 122 35
Interleukin-8 (ng/mL) 17 10
Mox-LDL (ug/mL) 9 13
Mox-LDL/ApoB (ug/mg) 0.1 0.2
Angiotensin II (pmol/L) 14 11
Adiponectin (ng/mL) 5252 4197
MPO activity (MPOA) (mU/mL) 27 18
MPO antigen (MPOAg) (ng/mL) 50 36
MPOA/MPOAg (mU/ng) 0.6 0.2
Conversion for lipids: total cholesterol, HDL-c and LDL-c: 1mmol/L =
38.67 mg/dL.

Triglycerides: 1 mmol/L = 38.67 mg/dL.
BMI: body mass index.

TABLE 2: Multivariate analysis of backward regressions in the total
population.

Standardized
N =121 regression P value
coeflicient
Model 1R = 0.52, F = 9.7,
P < 0.001
ANGII 0.425 <0.001
MPO activity 0.236 0.018
Adiponectin -0.196 0.05
Model 2 R = 0.58, F = 12.6,
P < 0.001
ANGII 0.446 <0.001
MPO activity 0.315 0.001
Adiponectin -0.201 0.03

Parameters introduced in the stepwise multiple regression analysis: age, BMI,
adiponectin, IL-8, total cholesterol, HDL-c, LDL-c, triglycerides, glycaemia,
MPO antigen, MPO activity, and the ratio MPO activity/ MPO antigen.
Model 1: the Mox-LDL is the dependent variable. Model 2: the Mox-
LDL/ApoB is the dependent variable.

partially the serum Mox-LDL levels. They corroborate and
extend our previous data showing that oxidation could also
take place at the surface of endothelial cells [9, 15] and
that plasma level of Mox-LDL follows the level of MPO in
patients during a hemodialysis process [15, 16]. They are
underpinned by established physiopathological mechanisms
as endothelial cells express NADPH oxidase, the activity
and expression of which are increased by ANGII binding
to the AT1 receptor [12]. In support of our proposal, we
previously observed that hypertensive COPD patients treated
by angiotensin-converting enzyme inhibitors had reduced
levels of circulating Mox-LDL (our unpublished data). This

is an alternative and complementary explanation to the
common model positing that the presence of modified LDL
in the circulation is due to the back diffusion of modified
LDL from the vessel to the circulation and is a marker of
plaque instability in patients with coronary artery disease.
Furthermore, it recently arose that human peroxidasin 1, also
called vascular peroxidase 1 (VPO1), might be involved in the
in vivo production of HOCI and so potentially contributes
to the oxidation of LDL [17]. Moreover, VPOl was also
suggested as an inductor of vascular smooth muscle cell
proliferation [18]. However, further experiments are needed
as the formation of HOCl by VPOl is low at physiological pH.

We also uncovered a negative linear correlation between
oxidative stress and adiponectin in our multiple linear regres-
sion models (Table 2). This is in agreement with the observa-
tion that adiponectin reduced in vitro and in vivo the NADPH
oxidase activity and hence oxidative stress [12]. It is also in
support of the general agreement that adiponectin, which
is secreted by fat tissue, is antiatherogenic by modulating
cytokine inflammatory cascades and inhibiting cholesterol
incorporation.

In sum, our study suggests that the combined action
of ANGII, MPO, and adiponectin might explain the serum
Mox-LDL levels. A definitive validation or invalidation of the
proposed role of ANGII in the generation of serum Mox-LDL
will request a double blind randomized crossover study com-
paring subjects receiving an angiotensin-converting enzyme
inhibitor or an angiotensin II receptor antagonist and a
placebo.
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