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Abstract

Background: A central challenge in the molecular diagnosis and treatment of cancer is to define
a set of molecular features that, taken together, distinguish a given cancer, or type of cancer, from
all normal cells and tissues.

Results: Discriminative margin clustering is a new technique for analyzing high dimensional
quantitative datasets, specially applicable to gene expression data from microarray experiments
related to cancer. The goal of the analysis is find highly specialized sub-types of a tumor type which
are similar in having a small combination of genes which together provide a unique molecular
portrait for distinguishing the sub-type from any normal cell or tissue. Detection of the products
of these genes can then, in principle, provide a basis for detection and diagnosis of a cancer, and a
therapy directed specifically at the distinguishing constellation of molecular features can, in
principle, provide a way to eliminate the cancer cells, while minimizing toxicity to any normal cell.

Conclusions: The new methodology yields highly specialized tumor subtypes which are similar in
terms of potential diagnostic markers.

Background

A unique molecular portrait that distinguishes a cancer
from any normal cell or tissue could be exploited in many
different ways for diagnosis or treatment. For example, an
experienced biologist may be able to "read" a particular
set of molecular features as representing the activity of a
metabolic or regulatory system that can be exploited for
treatment. We wondered, however, whether in some cases
it might be possible to use a more general approach,
which would not necessarily rely upon a detailed under-
standing of the physiological implications of each molec-
ular portrait. Suppose, for example, that, for any given
gene product, we have a way to deliver a toxin to cells at a

dose proportional to the level at which the gene is
expressed in each cell. Indeed, for cell surface molecules,
monoclonal antibodies can approximate such a delivery
system. If, for any cancer, we can identify a set of molecu-
lar targets whose cumulative level of expression in each
cancer cell exceeds their expression level in any normal
cell by a sufficient therapeutic margin, then we could, in
principle, use a combination of the corresponding molec-
ularly targeted toxins to kill each cancer cell, while sparing
the normal cells. This scenario, while highly speculative,
serves to highlight the potential value of methods that can
identify moderate-sized sets of discriminating features,
and simultaneously classify or cluster samples (eg,
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Schematic of the margin classifier.

cancers) based on the set of molecular features that dis-
criminate then from, eg., normal cells.

In this paper we identify natural cancer sub-classes based
on similarity of the sets of genes that discriminate them
from the class of all normal tissues, from a large set of
microarray data comprising quantitative measurements of
the expression of thousands of genes in a diverse set of
cancers in normal human tissues. This is done by running
a hierarchical clustering procedure on top of a linear ker-
nel classifier.

We first describe the linear classifier [1]. Assume that we
have expression pro-files for samples in two groups: a nor-
mal class, and an abnormal class. The kernel of the
method is the positive maximum margin classifier, illustrated
in Figure 1. We find the linear combination of genes, with
non-negative weights, that produces the largest margin
(gap) between the normal and abnormal classes. This lin-
ear combination is depicted by the middle solid line in
the figure. This line can be efficiently computed by a linear
programming technique even when the number of genes
is around 10,000 and the number of samples is around
500 (details of the formulation can be found in Appendix
A). This class of problems are called packing linear pro-
grams, and have efficient solutions. A discussion of the
methods for solving such problems can be found in [1],
and are therefore omitted. We focus on positive margin
classifiers as we are interested in genes showing larger
expression value in the tumor samples. The protein prod-
ucts of such genes might be detectable in the blood
stream, and can possibly be targeted for diagnosis and
therapy. Though genes showing lower expression value in
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the tumor samples are potentially biologically interesting,
we do not consider them in this study; our methodology,
however, extends naturally to linear classifiers which can
detect such genes as well.

For a given tumor sample, the output of this classifier is a
weighted vector of genes whose combined expression is
larger in this sample compared to all normal samples. This
would serve as a discriminatory feature set for this tumor
sample. Our main goal is to cluster tumor samples of a
certain histological type (like CNS or renal) based on the
similarity of their feature sets, to identify sub-groups for
which the same feature set is discriminatory. This would
produce feature sets of moderate size, which find, and
effiectively characterize cancer classes with respect to the
genes whose detected expression in the tumors distin-
guishes them from normal cells/tissues. We propose a
method that combines margin classification with hierar-
chical clustering and convex polytope exploration tech-
niques to find cancer classes, and moderately large feature
sets of genes for each class, spanning the various gene
classes that distinguish the cancer type. We call this proce-
dure Discriminative Margin Clustering.

The input to our procedure is the set of tumor samples,
(either labelled with their histological type, like CNS,
renal, etc, or unlabeled samples) and the set of normal
samples. We run the discriminative margin clustering pro-
cedure on the set of tumor samples versus all the normal
samples (this is a binary problem, and not a multi-class
problem), to obtain sub-types of tumors with similar fea-
ture sets. We run the procedure separately on each class of
tumor samples (like CNS, renal, etc) to obtain clusters
within that class which are similar in terms of their feature
sets. The data set and results are present at http://microar
ray-pubs.stanford.edu/margin clus/. Our method can
therefore be run either in a semi-supervised fashion with
apriori class labels, or in an unsupervised fashion. We do
an empirical validation of the quality of these feature sets
in terms of uniqueness to a tumor class by evaluating their
goodness on a test set of tumor samples, and show that
the accuracy of predicting the correct tumor type is pretty
high. The prediction accuracy, though high, is not as good
as the accuracy of traditional hierarchical clustering,
mainly because we are working with feature sets of small
size. Nevertheless, we show (somewhat surprisingly) that
small feature sets (which are just based on properties of a
certain tumor class versus the normal class) are sufficient
to obtain reasonably high prediction accuracies against
other tumor classes as well.

Classification

Several researchers have observed that margin classifiers
work well in finding signature gene sets for a cancer class.
Most previous work [2-6] based on Support Vector
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Machine classifiers has focused on feature sets (or clusters
of feature sets [7]) that either separate a cancer class from
all other cancer classes, or that separate a cancer class from
the corresponding normal class, by minimizing the Eucli-
dean norm of the feature vector. Several tumors have nat-
ural sub-types [8,9] which clustering techniques can
identify, but which these classification schemes do not
identify (refer [10] for a detailed discussion of this issue,
along with additional references to literature). The main
difference between our work and previous work on clus-
tering is that our clustering effort is focused on finding
sub-types which are amenable to similar diagnostic/ther-
apeutic methods, rather than finding sub-types which are
histologically similar. The linear margin classifier we
present has been previously studied in [11]. A feature of
this classifier is that the discriminatory gene sets are of
very small size (this is a property of linear classifiers,
where the size of the feature set is provably no more than
the number of tumor and normal samples.) Our work dif-
fers from previous work in focusing on positive margin
classifiers, since the feature sets which result are poten-
tially useful for the purposes of diagnosis and therapy.

Methods like Partial Least Squares [12] can be used to
reduce the dimension of the feature space before applying
our clustering procedure. It would be interesting to
observe how such an approach would affect the quality of
clustering and the relevance of the feature sets.

Clustering

A related objective is to group tumor samples with related
feature sets. For this purpose, we need to cluster the tumor
samples into groups so that tissues within a group have
similar feature sets. Traditional methods of clustering
tumors [13] use the notion of dot-product or Euclidean dis-
tance similarity between the gene expression vectors as the
notion of similarity. Clustering based on overall gene
expression patterns works very well in grouping together
histologically similar tumor samples. However, a problem
with this approach is that a disproportionate amount of
weight is given to a set of genes which form part of the
same broad biological function, like respiration or the cell
cycle. The individual genes in these functionally themed
groups need not be not discriminatory in the sense we want
them to be. It is therefore not geared towards recognizing
samples with similar feature sets.

Statistical methods

An alternative method to finding feature sets is to list the
genes that are relatively highly expressed in the tumor
class as compared to most normal tissue samples, using
some standard statistical significance test [14]. The prob-
lem with this approach is that for a large set of genes, the
normal tissues in which that gene is relatively highly
expressed could be the same. Therefore, the set of genes
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might work well to distinguish a tumor from most normal
tissues, but consistently fail to distinguish the tumor class
from a particular set of normal tissue samples. For exam-
ple, for breast cancer samples, most of the genes (more
than a thousand) with large expression values would also
have large expression in normal breast samples. Thus a set
of genes that distinguish breast cancers from most normal
tissues will generally do a poor job of discriminating
breast cancers from normal breast tissue. The validity of
these methods oftentimes depends on the relative abun-
dance of samples of the various normal tissue types; our
method does not suffer from this drawback.

Related work

The work of [10] is most similar to our effort. The authors
use a completely unsupervised self organizing map tech-
nique to cluster gene expression vectors, and identify
tumor and normal classes in the SOM. The SOM also pro-
vides an expression vector unique to each tumor class. The
authors report poor accuracy in classifying breast, ovarian,
coloretical and lung cancers, and the feature sets produced
for these classes are small in size. Our work differs from
their work in being semi-supervised (though it is possible
for our method to be run in a completely unsupervised
fashion); we start with class labels for each broad tumor
class (like CNS, renal, etc) and the set of normal samples.
Our method uses an entirely different idea and is geared
towards finding specialized subtypes within each histo-
logical type which are similar in terms of discrimination.
Our clustering procedure finds biologically meaningful
sub-types for Breast and Ovarian cancer, where we iden-
tify genes like ERBB2, ESR1, NAT1, GATA3 and MSLN as
being prominent in the feature sets. These genes are well
known markers for these cancer types. We identify three
natural sub-types of breast cancer which traditional
hierarchical clustering also identifies. In contrast to the
traditional hierarchical clustering method, our method
relies on very small feature sets to identify the exact same
sub-types. In other cases, our method groups tumors dif-
ferently from the traditional methods. Our classification
results have around 75% accuracy for most cancer types
except pancreas, prostate and gastric cancer, which is com-
parable to the 80% accuracy obtained by [10] (a caveat is
that we are working with different data-sets, and this may
effect the results of the predictions). However, we have the
advantage of finding different clusters in some cases (for
instance, breast cancer and ovarian cancer), and also find-
ing a different set of markers, some of which have been
verified in literature. In addition, we expect our method to
produce results even when the class of normal tissues is
extremely heterogeneous, with very few samples of any
histological type. This suggests our approach as an alter-
native procedure which may work better in some
situations.
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The work of Dettling and Buhlmann [15] attempts to clus-
ter genes based on multiclass discrimination of cancer
types. We differ in attempting to cluster samples in each
tumor type based on similarity of the discriminatory
genes. We therefore get multiple clusters of genes for the
same broad cancer type, which would reveal fine grained
variations within that cancer type.

We emphasize that traditional classification and cluster-
ing procedures would be expected to have higher predic-
tion accuracy for unknown samples because they rely
more on overall gene expression patterns (this is con-
firmed in [10]); our clustering method is oriented towards
grouping tumors based on similarity of feature sets, so as
to identify highly specialized tumor sub-classes. We show
that these feature sets have sufficient classifying power to
make them statistically meaningful. In some cases, for
instance, breast cancer samples, our clustering result mir-
rors that of traditional hierarchical clustering. In some
other cases, for instance, lung cancer, our procedure
groups tumor samples of diverse histo-logical origin
together, suggesting that a similar marker set or treatment
may be amenable to them. In addition, it would also sug-
gest the lack of a common treatment for a set of samples
which are histologically similar. There are alternative tech-
niques to achieve the same goal, for instance [10]; the
high dimensionality of the gene space often leads to dif-
ferent results from different methods, and a combination
of these methods may lead to biologically meaningful
insights.

Although this work focusses on the application to global
gene expression data and cancer, the discriminative mar-
gin clustering method should be generally applicable to
large high dimensional data-sets in which similar classifi-
cation questions arise. For more details on the relevance
of our objective, and the manner in which traditional
clustering and classification procedures fail to address it,
along with additional references to literature, we refer the
reader to [10].

Results

Discriminative Margin Clustering

We once again refer to our example from the previous sec-
tion. The "abnormal" samples in Figure 1 lie near each
other, and hence are well separated from the normals by
a single line. This will not always be the case: and it hence
it is of interest to group members of the abnormal class
with respect to their joint separability. This is the idea of
discriminative margin clustering.

The process follows the same general scheme as agglom-
erative hierarchical clustering, but uses margin from the
normal class, rather than similarity of expression profiles,
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Figure 2
Schematic of discriminative margin clustering.

as the clustering metric. The idea is schematized in Figure
2.

We start with each abnormal sample forming its own
group. Then for every pair of samples, we compute the
maximum positive margin classifier for that pair versus
the normal samples. We find the pair whose resulting
margin is largest, and agglomerate them together. This
process is repeated, and at each stage agglomerating the
pair of single samples or groups that produces a combined
group with largest margin.

Figures 3 and 4 show a toy example. There are 100 genes
and 20 samples, 10 each of the normal and abnormal
classes. This example is to illustrate the power of our clus-
tering method in finding specialized tumor sub-types
which other clustering methods would miss out. This
example is not a stochastic model of gene expression, and
is presented mainly to illustrate the potential difference in
hierarchical clustering and discriminative margin cluster-
ing in terms of the sub-types they are capable of detecting.
Discriminative margin clustering will detect highly spe-
cialized sub-types with similar feature sets, while hierar-
chical clustering will detect tumor types with similar gene
expression patterns. Both methods therefore have their
relative merits.

The first 50 genes have high expression for the normal
samples and abnormal samples 11-15, and lower expres-
sion for samples 16-20, while the last 10 genes have high
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Figure 3
Heatmap for the toy example.

expression for samples 11,13,15,17 and 19 and low
expression for the others. The left panel of Figure 4 shows
average linkage hierarchical clustering, using the Eucli-
dean metric. The first 50 genes dominate the clustering,
and hence samples 11-15 and 16-20 represent the major
groups found. The right panel of the figure shows the
result of discriminative margin clustering. It has separated
samples 11,13,15,17,19, as these are the ones most easily
discriminated from the normal class. Each join of the den-
drogram is drawn at height equal to the (negative) margin
achieved for the combined groups.

This discriminative margin clustering procedure delivers
another useful piece of information. At each merge, it
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finds a set of non-negative gene weights that best separate
the current group from the set of normals. In practical
terms, this might mean that each successive cluster defines
a group of cancers for which a specific combination ther-
apy (directed at the products of the genes that best distin-
guish this group of tumors from all normal tissues) would
be useful.

For example the join at height = -3.6 has weight vector

(0.14, 0.00, 0.27, 0.07, 0.00, 0.00, 0.14, 0.17, 0.00, 0.21,
0.00)

for the last 10 genes, and zero for the rest. Hence in this
example we would learn that the separation of samples
11,13, 15,17, and 19 is best achieved by a (weighted sub-
set of) genes 90-100.

The dendrogram from this process can also be used for
classification of new samples. Given a new expression
profilez = (2, z,, ... z,), at each join in the tree we compute

the margin Z le Bizi where the Bi are the estimated gene
weights. The margin for z is defined to be the largest value
m such that z achieves a margin of m at a join at or below
height -m of the tree. If the margin m is negative, it is set
to -oo.

The predicted class is "abnormal" if m is greater than some
cut-point i, and "normal" otherwise. Hence samples with
margin -oo are always predicted as "normal". The optimal
cut-point h is estimated from a test set or cross-validation.

Figure 5 shows the training and test error curves for the toy
example. A test sample of size 500 was used. An "error"
would be the classification of a normal sample as "abnor-
mal", or vice-versa. The test error is minimized at a margin
about 2.0, which is reasonable in view of the dendrogram
of Figure 4. Therefore, we can obtain clusters of the
"abnormal" samples by chopping the tree at a margin of
2.0.

The clustering procedure therefore has the potential of
finding highly specialized tumor sub-types. These groups
would be expected to have useful information in terms of
diagnosis and therapy.

Discussion

Although it would appear that our clustering procedure
simply groups together samples based on the similarity of
the maximum margin feature sets, this is not strictly true.
The similarity between two tumor samples could be very
high even if the maximum margin feature sets have low
overlap. All we require is that there exist a common
feature set which gives large margin for both the samples.
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Therefore, our clustering procedure is different from the
more simple-minded procedure that computes similarity
between the maximum margin feature sets. Therefore, if a
set of tumor samples has a common discriminatory fea-
ture set (this need not be the maximum margin feature set
for any of the samples individually), our clustering proce-
dure would be expected to group them together. This
explains why it performs well in classifying unknown
samples in the cross-validation test we describe in the next
section.

One advantage of clustering is removal of sensitivity to
noise. Though expression values of a particular tumor
sample may be prone to error, the combined margin clas-
sifier for a class of related tumor samples would be a reli-
able indicator of the genes which characterize the class.
For a gene to be erroneously included with large weight in
the feature set, its expression value has to be abnormally
high in most of the samples in the class. This is a
possibility if the class has only one sample, but this event
has low probability if the class has many samples. This
point also illustrates the importance of finding a weighted
combination as opposed to an unweighted combination.
Genes with large weight are more reliable markers than
genes with small weight. For instance, ERBB2 appears as a
gene with a large weight for a large cluster of breast
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samples, and therefore, would be a good candidate to
include in the feature set. We also note that (contrary to
intuition) finding the best weighted combination is a
computationally simpler problem than finding the best
un-weighted combination (which is provably computa-
tionally intractable). We therefore focus our attention on
computing weighted combinations; we discuss how our
results change for unweighted combinations in the next
section.

One natural question to ask is what if the margin is nega-
tive. Our experiments with the tumor and normal data set
which we present in the next section shows that even if we
consider the entire class of tumors versus the entire class
of normals, the maximum margin is positive, showing
that there exists a set of discriminatory genes for this case
as well. A similar result is obtained by [10]. We will there-
fore assume that the margin is always positive.

— Adeno
— Sguamous
— Large Cdll
— Small Cell
Unknown

*Hﬂiwh

Figure 6

Dendogram for the lung samples. Note that there is no com-
mon feature set for the large cell sub-type, though traditional
hierarchical clustering groups these samples together. Also,
the sub-groups for the other classes are different from those
produced by traditional clustering methods.
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We note that though the set of genes yielding the largest
possible margin is unique, there will be many sets of genes
whose weighted combinations yields close to the largest
margin. In Appendix B, we discuss techniques to find
larger feature sets which yield close to the maximum mar-
gin. This has potential applications to finding diagnostic/
therapeutic markers. We note that in our experiments with
the tumor and normal dataset, the maximum margin fea-
ture set is contained in the expanded feature set, albeit
with smaller weights assigned to the corresponding genes.

Properties of the feature sets and expanding them

For a realistic look at its potential application to real bio-
logical problems, we apply discriminative margin cluster-
ing to a large dataset of gene expression data from
systematic analysis of transcript levels in normal and can-
cer tissues, using DNA microarrays. We use data from the
Stanford Microarray Database [16]. The log scale, mean
centered and normalized dataset can be found at http://
microarray-pubs.stanford.edu/margin clus/. We impute
missing values using the k-nearest neighbors method with
k = 10. For our method, accurate imputation of missing
values is important. We set all remaining missing values to
Zero.

Since we wish only to cluster samples which have the
same broad histological type (for instance, lung samples
or ovarian samples), we run the clustering procedure
separately on each broad tumor class versus all the normal
samples. There are 104 normal samples and 268 tumor
samples which fall in 14 broad tumor classes — Bladder,
Breast, CNS, Kidney, Liver, Lung, Lymph, Ovary, Pancreas,
Prostate, Skin, Soft tissue, Stomach and Testis. There are
around 7500 genes, and the data is on the log scale.

Figure 6 illustrates the discriminative margin clustering
for a collection of lung samples. Note that the clustering
groups the squamous, adeno and small cell sub-types sep-
arately, but the large cell sub-type does not cluster as a
discrete group suggesting that these tumors are heteroge-
nous with respect to the molecular features that distin-
guish them from normal tissues. Combining the large cell
subtype together results in a feature set with very small
margin, showing the absence of a common set of molecu-
lar markers. We note that traditional hierarchical cluster-
ing using a dot-product similarity measure would group
the large-cell sub-type together, which shows these sam-
ples have similar overall gene expression patterns and his-
tological type. But, for the purpose of finding
discriminating feature sets, these samples are very
heterogeneous.

Cancers of the same histological type can be heterogenous
in their gene expression patterns, their genetic origin and
their behavior. Therefore, we do not expect the
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Margin for the test samples along with the label of the cluster which yields the largest margin. The vertical lines separate the
actual classes of the test samples, while the color of the points illustrate the predicted class.

discriminating gene set to be consistent among cancers of
the same histological diagnosis. Nevertheless, we tested
the ability of discriminative margin clustering to define
gene expression features useful for classifying cancers
according to broad histological types. We do a predictive
analysis for the quality of the clustering produced using
the identification of known cancer classes as a test. We
describe the procedure below.

To obtain clusters from the dendogram, we need to find
the margin at which to chop the tree. We do a cross-vali-
dation test by randomly partitioning the samples into
two-third "training" and one-third "test" groups. We run
the discriminative margin clustering procedure on each
tumor class in the training set versus the normal samples
in the training set. This yields one dendogram for each
tumor class. For each sample in the test set, we find the
node with the best margin among all dendograms gener-
ated from the training data. This would assign a predicted

class for the test sample as CNS, renal, normal, etc, along
with the margin. Figure 7 shows the predicted class of
each tumor and normal sample; the color assigned to a
point is the color of the predicted class. A margin of -0
implies classification as normal. From this figure, it we
can deduce that a margin of 2.0 is the threshold beyond
which the classification accuracy is large. To confirm this,
we fix a margin, and chop the trees off at that margin to
obtain a larger set of trees. Now, we re-classify the test
samples using the nodes in the new trees (all nodes have
margin at least the cut-off now). Figure 8 shows the error
in accurately classifying the normal and tumor samples in
the test set. The error is minimized when the margin is 2.0.
We therefore pick this as the margin.

For the margin of 2.0, Table 1 shows the prediction of the
test samples. Note that the accuracy of prediction is
around 75% for most classes, but bad for prostate,
pancreas and stomach cancer. The normal samples cannot
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Training and test errors for the samples.

be predicted accurately as they are extremely
heterogeneous in nature (there are very few samples for
most histological types), and if the training set misses out
the normal sample of a particular histological type, the
feature sets may not classify the test samples correspond-
ing to that type correctly. Despite this heterogeneity, the
accuracy for predicting the tumor samples is comparable
to that in [10] (they use a data set with comparable

number of normal and tumor samples), and as we show
below, the feature sets have genes which are biologically
relevant for that cancer class. We then consider the predic-
tion of the test sample using just the dendograms of the
corresponding histological type. This would predict
whether the test sample belongs to that histological type
or whether it is a normal sample. This improves the pre-
diction results (Table 2). Note that the power of the clus-
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Table I: Test set prediction results for all classes
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Predicted class

True class Normal Breast CNS Kidney Lung Ovary Panc. Prostate Soft Stom. % correct

Normal 28 | 2 15 15 0 2 8 | Il 34

Breast 0 5 0 0 0 0 0 | 0 2 62

CNS 2 0 7 2 0 0 0 0 0 0 64

Kidney | 0 0 17 0 0 0 0 0 | 89

Lung 4 | 0 0 14 0 0 | 0 0 70

Ovary | 0 0 0 | 6 0 0 0 0 75

Pancreas 4 0 0 0 0 0 0 0 0 0 0

Prostate 9 0 0 0 0 0 0 0 0 0 0

Soft Tissue 0 0 | 0 | 0 0 0 9 0 82

Stomach 5 0 0 0 | 0 0 0 0 4 40

Table 2: Test set prediction results for each class versus normal only

Predicted class

True class Normal Breast CNS Kidney Lung Ovary Panc. Prostate Soft Stom. % correct

Normal NA 3 2 24 16 0 15 71 | 58 75

Breast 3 5 0 0 0 0 0 0 0 0 62

CNS 2 0 9 0 0 0 0 0 0 0 82

Kidney 0 0 0 19 0 0 0 0 0 0 100

Lung 4 0 0 0 16 0 0 0 0 0 80

Ovary 2 0 0 0 0 6 0 0 0 0 75

Pancreas | 0 0 0 0 0 3 0 0 0 75

Prostate 0 0 0 0 0 0 0 Il 0 0 100

Soft Tissue | 0 0 0 0 0 0 0 10 0 91

Stomach 0 0 0 0 0 0 0 0 0 10 100

tering in predicting broad histological type is high, even
though this analysis did not take into account the consid-
erable molecular heterogeneity within the cancer classes.

We obtain similar classification accuracy even if we make
the weights of the genes in the feature set equal to 1. This
shows that the combination of genes is important in addi-
tion to the weights, and for a given set of expression
values, the discriminatory feature sets are not very sensi-
tive to the weights. However, the weighted combination is
more resilient to noise in the data than the unweighted
combination, especially since we are considering sets of
small size.

We note that traditional classifiers, for instance, the near-
est neighbor classifier (which we have implemented and
compared against), have higher prediction accuracy (refer
[10]), as they are based on broader gene expression pro-
files. Our method, in contrast, is geared towards finding
tumor sub-types which are similar in terms of having the
same small discriminative set of genes, and we use just
these for classification to test the significance of these

genes. These discriminative sets also make no explicit
effort to discriminate one cancer class from another — we
simply discriminate the cancer class from the normal sam-
ples. Our main point is to find clusters of specialized
tumors with a common marker set. We show, somewhat
surprisingly, that these feature sets have the additional
power to classify unknown tumor samples well, implying
that they have statistical validity.

In some cases, the clustering helps us identify natural
tumor sub-types as well. For instance, breast cancer
samples cluster into three natural sub-types, which are
also identified by traditional hierarchical clustering.

ERBB2 sub-type
The feature set for this class gives 65% weight to ERBB2.

Luminal A sub-type
ESR1, NAT1 and GATA3 together account for 55% of the
weight in the feature set.
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Table 3: Feature set for a breast cancer cluster.

http://www.biomedcentral.com/1471-2105/5/21

Weight Gene Name
| 0.006 LGALS4
2 0.222 ERBB2
3 0.034 ESRI
4 0.080 GATA3
5 0.118 OSF-2
6 0.014 EVI2A
7 0.049 VAV3
8 0.057 HSI-2
9 0.096 NUF2R
10 0.066 C200RFI
Il 0.019 TOPK
12 0.075 HNF3A

Proliferative sub-type
Characterized by large expression values for cell-cycle
related genes, suggesting a rapidly proliferating sub-type.

The feature sets of genes produced at the nodes of the clus-
ter tree are small (about 10 genes) even at the top nodes
of the tree. Though these feature sets include genes which
are well studied in the context of their respective cancers,
these sets may be too small to provide a sufficient set of
candidates for diagnosis or treatment. For example, for a
breast cancer class with 15 samples, the feature set (along
with the associated weights) is listed in Table 3. Although
the maximum margin feature set is small, there will be fea-
ture sets with close to the optimal margin, which are
equally good candidates for finding markers. Note that
the presence of these feature sets does not affect the clus-
tering, but simply yields more marker sets.

We can expand the set of genes by convex programming
techniques. At a particular node in the cluster tree, we con-
sider the polytope of all feature sets whose margin is close
to the optimal margin (the "closeness" being a parameter
which we can control). We then formulate a quadratic
program to search for a combination in this polytope that
includes as many different genes as possible. Details can
be found in Appendix B. These feature sets provide a
much larger set of potential markers. In our experiments,
the maximum margin feature set is contained in the
expanded feature set, albeit with smaller weight.

For the breast cancer cluster in represented in Table 3, the
expression patterns for the expanded list of genes are
shown in Figure 9, (and in more detail in the web supple-
ment) in heatmap format. Adjacent to each gene is the
weight assigned to it in the expanded feature set. For each
tissue, we also indicate the weighted expression value of
the genes in the feature set. The first 15 samples are breast

cancer samples while the rest are normal tissue samples.
Please refer to the web supplement for an enlarged version
of this figure. We have clubbed two sub-classes found by
the clustering in this heatmap. Note that the ERBB2 sub-
type (last 4 tumor samples) has high expression of ERBB2,
GRB7, MLN64 and LIV-1, while the Luminal A sub-type
(remaining samples) has high expression of ESR1, NAT1
and LIV-1. The expression patterns of these genes is suffi-
cient to discriminate these two sub-types from each other.

Many genes related to proliferation and the cell cycle
(C200RF1, TOPK, L2DTL, KNSL1, NUF2R, CENPF, ...)
are present in the expanded feature set. These genes do not
have very high differential expression values, and are rela-
tively highly expressed in many cancer types. They are
therefore not present in the maximum margin feature sets
that drive the clustering procedure, though they are
present in the expanded feature sets. On another note,
GRB7, which is significantly co-expressed with ERBB2, is
absent in the maximum margin feature set, but is present
in the expanded feature set.

The heatmap clearly illustrates the spread of expression
values in the normal tissue sample. For any one normal
sample, the number of highly expressed genes is relatively
small, but for any gene, the probability that at least one
normal tissue expresses the gene at a level comparable to
that in the given tumor is high. Nevertheless, this example
shows that we can find a set of genes that as a group, dis-
criminates the tumor class from the normal classes quite
well.

Although our analysis used no information about the
known diagnostic or therapeutic value of the genes, the
feature sets identified were strikingly enriched in genes
corresponding to the established therapeutic and diagnos-
tic targets. We illustrate these in Table 4. For example,
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Figure 9
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Heatmap for the expanded gene-list of a breast cancer sub-type. Note the spread of expression values in the normal samples.
Also note that ERBB2, GRB7 and LIV-1 define one sub-class, while ESR1 and NAT | define the other sub-class.
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Table 4: Verified markers for some tumor types in the feature sets.

http://www.biomedcentral.com/1471-2105/5/21

Tumor Class

Marker Genes

Breast
CNS
Renal

Pancreas
Ovarian
Prostate

ERBB2, GRB7, NATI, ESRI, GATA3
FABP7, VEGF
IGFBP3, VEGF
DAF, LGALS4, CTSD, MMPI14
MSLN, PAX8
AMACR

ERBB2 and ESR1 are targeted by some of the most effec-
tive treatments for breast cancer. The genes MSLN and
AMACR have been identified as useful markers of Ovarian
and Prostate cancers respectively, and our feature sets are
heavily weighted in favor of these genes. Note that despite
some similarity, many of our markers are quite different
from those in [10]. This may be because of the fact that we
use different data-sets.

A detailed collection of dendograms and feature sets are
present at http://microarray-pubs.stanford.edu/margin

clus/.

Discussion

We have illustrated a procedure for identifying interesting
feature sets of genes to distinguish a tumor class from a set
of normal tissues from large scale systematic gene expres-
sion data sets, obtained by DNA microarrays. This method
has wider applicability in finding feature sets to discrimi-
nate one set of data samples from another. The method
has the advantage of producing feature sets of moderate
size (neither too small nor too large), while at the same
time discriminating the tumor class from all normal
classes. The method involves a novel hierarchical cluster-
ing procedure combined with polytope exploration tech-
niques. The clustering diminishes sensitivity of the results
to noise, while the margin classifier technique gives equal
weightage to discriminating the tumor class from all
normal samples. The method may be especially valuable
in identifying clinically useful sets of diagnostic or thera-
peutic markers for defined groups of cancers.

An interesting research direction which we plan to pursue
is to use the results of the margin classifier to find
combinations of genes whose protein products can be tar-
geted by antibodies. This strategy may be useful in devel-
oping screening tests and drug treatments for cancers.

Paper web-site
http://microarray-pubs.stanford.edu/margin clus

Methods

A Details of the Margin Classifier

For clarity of exposition, let us denote the set of tumor tis-
sues by T, and a set of normal tissues by N. For every tissue
t e Tand n € N, we are given the expression values of the
set G of genes. For every gene, g € G and tissue, x € TU N,
let e,, denote the expression of gene g in tissue . These
expression levels are on the log scale.

Our goal is to find feature sets for the tumor tissue sam-
ples using the following general framework. Suppose for a
subset T' < T, there exists a set of fractional weights w =
{w,|g € G, E,.qw, = 1} such that the minimum weighted
expression of the genes in every t € T', given by E, . =
min, .y Zw, - e, is much larger than the maximum expres-
sion of the weighted expression of the genes in any nor-
mal tissue, given by E,y = max,.y ZW," e, In other
words, the difference (note that we are working in the log
scale) = E,;;-E, s large. This means, for example, that
a drug combination whose activity is directed at the prod-
ucts of the genes by the weighted combination w could
target the tumor tissues more effectively than any normal
tissue, and therefore would, in principle, be effective in
chemotherapy.

The goal is to make the difference of 1., as large as possi-
ble by choosing an appropriate w. We call r. = max, 1,
the effectiveness value for tissues T'. The w which maxi-
mizes rp,, is the feature set of the tumors T". Given t € T,
the goal of finding w can be reduced to a linear program
as follows:

Maximize R
ngcwg &, 2 R*C OO T
ngng e = C 0l N
ZgDng =1
we 2 0 OgdG

The feature set is the set G' = {g|w, > 0}. This linear pro-
gram is precisely the one used for finding separating
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hyperplanes minimizing the I; norm in linear Support
Vector Machines [1]. This contrasts to the non-linear
approach is used in [5] for cancer classification. A similar
linear programming approach is used by [11] to find
small feature sets in gene expression data. We show later
how to construct feature sets of variable sizes and confi-
dence using our methods.

It is possible to construct examples where the best margin
is negative, i.e., the classes overlap, but this never hap-
pened in all of our examples with real gene expression
data. A feature of a linear classifier is that the number of
nonzero weighted genes is at most the number of samples
in the data-set. In our experiments, the number of genes
with non-zero weight is typically much smaller than this
upper bound.

We use a simplex method (available in the CPLEX com-
mercial package) to solve this problem for each candidate
merge. The idea behind the simplex algorithm is to itera-
tively modify the weights using an approach similar to
gradient descent, as long as the objective function
improves. It can be shown that the algorithm converges in
a small number of steps, especially for problems of the
form we discuss, which are called packing linear problems.
The intuition behind the small number of steps is that the
algorithm can easily find a direction in the gene space in
which a large alteration in weights improves the objective
function significantly while maintaining feasibility of the
problem.

Let M(t) be the achieved margin for sample t, M({t, t,})
is the margin for the pair of samples ¢, t, etc. A key fact
here is that merging samples cannot increase the margin

M({t;, 1,}) <min [M (t,), M ()] (1)

This allows us to draw the tree with join heights equal to
the negative margins.

A computationally simpler approximation we use, which
produces the same clustering results is the following:

M({T,, T,}) »min [M (T}), M (T,), min{M (t,, ;), € T},
nLe T} (2)

This says that the margin achieved in joining groups T;, T,
is the minimum margin for each of the two groups, and
all pairs of samples, one in group T, and the other in
group T,. The left hand side of (2) must be less than or
equal the right hand side, and in general this seems to be
a reasonable approximation. It allows us to find the best
probable pair using only quantities that have already been
computed. Note that as long as the clustering results are
the same, the feature sets we find using the simpler

http://www.biomedcentral.com/1471-2105/5/21

approximation would be the same as those found using
the original scheme, and this is what we observe in
practice.

Finding competitors at each join in the tree

The linear program mentioned above has the problem of
reporting a relatively small set of genes. It would miss out
genes which are heavily weighted in some distinct feature
set whose margin is close to the optimal one.

It is therefore desirable to have routines that "search"
around the optimal solution to find other good feature
sets. We present several approaches which find feature sets
of varying sizes, with a concrete confidence measure on
the importance of each set. It is also easy to incorporate
additional constraints, like insisting certain genes are
present to a minimum fraction, in our methods.

The first step in this process is to relax the margin slightly
and define a new polytope where any weight vector is a
"good" weight vector.

Suppose ¢ is the relaxation in the margin. Choosing a
larger value of € would yield a larger set of possible feature
sets to choose from, but the margin obtained from these
would be lower, implying lesser confidence in the set. For
our data-set, € = 0.4 produces feature sets of moderate size
(50 - 100 genes).

For a set of samples T", let M(T") = R. The polytope P, (T")
is defined as:

> cls g = R+C-e OO T

Y gt g < C 0 N
ngcwg =1
we 2 0 0g! G

Our goal now is to find weight vectors in P, (T") with large
number of non-zero dimensions (genes). We outline two
methods below.

Non-Linear programming approach
Our first approach is to solve the following program:

Minimise w v
wOP(T")

Though the objective function is non-linear, it is convex,
and therefore can be optimized using interior point meth-
ods. The CPLEX barrier optimizer can optimize for this
function.
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The advantage of this function is that it "spreads" the
weight over many genes and typically gives a much larger
feature set than the maximum margin feature set.

Minimum overlap method

In this method, we start with a set of genes G' and itera-
tively expand this set by finding extreme points with min-
imum overlap with this set. Given any starting extreme
point with gene set G', consider the following linear
program:

Minimise z wg
guG'
@ OP(T)

This will find a weight vector ;;, whose total weight along

the dimensions G' is as small as possible. Let G" = {g €
Glw,>0}. Weset G' <~ G' U G, and iterate.

We can stop when the objective value stops changing sub-
stantially. This technique quickly finds a large set of
important genes.

This method has an added advantage. Given any feature
set, if we set G' to be this set, the objective value of the
linear program tells us the minimum fraction to which
genes in this set must be present in any weight vector in
the polytope P,(T'). This can be used as a confidence
measure of the feature set.

We tested the algorithms on a group of 3 Breast tumors,
with ¢ set to 0.4. We find the confidence of a feature set
using the program described above. The maximum mar-
gin feature set with 8 genes has confidence (as defined
above) 37%. The non-linear technique produces a larger
feature set of around 30 genes with confidence of 70%,
which is a much larger confidence than the solution pro-
duced by the maximum margin classifier.
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