Skip to main content
. 2013 Oct 7;6:38. doi: 10.1186/1755-8794-6-38

Table 2.

Performance measures of classifiers in different datasets

Dataset (origin, method of analysis) Method Accuracy (%) PPV (%) NPV (%) Sensitivity (%) Specificity (%) Prevalence of FTC in dataset (%)
B (own, microarray)
DLDA classification based on the 8 best genes chosen from 99 preselected ones.*
80
82
78
76
83
50
DLDA classification based on 45 (optimal number) best genes chosen from 99 preselected ones.*
84
85
83
83
85
50
C (own, FFPE qPCR)
5-gene DLDA classification (cut-off 0.5)**
72(95% CI: 60–82)
67(95% CI: 48–82)
76(95% CI: 60–89)
71(95% CI: 52–86)
72(95% CI: 56–85)
44
5-gene DLDA classification (cut-off 0.12)**
70
61
88
90
55
44
D (own, microarray)
5-gene DLDA classifier trained on dataset B, tested on D
73
77
69
71
75
54
E1 (Weber et al. microarray)
5-gene DLDA classifier.**
92
100
86
83
100
50
E2 (Hinsch et al. microarray) 5-gene DLDA classifier.** 83 100 67 75 100 67

Accuracy, proportion of all samples that are correctly classified; PPV, positive predictive value; NPV, negative predictive value; SVM, support vector machines; DLDA, diagonal linear discriminant analysis; CI, confidence interval. *Performance assessed by 10-fold cross-validation. **Performance assessed by leave-one-out cross-validation.