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Abstract
Human epidermal growth factor receptor-2 (HER-2) mediates a number of important cellular
activities, and is up-regulated in a diverse set of cancer cell lines, especially breast cancer.
Accordingly, HER-2 has been regarded as a common drug target in cancer therapy. Antibodies
can serve as ideal candidates for targeted tumor imaging and drug delivery, due to their inherent
affinity and specificity. Advanced by the development of a wide variety of imaging techniques,
antibody-based imaging of HER-2 can allow for early detection and localization of tumors, as well
as monitoring of drug delivery and tissue’s response to drug treatment. In this review article,
antibody-based imaging of HER-2 are summarized and discussed, with an emphasis on the
involved imaging methods.
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INTRODUCTION
The epidermal growth factor (EGF) and EGF receptor (EGFR) are one of the first
discovered pairs of growth factor ligand-receptor, with EGFR later recognized as a member
of a receptor tyrosine kinase family, the human epidermal growth factor receptor (HER)
family [1]. The HER family comprises four structurally related members: EGFR (HER-1 or
erythroblastic leukemia viral oncogene homolog 1 [ErbB1]), HER-2 (ErbB2), HER-3
(ErbB3), and HER-4 (ErbB4) [2, 3]. The structure of every HER family member consists of
an N-terminal extracellular domain (ECD), a single membrane-spanning region and a C-
terminal cytoplasmic domain, among which the ECD acts as a receptor to bind with ligands
[1, 4]. To date, a number of these ligands have been reported, such as EGF, β-cellulin,
amphiregulin, and transforming growth factor-alpha (TNF-α) [2, 3]. Upon binding, the
ligand induces the dimerization of a HER-kinase that either homodimerizes with itself, or
heterodimerizes with other HER family members [1]. As a result of the dimerization, the
HER-kinases undergo conformational changes, which promote the activation of the
cytoplasmic domain with a subsequent phosphorylation leading to various downstream
signaling pathways and cellular events [1].
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Among the HER family, one key member, HER-2, behaves in a unique way since it has no
identified natural ligand yet. HER-2 is thereby activated only through its heterodimerization
with other HER family members that have been pre-activated by their own ligands. For
other HER family members, HER-2 is actually the preferred partner to form heterodimers,
and the HER-2 involved heterodimerization is the most potent signal transduction pathway
among all dimerizations of the HER family [5]. Hence, by mediating complex signaling
pathways, HER-2 plays pivotal roles in cell growth, migration, differentiation and survival
[4, 6–8]. From a genetic perspective, the HER-2 gene was derived from a potent oncogenic
mutant in neuroglioblastomas developed in carcinogen exposed rats, and was originally
termed NEU [9–11]. The gene amplification and protein over-expression of HER-2 can
increase and prolong signals that trigger the transformation of cells, leading to tumorigenesis
and metastasis [4]. The up-regulation of HER-2 is thereby commonly observed in human
cancers, such as breast, ovarian, gastric, and prostate cancer [4, 12–14]. To date, both
HER-2 and its involved signaling pathways have been extensively investigated as targets in
cancer therapy, during which a direct inhibition of these proteins/pathways can block tumor
proliferation. Moreover, the ECD of HER-2 is regarded as an ideal target for tumor-directed
drug delivery [4].

One major strategy for HER-2 targeting is to use monoclonal antibodies (mAbs), among
which trastuzumab was the first Food and Drug Administration (FDA) approved anti-HER-2
antibody [11, 15]. Trastuzumab, also known as Herceptin, binds to the ECD of HER-2 and
induces apoptosis in HER-2 over-expressing cancer cells [4, 11]. Another humanized anti-
HER-2 mAb is pertuzumab, which binds to a different subdomain of HER-2’s ECD and
thereby sterically inhibits the dimerization of HER-2 with itself and other HER family
members [16]. Clinically, pertuzumab displayed promising therapeutic activities and
tolerable toxicities [17]. A synergy of trastuzumab and pertuzumab also resulted in an
enhanced antitumor effect in vivo [18, 19]. Besides antibodies, another strategy is to use
tyrosine kinase inhibitors to target the intracellular domain of HER-2, among which
lapatinib has been well characterized, and is currently in clinical trials [20]. Alternatively,
some other protein inhibitors [21, 22], as well as agents to knock out HER-2 mRNA [23,
24], have also been reported.

Whereas an intensive attention has been paid to HER-2 targeted therapy, increasing interests
also arise in HER-2 based molecular imaging. The effectiveness of HER-2 targeted therapy
highly depends on accurate evaluation of its expression level in tumors. It is recommended
by the American Society of Clinical Oncology (ASCO) to characterize HER-2 levels on
primary breast cancer at the time of either diagnosis or recurrence [25]. By using contrast
agents or probes, noninvasive molecular imaging techniques allow for direct visualization of
the targeting process including bio-distribution and pharmacokinetics, as well as
spatiotemporal monitoring of cellular activities/responses in the targeted region. As
mentioned above, antibodies against HER-2 are the mainstream of the developed
therapeutics for treating HER-2 over-expressing cancer. For HER-2 detection and imaging,
they are also the most commonly used agents [11]. Antibody-based imaging not only
renders more insights into the HER-2 targeting process, but also identifies and localizes the
HER-2 expressing tumors, which facilitates the subsequent drug delivery and the follow-up
evaluation of therapeutic results. Herein, we systematically summarize and discuss the
applications of antibodies for diagnostic imaging of HER-2, using a variety of imaging
techniques. Several practical examples including clinical applications are also highlighted
for each imaging approach.
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ANTIBODIES AS TARGETING AGENTS
Antibodies, also known as immunoglobulins, have become desirable molecules for use as
research tools, diagnostic agents, and therapeutic drugs. There are five isotypes of human
antibodies (i.e. IgA, IgD, IgE, IgG, and IgM), among which IgG is the most abundant and
versatile type that constitutes 75 percent of serum immunoglobulins [26, 27]. IgG is a Y-
shaped, multi-domain protein composed of two Fab arms and one Fc stem [28]. The antigen-
binding sites are located on the tips of the Fab arms, while the Fc domain recruits effector
functions and maintains long serum half-lives of the antibody, by interacting with a diverse
set of receptors [29]. The introduction of the hybridoma technology by Kohlerand Milstein
in 1975 [30] set the starting point of the antibody industry. Subsequently, other technical
invention to generate humanized monoclonal antibody (mAb) and chimeric mAb further
resolved the issues in immunogenicity and low efficacy [31, 32]. In many applications of
antibodies such as imaging, the Fc-mediated effects are not necessary and may even
compromise certain function/properties of the antibody [29]. Advanced by recombinant
DNA technology and protein engineering, the Fc domain and associated effects can be
removed to render monovalent and bivalent mAb fragments and engineered variants, such as
Fab, F(ab′), single chain Fv (scFv), minibodies, diabodies, affibodies, nanobodies and
anticalins [28, 33–35]. Among these engineered fragments, affibody is the most commonly
used in imaging, which is a small 58-amino acid Z-domain scaffold derived from the IgG-
binding domain of staphylococcal protein A [36]. The binding surface of affibody has a
randomized sequence of 13 amino acids, which can be screened to generate a specific
sequence recognizing the desired target [34, 37]. For HER-2 targeting, the affibody
molecule His6-ZHER-2/neu:4 was shown to bind the ECD of HER-2 with nanomolar affinity
[38].

To date, development of antibodies for diagnostic and therapeutic applications has become
the fastest growing area in biopharmaceutical research, with over 100 mAbs currently in
clinical trials [31] and more than 20 already approved for clinical use [39]. Besides being
therapeutic agents, antibodies also play pivotal roles as targeting ligands to direct the
delivery of chemotherapeutics and imaging contrast agents to the tissue of interest.
Compared to traditional drugs, antibody-drug conjugates (ADCs) control the bio-distribution
of the drugs that are cytotoxic in most cases, thereby sparing their contacts from normal
tissues and providing a high intratumoral drug concentration [40]. Antibody specificity is
crucial to the success of antibody directed drug delivery, where the targeted antigen should
be substantially up-regulated on tumor cells but not on normal tissue cells [40]. This
specificity allows the use of highly potent drugs that would otherwise be too toxic for
healthy cells. Additionally, the stability of the linker (which ensures drug release only after
targeting) and the conjugation method (which affects the drug loading stoichiometry and
homogeneity) are both important factors to be considered [40]. Currently, there are three
common methods for conjugation of mAbs: alkylation of reduced inter-chain disulfides,
alkylation of genetically engineered cysteine, and acylation of lysine, among which the
cysteine conjugation provides a greater degree of uniformity by allowing site-specific
introduction of cysteines into the mAb and subsequent attachment of drugs at the defined
stoichiometry [41–43].

There are several challenges in antibody-based imaging of HER-2. An efficacious delivery
and high contrast imaging is often accompanied by antibodies’ high avidity to the target and
their relatively long retention time in the target region. In reality, however, a large fraction
of antibodies rapidly detach from their binding sites, especially under the high shear stress of
physiological relevance. To generate antibodies with the desired high affinity, phage display
technique was adopted for customized engineering of humanized antibodies [44]. Another
issue besides the affinity is the formidable barriers imposed by solid tumors to resist the
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penetration of drugs or delivery agents, which largely diminishes the values of in vitro
experiments [45]. It was also shown that once nanoparticles or microbubbles were
conjugated to antibodies, the combined sizes of the resulting conjugates could slow down
the delivery speed [45]. Despite these drawbacks, antibody-based imaging of HER-2
represents one of the most promising strategies for clinical management of breast cancer,
which has recently attracted intensive research interests.

RADIOIMMUNOSCINTIGRAPHY (RIS)
Radiolabeling of antibodies was initially used to circumvent several problems encountered
in the therapeutic development of antibody conjugated chemotherapeutics or toxins. To be
efficacious, it is required that every malignant cell expresses the target antigen, which is
usually not the case in practice [27]. However, drugs may be susceptible to degradation in
endocytosis during drug delivery, and toxins can easily induce immunogenicity.
Furthermore, a variable percentage of tumor cells can develop multidrug resistance.
Compared to these traditional approaches, radioisotopes bear certain advantages in which
tumor cells cannot develop resistance against irradiation and the particles emitted by
radionuclides can kill adjacent tumor cells [27]. Whereas the volume of drugs to be
conjugated may affect the antibodies’ transportation and delivery, an alternative conjugation
with small sized radioisotope can achieve a high specificity with about 20: 1 tumor-to-
normal-tissue ratio [27]. Therefore, radioimmunotheraphy (RIT) has become a common
approach to complement surgery and chemotherapy, although its efficacy is still limited in
certain cancer types such as medullary thyroid carcinoma (MTC) [29].

Another application of isotopes is radioimmunoscintigraphy (RIS), which can determine the
extent of disease, monitor the effect of therapy, and detect tumor recurrence [46]. In a
typical procedure, a radiolabeled antibody is injected into patients intravenously, and the
gamma ray emission from the radiolabeled antibody can be captured by gamma cameras to
generate two-dimensional images. RIS detects antigens at a cellular level and has certain
advantages in sensitivity over other existing imaging techniques, such as magnetic
resonance imaging (MRI), computerized tomography (CT), and ultrasound (US) [46, 47],
which primarily detect general morphological changes and are thereby fundamentally
different from RIS in the underlying mechanism [48]. RIS is also different from other
imaging techniques such as positron emission tomography (PET), single-photon emission
computed tomography (SPECT), and X-ray. In the case of diagnostic X-ray, an external
radiation was employed to pass through the body for image acquisition. For PET and
SPECT, they generate three-dimensional images.

The common radionuclides used in RIT and RIS are 67Cu, 177Lu, 186Re, 188Re, 125I, 111In,
and 99mTc [27, 49]. In a pilot study in mouse xenograft models, 125I-labeled 741F8-2 (scFv
′)2 homodimer displayed higher specificity to human SKOV-3 tumors than other antibody
fragments, resulting in an enhanced tumor contrast in sagittal section autoradiography [50].
Subsequently, trastuzumab Fab was radiolabeled with 111In, which specifically localized
HER-2-positive BT-474 human breast cancer xenograft in athymic mice [51]. Around 24
hours after administration of the radiolabeled antibody, tumors as small as 3 ~ 5 mm in
diameter could be detected by imaging. A much improved HER-2 imaging has been
achieved with affibodies, such as 125I-labeled (ZHER-2:4)2 [52] , 111In-labeled
ZHER-2:342-pep2 [53] or ABY-025 [54], and 99mTc-labeled ZHER-2:342 [55] (Fig. (1)), which
all afforded high-contrast gamma camera images. Following the success in animal
models, 111In-labeled trastuzumab was administered to patients with HER-2 expressing
breast cancer [56, 57]. Clinical imaging demonstrated an accurate detection of HER-2-
positive tumors. It is noteworthy that this trastuzumab-based tracer did not induce undesired
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immune response in the body, and exhibited a satisfactory biodistribution in tumors and
normal organs.

POSITRON EMISSION TOMOGRAPHY (PET)
PET has been widely used in medical diagnostics and biochemical research including
oncology, neurology, and cardiology [58–63]. The radiolabeled agents, using positron
emitters, are intravenously injected to the body, circulated, and collectively retained in
tissues according to their biological properties [64]. The positron-electron annihilation
generates a pair of 511 keV gamma photons in opposite directions, which can escape from
the body and be detected and reconstructed to generate three-dimensional images. The signal
intensity of every voxel is proportional to the amount of radioactive agents, thereby allowing
PET to quantitatively map the spatial dispersion of radioactive agents all over the body.
When serial PET images over a time course are collected, the time-dependent spatial
distribution of radiotracers can be obtained, thereby allowing the monitoring and
characterization of biological phenomena of interest [64].

Two common approaches are adopted for immunoPET imaging [65]. In the first approach,
PET probes are constructed based on fast kinetic antibodies, which can be applied for fast
imaging at low radiation levels, to confirm the target presence and scout the proper person
for following-up therapies [65, 66]. Smaller antibody fragments (scFv, diabodies,
minibodies, etc) are routinely used in this approach, which retain the binding specificity of
the parent antibodies, but have different pharmacokinetic characteristics such as quicker
clearance from the body, and relatively low tumor uptake [67]. In the second approach,
radiolabeled antibodies are administered for imaging in a pre- or early course of therapies, to
gain a sight of the targeting efficiency, the in vivo behavior of antibodies, as well as the
therapeutic responses [65]. In this regard, intact antibodies are well suited materials in terms
of their long residence in circulation (1–3 weeks), which allows for a specific and prominent
accumulation of radiotracers in tumor cells, as well as long intervals between
administrations [67]. For both approaches, the decay half-life of the used radionuclides
should match the circulation half-life of the antibodies to be conjugated to. Hence,
radioisotopes 11C, 68Ga, 18F, 64Cu, 86Y, and 76Br are commonly used for the first approach,
while the long-lived positron emitters such as 89Zr or 124I are preferentially employed for
the second approach [66–69].

In an early study, a minibody derived from trastuzumab was radiolabeled and shown by
quantitative microPET to preferentially localize in the kidneys, thereby not ideal as an
imaging agent [70]. By manipulating the size and format, a slightly larger antibody
fragment, the 105 kDa scFv-Fc was designed and demonstrated to have an increased tumor
uptake and a reduced kidney uptake. Compared to the whole antibody molecule, this scFv-
Fc fragment was still tailored in structure to possess a fast clearance in blood and normal
tissues [70]. Subsequently, several trastuzumab-based antibodies or affibodies were labeled
with radioisotopes, especially those long-lived ones, for PET imaging of HER-2 expressing
human tumor xenografts [71–74]. Among these reports, affibody targeting provided better
imaging contrast than that of a radiolabeled intact antibody, due to its better radioactivity
retention and tumor specificity [74]. It is also notable that with PET imaging of 89Zr-
trastuzumab, HER-2 down-regulation can be monitored during the tumor treatment by a heat
shock protein 90 (HSP90) inhibitor [75] in a mouse model. Hence, immunoPET imaging of
HER-2 can monitor the therapeutic responses of HER-2 positive tumors [73] (Fig. (2A,B)).

Using other radiolabeled HER-2 targeting antibodies, one can independently measure the
HER-2 levels affected by trastuzumab treatment. For example, the C6.5 diabody can
selectively target ECD of HER-2, in a region that is distinct from that bound by trastuzumab
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[76]. The 124I-labeled C6.5 diabody was thus shown to be specifically taken up by several
HER-2-positive tumor cell lines, and was thereby employed to monitor HER-2 status and to
evaluate the results of trastuzumab treatment [77, 78].

Clinically, 89Zr-trastuzumab was stable for up to seven days in human serum, and had a
minimal dose of 100 μg for optimal PET imaging [79]. 89Zr-trastuzumab based PET images
were demonstrated to result in an excellent spatial resolution and a good signal-to-noise
ratio, with tumor uptake observed in HER-2-positive lesions such as metastatic liver, lung,
bone and brain (Fig. (2C,D)) [80]. The radiotracer uptake can also be quantified via PET
scanning [79, 80], which may help the definition of optimal dosage for patient-specific
trastuzumab therapy regimens [81]. On the other hand, probes at low doses will be subjected
to rapid hepatic clearance, presumably due to high levels of circulating HER-2 ECD in
plasma [80].

SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT)
SPECT differs from PET in the method used to define the angle of incidence, in which the
gamma rays are emitted as single photons and only those in the prescribed direction can be
received by the detector [82, 83]. A variety of radioisotopes such as 99mTc, 125I, and 131I
can be used for SPECT [82, 84–88], which does not require complicated facilities such as
cyclotron for PET imaging. Since most of the incident photons are discarded by detectors,
SPECT has a much lower sensitivity (by 1 to 2 orders of magnitude) than PET.

Several 99mTc- or 111In-labeled murine mAbs have been approved by the FDA for use in
SPECT imaging [48]. For instance, capromab pendetide labeled by 111In is a radioactive
mAb against prostate-specific membrane antigen. Coupled with improved techniques in
anatomic localization, SPECT via this radiolabeled mAb accurately localized soft tissue
metastasis in prostate cancer patients [89]. Although there is few clinical trials for SPECT
imaging using HER-2 targeting antibodies, related studies using SPECT/CT have been
reported in mouse xenografts [90, 91]. After screening a set of nanobodies, 2Rs15d was
selected, which is stable, specific, and does not compete with trastuzumab or pertuzumab in
HER-2 targeting. As a result, 99mTc-labeled 2Rs15d exhibited high uptake in HER-2
positive mouse tumor models, with fast blood clearance, high tumor-to-blood/muscle ratios,
and low background in normal tissues [90] (Fig. (3)). Similar studies were carried out with
an 111In-labeled albumin-binding Fab, AB.Fab4D5, which was derived from trastuzumab
and exhibited rapid targeting, excellent tumor accumulation and retention [91]. With respect
to individual SPECT or CT images, the fused images were advantageous in assessing
potential bone metastases and differentiating malignant from benign bone lesions [92].

MAGNETIC RESONANCE IMAGING (MRI)
MRI detects nuclei of atoms inside the body based on their nuclear magnetic resonance. The
signal of MRI depends on the longitudinal (T1) and transverse (T2) relaxation times of
protons mostly from tissue water, whose relaxation differences result in different MRI
contrast [93]. The relaxation time of tissue water is affected by its physiological
environment, which only happens at a late stage of physiological process, and is not specific
[93]. To achieve an early and specific detection, contrast agents that decrease the
longitudinal and transverse relaxation time can be intravenously injected to enhance the
appearance of blood vessels and tumors [93]. The relaxivity of these agents, r1 or r2, is
defined based on their ability to decrease T1 or T2 relaxation time, respectively. MRI
contrast agents are classified into two categories based on their r2/r1 ratios. The ones with a
high r2/r1 ratio, such as iron oxide particles, can result in a negative contrast or dark spots in
T2-weighted images; while the ones with a low r2/r1 ratio, such as complexes of Gd3+, or
Mn2+, generate a positive contrast or bright spot in T1-weighted images [93].
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Although MRI has a high spatial resolution [94], it has a low sensitivity that needs to be
improved by contrast agents of a high relaxivity [93]. Gadolinium chelates were used in
early studies where they were conjugated to antibodies as exogenous contrast agents [95]
(Fig. (4)). However, Gd3+ suffers from low relaxivity and biocompatibility, which makes the
alternative superparamagnetic iron oxide (SPIO) particles more attractive in MRI
applications [94]. Other than the advantage in relaxivity, SPIO also improves the sensitivity
due to its inherent composition of a great number of iron atoms [94]. These irons are
biocompatible and can be metabolized in vivo. In addition, SPIO particles possess easily
modifiable surface coating, size-dependent magnetic property for derivatization, and optical/
electronic active spectra for facile detection [94, 96]. SPIO nanoparticles are commonly
synthesized via precipitation-based methods, either by co-precipitation or by the reverse
micelle technique [97, 98]. To be suitable for passage through capillary walls and micro-
distribution within the tumor tissue, the size of these particles should be below 50 nm [99].
After synthesis, the particles can be further coated with a PEG-modified, phospholipid
micelle shell [98] or an amphiphilic lipid bilayer [93], both of which can improve water
solubility, stability, and circulation retention time of the particle, and provide a versatile
platform for conjugation of various functional moieties including antibodies [93, 98, 99].
Based on the applications and probe design, MRI contrast agents can be broadly divided into
four classes: non-specific contrast agents, targeted contrast agents incorporating ligands for
specific molecular targeting, smart contrast agents only activated by certain events such as
enzymatic cleavage, and cell labeling contrast agents comprising ligands for cellular
targeting [93]. In this review article, we will focus on antibody-based imaging which mainly
involves targeted contrast agents and cell labeling contrast agents.

Using antibodies as the targeting ligands, SPIO-based noninvasive MRI imaging has been
widely studied in oncology [100]. In several early reports, anti-HER-2 antibodies were
conjugated to iron oxide containing nanoparticles and showed effective in vitro imaging of
breast cancer cells via T2-weighted MRI [101–103]. Through a process that involved
systematic evaluation of the magnetic spin, size and type of spinel metal ferrites, artificially
engineered magnetic nanoprobes (Mn-doped magnetism-engineered iron oxide; MnMEIO)
linked to trastuzumab were shown to be able to visualize small tumors implanted in a mouse
while trastuzumab conjugated cross-linked iron oxide (CLIO) does not [104]. Recently,
trastuzumab-conjugated iron oxide nanoparticles were successfully utilized in mice bearing
breast cancer tumor, where the tumor site was detected by T2-weighted MRI (Fig. (4)) [105].

Besides intact antibodies, anti-HER-2 affibody was also labeled with SPIO, and
demonstrated to be a feasible, specific MRI contrast agent which accumulated to human
ovarian SKOV-3 tumor lesions in an in vivo model, and can be detected by MRI at around
30 min after probe injection [106]. Recently, a protein was designed to contain a Gd3+

binding site, which exhibited a significantly improved T1 relaxivity than other traditional
MRI contrast agents [107]. Once conjugated with an anti-HER-2 affibody, the probe
demonstrated a significant improvement in detecting HER-2 positive human cell lines both
in vitro and in mouse xenograft models [107].

Although many clinical trials in patients with HER-2 expressing breast cancer involve MRI
as the imaging/diagnostic tool [108, 109], there is no reported clinical use of a MRI contrast
agent that is comprised of an anti-HER-2 antibody. Nonetheless, with the rapid development
of antibody-based contrast agents, the clinical application is feasible and expected for
antibody-based MRI of HER-2.
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NEAR-INFRARED FLUORESCENCE (NIRF) IMAGING
Optical imaging has been a vibrant research area over the last decade, which is suitable for
preclinical research in small animal models and a variety of clinical scenarios [110–115].
Photon penetration through living tissues is subjected to attenuation by tissue absorption and
scattering. Given that near-infrared (NIR, 700–900 nm) light is lowly absorbed in most
tissue chromophores such as hemoglobins, NIR light can penetrate several centimeters of
tissue and can thereby be clinically useful [116, 117]. In addition, significant auto-
fluorescence of tissue severely compromises the signal to background ratio of optical
imaging using visible light, which is, however, dramatically reduced in the NIR region
[117].

Much progress has been made in recent years to use noninvasive NIRF imaging in
diagnostics and image-guided drug delivery, even though the detection of deep and small
lesions remains a challenge [116]. Commonly used contrast agents are organic small
molecules such as indocyanine green (ICG, a NIR dye) which has been FDA-approved,
IRDye78 (a tetra-sulfonated heptamethine indocyanine fluorophore), cyanine dyes (e.g. Cy5,
Cy5.5, Cy7, etc), among others [116–118]. Antibodies can be readily conjugated to these
organic fluorophores for tumor imaging. For example, Cy7-conjugated trastuzumab was
mixed with other fluorescently labeled mAbs and injected to tumor-bearing mice [119].
With multi-filter spectrally resolved fluorescence imaging at 24 h after injection of the
antibody cocktail, different tumor types in mice can be distinguished by separate
fluorescence from their bound antibodies, including the HER-2 positive NIH3T3 tumors.
Several other fluorophores, such as Cy5.5 [120, 121], AF750 [121], RhodG dye [122], ICG
dye [123], IRDye 800CW [124] (Fig. (5)), and rhodamine green [125] have all been
conjugated to trastuzumab for NIRF imaging of HER-2 in tumor-bearing mice. Among
these, several studies further demonstrated NIRF imaging as a useful tool for monitoring the
effects of trastuzumab therapy [19, 121], or to guide the surgical removal of tumor tissues
[125]. Recently, with the use of mathematical modeling, Alexa Fluor®750 dye labeled
ZHER-2:342 based affibody was demonstrated to be useful for quantitative assessment of
HER-2 expression in vivo [126].

Conventional organic fluorophores suffer from certain limitations, such as their untunable
excitation and emission wavelengths, low quantum yields in aqueous solutions,
photobleaching, and limited number of sites for conjugation of targeting ligands, all of
which undermine the feasibility and sensitivity of NIRF imaging with fluorescent dyes
[116]. Alternatively, nanomaterials such as quantum dot (QD), carbon nanotubes, and gold
nanoshells, have been investigated as inorganic fluorophores [127–129]. Among them, QD
is the most intensively studied due to its unique optical properties including broadband
absorption, high quantum yield, and low photobleaching [117, 130]. In addition to the
advantages in optics, as a nanoparticle, QD also possesses multi-valency for drug loading as
well as the enhanced permeation and retention (EPR) effect that can potentially facilitate its
use for drug delivery. A biocompatibility study of QDs and trastuzumab-conjugated QDs in
rats revealed that antibody conjugation can significantly control the toxicity of QDs and
make them suitable for breast cancer imaging [129]. To date, advanced in vivo experiments
using QDs are still lacking [131], with most of the reported HER-2 imaging conducted at the
cellular level. Among a number of reports using anti-HER-2 antibody labeled QDs [132–
135], one study clearly demonstrated that QD-based immunofluorescence imaging was more
sensitive and gave stronger signals than traditional techniques [133]. Therefore, anti-HER-2
antibody modified QDs are considered to be promising agents for delineating the
heterogeneity of HER-2-positive tumors.
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PHOTOACOUSTIC TOMOGRAPHY (PAT)
Optical imaging techniques face challenges in imaging deep tissue, since biological tissues
are always optically scattering, where most photons are unable to penetrate deeper than the
optical transport mean free path (~ 1 mm) [136]. The spatial resolution of these imaging
techniques is thereby largely impeded by the depth [137]. In addition to the aforementioned
NIRF imaging, many other imaging approaches with kindles beyond optics are currently
under development. Given that ultrasound scattering in soft tissues is two to three orders of
magnitude weaker, it is believed that a better resolution can be achieved with ultrasound-
based imaging, even at a depth greater than the optical transport mean free path [137].
Ultrasonography is an ultrasound-based medical imaging technique that relies on the
acquisition, analysis, and display of acoustic signals generated by reflection or backscatter
of sound at a frequency higher than the audible range of humans [138]. Ultrasound imaging
without contrast agents suffers from weak contrast in its detection of mechanical properties
of tissues, thereby much less sensitive than other imaging approaches [137]. Therefore,
contrast agents such as microbubbles and polymeric particles have to be used in any cases
for ultrasonography [137]. Recently, PAT was developed which overcame these limits by
combining the strengths of optical imaging and ultrasound to achieve a good optical contrast
and a high ultrasonic resolution in one single system for high-resolution imaging in vivo
[136].

PAT is based on the photoacoustic effect, in which the tissue or organ generates acoustic
waves after the absorption of electromagnetic energy such as radio-frequency or optical
waves [136, 137]. The tissue is usually irradiated by a short pulsed electromagnetic wave/
light/laser beam, upon the absorption of which acoustic transient pressure is raised as the
initial source of acoustic waves, together with thermoelastic expansion. The photoacoustic
waves reach the tissue surface with different time delays, and are recorded by ultrasonic
transducers to map the spatial distribution of acoustic sources. The tunable ultrasonic
bandwidth in PAT determines the imaging depth and the spatial resolution in the tissue, with
a 10 MHz bandwidth for a 0.1 mm resolution [136, 137]. Since many diseases do not
possess enough endogenous photoacoustic contrast, exogenous contrast agents are required
to target the specific diseased regions for precise and enhanced PAT images.

To date, a number of nanoparticles have been described as contrast agents for PAT, such as
iron oxide and gold-couple core-shell nanoparticles [139], gold nanorods [140, 141], and
single-walled carbon nanotubes (SWNT) [142]. With antibody-conjugated nanoparticles, the
functional and molecular activity of tumor cells and diseased tissues can be visualized by
PAT. Gold nanoparticles conjugated with trastuzumab were demonstrated to selectively
target human SKBR-3 breast cancer cells in a gelatin phantom resembling the breast tissue,
where 1×109 nanoparticles were detected at a depth of 6 cm [143]. Anti-HER-2 antibodies
were also conjugated to gold nanorods [144], nanoparticles made by biodegradable polyactic
acid [145], or embedded with ICG dye [146] to investigate their capability to target breast
cancer and prostate cancer cells in vitro with a high contrast and a high efficiency [146].
HER-2-targeted PAT imaging using gold nanorods was also conducted in the OECM1
tumor-bearing mouse, where the photoacoustic intensity within the tumor region raised to 3
dB higher than the pre-injection level, at around 30 min after injection (Fig. (6)) [147].

MULTIMODALITY IMAGING
Each imaging modality discussed above possesses both advantages and disadvantages, in
terms of the physical characteristics and the detection of the signals. Multimodality imaging
can potentially combine the advantages of these modalities to overcome their respective
disadvantages. For instance, optical imaging provides a direct, fast, low-cost, and real-time
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screening for surface lesions. However, it suffers from a limited sensitivity in deep tissue
and is not apt for quantitative and tomographic imaging. On the other hand, nuclear imaging
is superior in deep tissue sensitivity and quantitative imaging, yet it can be at a higher cost
and requires a more restricted target-specificity due to the always-on characteristics of
ionizing radiation [148, 149].

Radiolabeled anti-HER-2 antibodies or antibody fragments have been employed in nuclear
imaging, and the resulting images were fused with X-ray CT [1, 11]. The C6.5 diabody,
after being labeled with radioiodine, exhibited a time-dependent HER-2-positive tumor
targeting [77], and was used effectively with PET/CT to evaluate HER-2 levels in response
to HER-2-directed therapeutic treatments [78]. Another example of dual-modality imaging
is with combined SPECT/CT, which has been described previously. The fused SPECT/CT
affords a clearer visualization and localization of radiotracers in mouse models, thereby
facilitating the evaluation of their bio-distributions and specificity of tumor uptake [90, 91,
150, 151]. Besides CT, other optical imaging approaches have been conducted
simultaneously with PET imaging, such as NIRF imaging. In one report, PET was used to
verify the detection results of NIRF imaging, in which two antibody-based contrast agents
for PET and NIRF imaging purposes were prepared accordingly [124]. Other than optical
imaging, anti-HER-2 antibody-based PET was sometimes co-performed with MRI. The
results of these two imaging approaches were cross-validated with each other, to confirm the
position of radiolabeled antibody in vivo [80, 152]. Clinically, fusion images from PET/MRI
were reported to facilitate the identification of previously undetected lesions and metastasis
in patients [80].

Compared to contrast agents separately prepared for more than one modality, the
development of a single contrast agent for multimodality imaging can allow for a better
synchronized scan, and can minimize the errors/differences caused by different agents.
Given the inherent multi-valency, nanoparticles are ideal platforms for multimodality
imaging. The anti-HER-2 antibody coated water-soluble FePt nanoparticles were
demonstrated to be biocompatible in mouse models and were applicable to CT/MRI imaging
[153]. Other iron oxide nanoparticles were either labeled with anti-HER-2 antibodies pre-
conjugated by fluorophores [154], or coated simultaneously with both fluorophores and
HER-2 antibodies (Fig. (7)) [155], for both NIRF and MRI imaging in tumor-bearing mice.
In addition, a streptavidin nanoparticle was reported to be modified simultaneously by
biotinylated trastuzumab, Cy5.5 fluorophore, and a 111In labeled chelator, which collectively
allowed for fluorescence and SPECT imaging in mice bearing HER-2-positive tumors [149].
Other than nanoparticles, anti-HER-2 antibodies can also be utilized to carry both
radionuclides and fluorescent dyes for combined RIS/NIRF imaging [148, 156], or
combined PET/NIRF imaging [157].

CONCLUSION
We have summarized several essential imaging techniques in antibody-based imaging of
HER-2, among which the most sensitive techniques appear to be radionuclide-based. One
concern of radionuclide-based imaging is its potential radio-hazard that may cause adverse
effects. Therefore, alternative imaging techniques are emerging, such as PAT that can
combine the advantages of ultrasound and optical fluorescence. Other than these single
modality imaging approaches, multimodality imaging has also attracted intensive research
interests which combine the advantages and circumvent the disadvantages of each single
approach. Due to the limited endogenous contrast, most of these imaging techniques rely on
exogenous contrast agents to achieve the desired spatial resolution and contrast. Therefore,
the development of antibody-based contrast agents remains a promising direction in image-
guided diagnostics and therapy.
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Antibody-based imaging of HER-2, especially quantitative imaging, is highly valuable at
several stages of pharmaceutical development and therapeutic intervention. Preclinical
imaging studies in animal models can reveal the efficiency of antibody drugs in tumor
targeting and therapy. Clinical imaging in patients can be employed to determine the optimal
antibody dosing for tumor targeting, to assess the toxicity based on nonspecific uptake in
normal organs, and to reveal inter-patient variations in pharmacokinetics and
pharmacodynamics. Importantly, biopsy of tumors is traditionally used to confirm antigen
expression level and to select patients for HER-2 targeted therapy, which may not represent
an overall in vivo HER-2 expression statussince tumors are highly heterogeneous and in
many cases hardly accessible. Antibody-based imaging, in this regard, may have unique
values for patient selection due to its noninvasive, quantitative, time-sensitive, and whole-
body nature for the assessment of both tumors and normal tissues.

Currently, many clinical trials are ongoing for antibody-based imaging of HER-2, most of
which make use of the FDA-approved trastuzumab (Table 1). It is notable that some clinical
trials are already starting to use HER-2 imaging to evaluate the therapeutic effects of small
molecule or antibody-based anticancer drugs. Among all available imaging techniques, PET
appears to be the most useful/used in clinical trials for HER-2 imaging, presumably due to
its excellent sensitivity and good imaging quality. Moreover, this diverse set of imaging
techniques may be employed in future clinical studies, in the form of multimodality
imaging, to complement with each other for validation purposes, and also for improved
imaging sensitivity and resolution. Taken together, antibody-based HER-2 imaging has
moved into the clinic, which is expected to make a significant impact in clinical patient
management and personalized medicine in the near future.
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Fig. (1).
Radioimmunoscintigraphy (RIS) of HER-2-positive SKOV-3 tumor-bearing mice
with 99mTc-labeled ZHER-2:342 affibody. (A) At 1 h and 2 h post-injection (pi), tumors were
visualized on the right hind legs. (B) A better image contrast was obtained at 5 h pi. As a
negative control, a pre-injected dose of excess unlabeled affibody blocked tracer uptake in
the tumor. Adapted from [55].

Wang et al. Page 20

Curr Mol Med. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. (2).
PET imaging of HER-2 expression with 89Zr-trastuzumab. Serial transverse and coronal
PET images of a mouse administered with 89Zr-trastuzumab before (A) and after (B) three
dosages of anticancer drug (HSP90 inhibitor) NVP-AUY922 are shown here. Arrows
indicate the HER-2 positive tumors. (C) 89Zr-trastuzumab PET scans of a patient already on
trastuzumab treatment at different time points post-injection revealed an increase over time
of the tumor-to-nontumor ratio of tracer uptake. Arrow indicates 89Zr_trastuzumab uptake in
the only lesion. (D) 89Zr-trastuzumab PET of a patient with liver and bone metastases at 5
days post-injection. A number of lesions are indicated by arrows. Adapted from [73, 80].
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Fig. (3).
Fused SPECT/CT images (transverse, coronal and sagittal views) of mice with HER-2
positive SKOV3 tumor. Images were obtained at 1 h after injection of 99mTc-labeled HER-2
targeting nanobody (2Rs15d) or a control nanobody. Adapted from [90].
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Fig. (4).
T2-weighted MRI images (Top: grayscale; Bottom: color-map) of tumor-bearing mice
before and at 1 h after injection of trastuzumab-conjugated nanoparticles. The mice were
implanted with both HER-2 positive SKBR-3 and HER-2 negative KB tumors. Adapted
from [105].
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Fig. (5).
Dualmodality imaging of HER-2 in subcutaneous SKBR-3 tumor-bearing mice. (A) NIRF
imaging with IRDye800CW-labeled trastuzumab (sagittal view). (B) PET imaging
with 89Zr-trastuzumab (coronal view). (C) Images of mouse bearing human gastric cancer
KATO-III intraperitoneal tumor captured by intraoperative camera. IRDye800CW-labeled
trastuzumab was administered to mice on a diet that minimizes autofluorescence in the
peritoneum. NIRF imaging was taken on day 4 after injection. White arrows indicate the
tumors, which were also shown in green in the overlay of color picture and a NIRF image.
Adapted from [124].
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Fig. (6).
(A) In vivo photoacoustic images of OECM1 tumor before and after injection of
trastuzumab-conjugated gold nanorods. Eclipsed dashed circles indicate the tumor regions.
(B) The time-dependent image signal intensity of the tumor region. Adapted from [147].
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Fig. (7).
Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo with both
NIRF imaging and MRI. Adapted from [155].
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Table 1

Current clinical studies of antibody-based imaging of HER-2 (Information based on www.clinicaltrials.gov).

Clinical Trial Number Radiolabeled antibody Imaging technique Treatment Status

NCT01445054 111In-Trastuzumab RIS Phase I

NCT00605397 64Cu-Trastuzumab PET Pilot Trial

NCT00613847 68Ga-F(ab′)2-Trastuzumab PET

NCT01081600 89Zr-Trastuzumab PET AUY922 Phase I/II

NCT01420146 89Zr-Trastuzumab PET/CT Phase I

NCT01565200 89Zr-Trastuzumab PET/CT T-DM1 Phase II

NCT01216033 111In-ABY-025 SPECT Phase I/II

NCT00474578 111In-Trastuzumab RIS/SPECT Phase I
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