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Response to Lee et al.:
SNP-Based Heritability
Analysis with Dense Data
To the Editor: In Speed et al.,1 we identified two potential

issues when performing SNP-based heritability estimation:
(1) estimates of h2 can be biased when the tagging of causal

variants differs from that of the SNPs used for calculating

the genomic-relationship matrix (GRM), and (2) the accu-

racy of h2 estimates depends on how closely the assumed

relationship between a causal variant’s minor allele fre-

quency (MAF) and effect size matches the true relationship

(this relationship can be modeled with a scale parameter s,

where the standard assumption is s ¼ �1). To resolve the
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Table 1. Performance of Standard and MAF-Stratified Versions of
GCTA and LDAK

Architecture GCTA LDAK MAF-GCTA MAF-LDAK

Causal SNPs Picked at Random

Architecture A
(s ¼ 1)

0.50 (0.05) 0.51 (0.08) 0.50 (0.05) 0.51 (0.08)

Architecture B
(s ¼ 0)

0.52 (0.04) 0.50 (0.07) 0.50 (0.04) 0.50 (0.07)

70% Causal SNPs with MAF < 0.1

Architecture C
(s ¼ 1)

0.47 (0.04) 0.51 (0.06) 0.50 (0.04) 0.51 (0.06)

Architecture D
(s ¼ 0)

0.52 (0.05) 0.53 (0.07) 0.52 (0.05) 0.53 (0.07)

All Causal SNPs with MAF < 0.1

Architecture E
(s ¼ 1)

0.45 (0.05) 0.51 (0.08) 0.52 (0.04) 0.53 (0.07)

Architecture F
(s ¼ 0)

0.45 (0.04) 0.52 (0.06) 0.51 (0.03) 0.53 (0.05)

Well-Tagged Causal SNPs

Architecture G
(s ¼ 1)

0.89 (0.03) 0.56 (0.06) 0.89 (0.04) 0.56 (0.06)

Architecture H
(s ¼ 0)

0.88 (0.03) 0.54 (0.08) 0.84 (0.03) 0.54 (0.07)

Poorly Tagged Causal SNPs

Architecture I
(s ¼ 1)

0.13 (0.05) 0.49 (0.06) 0.14 (0.05) 0.49 (0.06)

Architecture J
(s ¼ 0)

0.13 (0.05) 0.50 (0.07) 0.13 (0.05) 0.51 (0.07)

Architectures A–F have been defined by Lee et al.; we additionally considered
architectures G and H, where causal variants are well-tagged SNPs, and
architectures I and J, where causal variants are poorly tagged SNPs. The true
(simulated) h2 is 0.5. Each value reports the mean estimate of h2 over 50
replicates (the empirical SD is provided in parentheses). Note that Lee et al.
also reported the Akaike information criterion (AIC), but we omit this score
because it can be highly misleading; for example, in our simulations, the
highest AIC was achieved with GCTA for architecture G, where the estimates
of h2 were on average 80% higher than the true value.
first issue, we proposed computing an adjusted GRM,

where uneven tagging is accounted for by weighted SNPs.

This approach is implemented in our software LDAK.1

Lee et al. proposed continuing to use an unadjusted

GRM computed via GCTA and to instead take a MAF-

stratification approach to estimating h2. We summarize

the major claims of their paper as follows:

(1) Their MAF-stratification approach accounts for un-

certainty about s, (2) the weightings from LDAK are subop-

timal for dense SNP data, and (3) their MAF-stratification

approach gives less biased estimates of h2. We agree with

the first, show that the second can be avoided by appro-

priate parameter selection in LDAK, and disagree with

the third. In our opinion, adjusting for uneven tagging

becomes even more important in the analysis of dense

SNP data, and the MAF-stratification method of Lee et al.

can be improved by incorporating the weightings used

in LDAK.
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To support the third claim, Lee et al. presented simula-

tions in which the causal variants tend to be poorly tagged.

However, the design of the simulations means that poten-

tial biases in their MAF-stratification approach are not

evident. For example, for architecture E, causal variants

are restricted to SNPs with a MAF < 0.1, so estimates of

h2 tend to be biased downward if they are based on a

GRM computed from all SNPs (demonstrated by the per-

formance of standard GCTA in their simulations). MAF <

0.1 defines one of the (arbitrary) tranches in their analysis;

had there been a mismatch between the MAF tranche

from which causal variants were randomly selected and

the MAF tranche used for analysis, their approach would

have experienced biases similar to those suffered by GCTA.

Here, we demonstrate the continued importance of

adjusting for uneven tagging through simulation (50 repli-

cates in each case). We considered a data set of 6,387 indi-

viduals, who, after imputation against the 1000 Genomes

reference panel, were genotyped for 4,238,038 SNPs. In

addition to considering architectures A–F defined by Lee

et al., we also considered architectures G and H, in which

the 10,000 causal SNPs are well tagged, and architectures

I and J, in which they are poorly tagged. (Tagging is

measured by T, effectively the multiplicity of a signal.1

Here, T ranges from 1 to 2,032 and has a median of 92; a

SNP is defined as well tagged if T > 179 and poorly tagged

if T < 45.) We compared four analysis methods: GCTA

(standard GRM), LDAK (weighted GRM), andMAF versions

of both of these; in these MAF versions, GRMs were

computed for each of five MAF tranches. MAF-LDAK was

implemented with the ‘‘region’’ option in LDAK. Each

GRM was computed with s ¼ �1, and we used the default

settings for LDAK.

Our results for architectures A–F (Table 1) agree with

those of Lee et al. in that MAF-GCTA outperformed

GCTA. Any overestimation of h2 by LDAK appeared to be

slight, less than what was observed by Lee et al.; we return

to this point below. When causal variants were well or

poorly tagged (architectures G–J), the estimates of h2

from MAF-GCTA (similar to those of GCTA) tended to be

biased upward or downward, respectively, whereas those

from MAF-LDAK were much closer to the truth, indicating

that adjusting for uneven tagging and stratifying by MAF

are both advantageous. We repeated these simulations

with 500, 1,000, 2,000, and 5,000 causal variants and

obtained similar results each time (data not shown).

The above-reported upward bias of LDAK is smaller than

that found by Lee et al. (the second claim above), which

might be a result of fewer SNPs (approximately four

million versus eight million) because we imposed stricter

quality control (QC). We believe that strict QC is crucial

in the estimation of h2 for binary traits,1,2 but to allow

direct comparison, we relaxed the QC thresholds to match

those of Lee et al. Afterwards, our data set had 7,190,149

SNPs. Because of the limited time to prepare this response,

we only used chromosomes 1 and 2 (1,153,686 SNPs)

and simulated 1,000 causal variants. Focusing on the
mber 5, 2013



Table 2. Performance of GCTA and LDAK for Very Dense Data

Architecture GCTA LDAK LDAK2

Causal SNPs Picked at Random

Architecture A (s ¼ 1) 0.49 (0.03) 0.52 (0.04) 0.50 (0.04)

Architecture B (s ¼ 0) 0.55 (0.02) 0.54 (0.03) 0.52 (0.03)

70% Causal SNPs with MAF < 0.1

Architecture C (s ¼ 1) 0.49 (0.02) 0.52 (0.04) 0.50 (0.04)

Architecture D (s ¼ 0) 0.51 (0.02) 0.52 (0.03) 0.50 (0.03)

All Causal SNPs with MAF < 0.1

Architecture E (s ¼ 1) 0.42 (0.03) 0.51 (0.04) 0.49 (0.04)

Architecture F (s ¼ 0) 0.46 (0.03) 0.51 (0.04) 0.49 (0.04)

LDAK employs the default parameter settings when computing weightings;
LDAK2 turns off the linkage-disequilibrium-decay function. The true (simu-
lated) h2 is 0.5. Each value reports the mean estimate of h2 over 50 replicates
(the empirical SD is provided in parentheses).
architectures with s ¼ �1 in Table 2, we observed overesti-

mation of h2 by LDAK, although to a lesser extent than did

Lee et al. (2%, 2%, and 1% compared with 6%, 5%, and

3%). When weightings are calculated, LDAK by default

models linkage-disequilibrium decay with distance in

order to give more weight to local correlations than to

long-range correlations that might be due to relatedness.

For unrelated individuals, this is unnecessary, and so a

large value (such as 100 Mb) can be used for the decay

parameter. With this change, no bias is apparent (LDAK2).
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In summary, although we agree with Lee et al. that

MAF stratification is effective in reducing biases caused by

misspecification of the scale parameter s, we feel that it

remains important to adjust for uneven tagging. In addi-

tion to achieving improved accuracy by incorporating the

LDAK weightings, this approach effects SNP pruning (for

imputed data, approximately 90% of SNPs will receive

weight zero and so canbediscarded), thus reducing the sub-

sequent task of computing GRMs by a factor of about ten.
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