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Morbid Obesity Resulting from Inactivation
of the Ciliary Protein CEP19 in Humans and Mice

Adel Shalata,1,7,8,* Maria C. Ramirez,1 Robert J. Desnick,1 Nolan Priedigkeit,1 Christoph Buettner,2

Claudia Lindtner,2 Mohammed Mahroum,7 Muhammad Abdul-Ghani,9 Feng Dong,9 Nazik Arar,9

Olga Camacho-Vanegas,1 Rui Zhang,1 Sandra C. Camacho,1 Ying Chen,1 Mwafaq Ibdah,7

Ralph DeFronzo,9 Virginia Gillespie,5 Kevin Kelley,6 Brian D. Dynlacht,10 Sehyun Kim,10

Marc J. Glucksman,11 Zvi U. Borochowitz,7,12 and John A. Martignetti1,3,4,*

Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the

underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe

an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected

family members was 48.7 (range ¼ 36.7–61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the

disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozy-

gous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly

conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozy-

gous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein

CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and

potential treatments for obesity and malnutrition.
Introduction

Obesity is a major risk factor for type II diabetes mellitus

(T2DM), heart disease, hypertension, metabolic syndrome,

and cancer, and it has become increasingly prevalent in

Western society and in developing countries.1 Worldwide,

more than 1.1 billion individuals are overweight and more

than 300 million are obese,2 as assessed by body mass

index (BMI). Individuals with a BMI R 30 kg/m2 are con-

sidered obese, whereas those with a BMI > 40 are morbidly

obese. The importance of genetic factors in human obesity

have been clearly defined by numerous twin, familial-

aggregation, and adoption studies.3–6 Indeed, heritability

has been estimated to be as high as 40%–90%.7 Given

this relationship, a number of genetic approaches have

been used in the search for the genes and pathways

affecting BMI.8 Genome-wide association studies (GWASs),

using either population-based cohorts or case-control de-

signs, have identified numerous candidate-gene loci; how-

ever, most loci have only modest effects. What has become

readily apparent is that biologically plausible candidate

genes within these regions are not always intuitively

obvious and thus might go undetected.

In contrast, targeted molecular analysis of Mendelian

obesity disorders has provided unambiguous identifica-
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tion of causative gene mutations, providing insights

into the pathogenetic mechanisms underlying obesity.9

Here, we describe a consanguineous multigenerational

Israeli Arab family affected by autosomal-recessive morbid

obesity, which we have designated ‘‘MO1 syndrome.’’

Linkage analysis and positional gene cloning identified a

truncating mutation in a highly evolutionarily conserved

gene within the MO1 locus; this gene, CEP19, was

recently found to encode CEP19, a ciliary protein.10

Targeted knockout (KO) of Cep19 resulted in markedly

obese mice exhibiting hyperphagia, decreased energy

expenditure, impaired whole-body fat oxidation, altered

hepatic insulin signaling, and impaired glucose and insu-

lin tolerance.
Material and Methods

Study Subjects
This study investigated members of a multigenerational Arab

clan living in the same village in the north of Israel. After

informed consent was obtained and approval was received from

the ethics committees of the corresponding institutions, blood

samples were drawn from 13 affected and 31 unaffected family

members. Clinical diagnoses were provided by the referring
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DNA Sequence Analysis
PCR was used to amplify exons with Amplitaq-Gold (Applied

Biosystems). Amplicons were purified with the QIAquick Spin

PCR Purification Kit (QIAGEN), and they were directly sequenced

on an ABI Prism 3700 automated DNA Analyzer (Applied Bio-

systems). Data were analyzed with the program Sequencher v.3.0

(Gene Codes Corporation).
Generation of Chimeric and KO Mice
C57BL/6J Cep19 Chimeras

Homologous recombination was performed by electroporation of

40 ug of the linearized targeting plasmid into 5 3 106 129Sv/Pas

embryonic stem (ES) cells at 240V and 500 mF. In brief, neoselec-

tion was performed with 200 ug/ml G418 48 hr after electro-

poration and continued for 8 days. One hundred and ninety

neomycin-resistant clones were selected, and DNA was isolated

and screened for correctly targeted replacements. Eight positive

ES clones were identified by 50 and 30 Southern blot and by PCR.

Four positive ES cell clones, selected on the basis of growth rate

and cell morphology, were injected into C57Bl/6J blastocysts. Blas-

tocysts were then implanted into OF1 pseudopregnant female

mice, resulting in a total of 14 chimeric mice. Chimeras were

mated with BL/6J mice, and founders were selected by offspring

genotyping with a PCR-based assay. For this assay, primers nested

within the neomycin cassette and outside of the 30 end of the tar-

geted locus were used. Germline mutant mice were then mated

with wild-type (WT) or heterozygous littermates for further expan-

sion of the colony. The BL/6J line of CEP19 mice was therefore a

mixture of C57BL/6J and 129Sv mice. All animal protocols were

approved by the respective institutions’ animal care and use com-

mittees and were in compliance with National Institutes of Health

guidelines.

Generation of C57BL/6NTac Cep19 Chimeras

A second KO vector, incorporating a LacZ expression reporter, was

constructed and identified with a PCR-based screen. In brief, 10 mg

of the targeting vector was linearized by NotI and then transfected

by electroporation of C57BL/6NTac ES cells. After selection with

G418 antibiotic, surviving clones were expanded for PCR analysis

for the identification of recombinant ES cell clones. Screening

primers A1 and A2 were designed downstream of the short homol-

ogy arm (SA) outside the 30 region used for generating the targeting

construct. PCR reactions using A1 or A2 with the LAN1 primer

(located within the neomycin cassette) amplified 2.4 or 2.5 kb

fragments, respectively. The control PCR reaction was performed

with the internal targeting vector primers AT1 and AT2, which

were located at the 30 and 50 ends, respectively, of the SA. This

amplified a product 1.3 kb in size. Individual clones from positive

pooled samples were then screened with the A2 and LAN1

primers. Positive recombinant clones were identified by a 2.5 kb

PCR fragment. Next, positive SA PCR clones were sequenced for

integration with the OUT1 primer. Confirmation of cassette inte-

gration within the long homology arm was performed by PCR

using the 3 and UNI primers. The 3 and N7 primers were used

for sequencing purified LA PCR DNA for confirming the presence

of the cassette junctions.
Metabolic Cages
A comprehensive animal metabolic monitoring system (CLAMS;

Columbus Instruments) was used for evaluating activity, food

consumption, and energy expenditure. Mice were individually

housed for these studies unless otherwise noted below for
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feeding-related experiments. Data on energy expenditure and

food intake were normalized with respect to lean body mass

(LBM). Energy expenditure and respiratory quotient (RQ) were

calculated from the gas-exchange data. Activity was measured

on the x and z axes with the use of infrared beams so that the

beam breaks during a specified measurement period could be

counted. Feeding was measured as the difference in the scale

measurement of the center feeder from one time point to another.

Five males and five females were in each group. Animals were

housed in cages for a 24 hr period of adaptation prior to initiation

of measurements.

Glucose Tolerance Test
Mice were fasted for 6 hr and injected with 1.5 g/kg body weight

glucose intraperitoneally (i.p.) at the age of 12 and 17weeks. Blood

glucose was measured at 0, 7.5, 15, 30, 60, 90 and 120 min via tail

sampling with the AlphaTrak glucose meter (Abbott Laboratories).

A blood sample for fasting insulin levels was taken at time point 0,

before glucose was injected (n R 4 per group).

Insulin Tolerance Test
18-week-old mice were fasted for 6 hr and subsequently injected

with 1 U/kg body weight regular human insulin (Humulin R,

Lilly USA). Blood glucose levels were measured at time points

0, 15, 30, and 60 min (n R 4 per group). A blood sample for fast-

ing insulin levels was taken at time point 0, before insulin was

injected.

Insulin ELISA
Insulin levels were determined with Mercodia’s Mouse Insulin

ELISA according to the manufacturer’s protocol. Data were

analyzed by cubic spline regression with the use of GraphPad

Prism (GraphPad Software) (n R 4 per group).

Insulin Signaling Studies
Six-month-old male mice and 1-year-old female mice were used

for this study. After an overnight fast, mice were injected i.p.

with 100 mU insulin (Humulin R, Lilly USA) diluted in 300 ml of

a 5% glucose solution. Control WT mice were injected i.p. with

300 ml saline. After 15 min, animals were sacrificed with CO2;

liver was dissected and snap frozen in liquid nitrogen and kept

at �80�C for further analysis (n ¼ 2 per group).

Immunoblot Analyses
Liver was homogenized in 20 mM MOPS, 2 mM EGTA, 5 mM

EDTA, 30 mM sodium fluoride, 40 mM b-glycerophosphate,

10 mM sodium pyrophosphate, 2 mM sodium orthovanadate,

0.5% NP-40, and complete protease inhibitor cocktail (Roche)

and centrifuged at 13,000 g for 20 min at �3�C. The supernatant

was then collected, and protein concentration was measured with

a BCA Protein Assay Kit (Thermo Scientific). Protein extracts were

separated on 4%–12% NuPAGE gels (Invitrogen) and blotted onto

Immobilon FL PVDF (Millipore). Membranes were blocked at

room temperature for 1 hr in Odyssey Blocking Buffer (LI-COR)

1:1 diluted in TBS and incubated in primary antibodies in 1:1

blocking buffer and TBS-T overnight at 4�C. Primary antibodies

against phospho-Akt (Thr308), phospho-insulin receptor b (both

from Cell Signaling Technology), Gapdh (Abcam), and insulin

receptor b (Santa Cruz Biotechnology) were used. After three

consecutive 5 min washes in TBS-T (0.1%), blots were incu-

bated with Dylight-680-conjugated goat anti-rabbit IgG and
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Figure 1. Pedigree of the Family Affected by Morbid Obesity and Localization of the Disease-Associated Gene
(A) Pedigree of the consanguineous Arab family affected by morbid obesity. The inset demonstrates the BMI measurements of the
extended family.
(B) Haplotypes of testedmembers of the nuclear subfamilies 1–4. The originally linked region was further refined to a 1.6 Mb region with
the use of additional polymorphic markers MO1 1–3 (Table S3).
(C) A schematic illustration of the physical map includes genes sequenced from the region (not to scale). Black boxes highlight the
markers used for defining the critical region, blue boxes indicate additional markers used for further narrowing the region, and the
red box represents CEP19. All gene names are shown in bold.
Dylight-800-conjugated goat anti-mouse IgG (both from Thermo

Scientific) for 1 hr at room temperature in blocking buffer contain-

ing 0.1% TBS-T and 0.1% SDS. After three washes in TBS-T and a

final wash in TBS, the blots were scanned with the Odyssey

Imaging System (LI-COR) and quantified with Odyssey 3.0 soft-

ware on the basis of direct fluorescence measurement.

Lipid Analyses
Plasma samples for lipid analysis were taken after a 6 hr fast at

7 and 16 weeks via retro-orbital plexus sampling. Serum triglycer-

ides (TGs) were measured with kits from Sigma (Sigma Aldrich)

according to the manufacturer’s protocol. Nonesterified fatty

acid (NEFA) levels were determined with a NEFA kit (Wako Chem-

icals USA) according to the manufacturer’s protocol.
The American Jou
Statistics
Values are presented as the mean 5 SEM. Comparisons between

groups were made with unpaired, two-tailed Student’s t tests.

Differences were considered statistically significant at p < 0.05.
Results

Clinical Characterization of MO1 Syndrome

Pedigree and clinical information was obtained for all

members of a large, consanguineous multigenerational

family affected by morbid obesity, T2DM, heart disease,

and hypertension (Figure 1A). BMI measurements revealed

a bimodal distribution with one peak at 28 kg/m2 and a
rnal of Human Genetics 93, 1061–1071, December 5, 2013 1063



Table 1. Clinical and Biochemical Characteristics of the Family Affected by Morbid Obesity

Pedigree ID

Gender
(Age in
Years) BMI (kg/m2)a HTN

FG
(70–110)b

TGs
(10–150)b

Cholesterol
(<200)b

LDL
(<100–130)b

HDL
(M > 40;
F > 50)b

Elevated Liver
Enzymes (GGT,
GOT, GPT)

Fatty
Liver (US) MetS

V-3c M (44) 44.7 (61.0) þ 82 138 209 123.5 44 � þ þ

V-8c M (29) 47.3 (60.0) þ 128 (IFG) 95 187 111.1 55 þ þ þ

Vlb-3 F (27) 34.0 (36.7) þ 85 134 209 149.1 33 � þ þ

Vlb-15c,d M (36) 49.6 (52.0) þ 78 145 150 100 40 þþ NA þ

Vlb-16e,f M (21) 34.3 (38.8) þ 93 117 149 105 44 � þ þ

Vlb-24 F (25) 50.9 þ 89 96 189 119 49 � þ þ

Vlb-25 F (24) 51.4 þ diabetic 149 198 124 41 þ þ þ

Vlb-26c,f M (29) 36.8 (40.4) þ diabetic 292 232 125.5 43 þ þ þ

Vlb-32 F (27) 44.4 (49.6) þ 89 228 184 102.2 34 � þ þ

Vlb-33 F (24) 49.2 þ diabetic 196 210 128.4 39 þ þ þ

Vlb-34e,f M (31) 42.2 (45.5) þ 80 225 135 105.5 30 � þ þ

Abbreviations are as follows: BMI, body mass index; F, female; FG, fasting glucose; GGT, gamma-glutamyltransferase; GOT, glutamate-oxalacetate transaminase;
GPT, glutamate-pyruvate transaminase; HDL, high-density lipoprotein; HTN, hypertension; IFG, impaired fasting glucose; LDL, low-density lipoprotein; M, male;
MetS, metabolic syndrome;11 NA, not available; and TGs, triglycerides.
aThe most recent BMI values are shown, and maximal BMI values are indicated in parentheses.
bAll tested biochemical parameters are in mg/dl, and normal values are provided in parentheses.
cV-3, V-8, Vlb-15, and Vlb-26 were oligospermic but fertile.
dVlb-15 died as a result of complicated congestive heart failure and dilated cardiomyopathy.
eVlb-16 and Vlb-34 were azospermic.
fVlb-16, Vlb-26, and Vlb-34 had intellectual disabilities.
second peak at 44 kg/m2 (Figure 1A, inset). The BMI nadir

was 35, and we divided family members into two groups:

(1) ‘‘unaffected,’’ those with BMIs < 35; and (2) ‘‘affected,’’

those with BMIs > 35. The 15 ‘‘affected’’ family members

all had normal gestational birth weights but developed

childhood obesity by 3 years of age. Detailed clinical data

were obtained for all living affected (n ¼ 11) and available

unaffected (n ¼ 30) family members (Table 1). Ten of the

11 (91%) affected adults had BMIs > 40, and all fulfilled

International Diabetes Foundation criteria consistent

with a diagnosis of metabolic syndrome.11 All affected

family members were hypertensive (systolic blood pres-

sure > 140 mmHg) and receiving pharmacologic treat-

ments to control their hypertension. By comparison,

only 5 of the 30 (17%) unaffected family members had a

history of elevated blood pressure. All tested affected indi-

viduals had evidence of fatty liver disease by ultrasound.

After an overnight fast, lipid profiles, although abnormal

for a number of affected individuals, on average did not

differ significantly between the two groups. All five females

and one male had low high-density lipoprotein (HDL)

cholesterol concentrations (female mean ¼ 39.2 mg/dl;

recommended level > 50 mg/dl). Four of the 11 (36%)

affected individuals had markedly elevated TGs (range ¼
196–292 mg/dl; recommended < 150), four had increased

total cholesterol (range ¼ 209–232 mg/dl; recommended

< 200 mg/dl), and two had elevated low-density lipopro-

tein (135 and 149 mg/dl; recommended < 130 mg/dl).

Eight affected individuals (73%) had a TG/HDL ratio > 3.

Five of the total 15 affected family members (33%) also
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had early coronary artery disease and suffered myocardial

infarctions prior to 45 years of age. Three of these individ-

uals, all younger than 50 years, died as a result of cardiac

disease, and two others had signs and symptoms of conges-

tive heart failure. Three of the 11 affected family members

(27%) had T2DM. Of note, and on the basis of an analysis

of health records, the prevalence of T2DM among individ-

uals with BMI > 35 from the family’s geographic region

was 27.6% (135/435). For the remaining eight affected in-

dividuals without T2DM, fasting blood glucose levels were

within normal limits. Three of the affected individuals

(27%) also had intellectual disability, and all six males

had decreased sperm counts: four were oligospermic and

two were azospermic.

To further characterize the clinical phenotype, we

compared themetabolic profile of affected familymembers

to that of an unrelated group of age- and sex-matched

obese and lean individuals from the same geographic re-

gion. Although a number of differences were identified

between both obese populations and lean individuals,

no statistically significant differences in these metabolic

values were noted between the familial and nonfamilial

affected individuals (Table S1, available online). Compared

to age- and sex-matched lean individuals, both obese

groups had normal concentrations of fasting plasma

glucose and nonsignificant increases in concentrations

of fasting plasma insulin. However, the homeostasis

model assessment of estimated insulin resistance, a surro-

gate marker for insulin resistance, was significantly and

similarly elevated in both obese groups. On average,
mber 5, 2013



Figure 2. Identification of the Disease
Gene Mutation
(A) The gene structure of CEP19 indicates
the location of the nonsense mutation.
Coding regions are shaded in black, and
UTRs are in gray.
(B) Predicted CEP19 amino acid sequence
based on its longest open reading frame.
(C) Sequencing electropherograms show-
ing the WT, heterozygous, and mutant
C>T transition (Y), which predicts a
nonsense mutation in codon 82.
concentrations of fasting plasma free fatty acids in the

obese family members were nearly twice those of the

lean individuals (609 5 50 uM versus 339 5 25 uM; p <

0.0003) but did not differ from those of nonfamilial obese

subjects (510 5 49 uM; p < 0.25). Given their association

with the pathogenesis of insulin resistance and associated

metabolic complications, including hypertension and cor-

onary heart disease, the levels of a number of adipocyto-

kines were profiled. Plasma leptin concentrations were

equally higher in both obese groups than in the lean

individuals (p < 0.02). Interestingly, levels of the proin-

flammatory cytokine TNFa were lower in the familial

affected individuals than in the nonfamilial obese popula-

tion (p < 0.03).

Linkage Analysis and Positional Cloning of the MO1

Locus Gene CEP19

Positional cloning by homozygosity by descent was used

for identifying the causative gene mutation for the

obesity syndrome. Initially, 514 microsatellite markers

spanning the genome (Human Screening Panel, version

9.0, Research Genetics) were analyzed, which localized

the disease gene locus to chromosomal region 3q29. Addi-

tional markers refined the critical region within a 5.5 Mb

locus between markers D3S2418 and D3S3550 on the

telomeric end of 3q29 (LOD score ¼ 9.7, Q ¼ 0). Heterozy-

gosity and haplotype analysis further narrowed the initial

region to a 1.6 Mb critical region between centromeric

marker D3S2306 and telomeric marker D3S3550 (Figures

1B and 1C).

All 23 known and predicted genes in the critical region

(UCSC Genome Browser, hg19), including 50 and 30 UTRs

and exon-intron boundaries, were analyzed by Sanger

sequencing. No homozygousmutations segregating appro-

priately within the family were identified for 22 of these

genes. However, all affected individuals had a homoallelic

nonsensemutation, a C>T transition (c.244C>T) in codon
The American Journal of Human Genetics
82 of exon 2 of the EST sequence

BC007827 and CEP19. The genomic

position of the mutation is chr3:

196,434,703. This hypothetical gene

is predicted to encode a 167 amino

acid protein with a predicted molecu-

lar weight of 19.6 kD. The homozy-
gous nonsense alteration (p.Arg82*) is predicted to cause

premature truncation of the terminal carboxy half of the

protein (Figure 2). All parents of the affected individuals

were heterozygous, and unaffected siblings were either

heterozygous for the mutation or noncarriers (Figure S1).

The mutation was not present in dbSNP (build 137) or in

1,240 chromosomes we screened from 620 unaffected,

lean and/or nonobese individuals (data not shown). These

included more than 200 ethnically matched unaffected in-

dividuals. Of potential interest, interrogation of the 1000

Genomes Project database resulted in the identification

of six nonsynonymous exonic variants present at fre-

quencies between 0.1% and 0.2%. The functional role, if

any, of these additional variants is currently unknown.

The full-length CEP19 transcript was readily amplified

from total RNA isolated from 21 human tissues, including

heart, liver, skeletal muscle, brain, hypothalamus, and

adipose tissue (Figure S2A). It was also expressed in various

human-derived cell lines, including hepatoma-derived

(Hep3B and Huh7) and human embryonic kidney 293

cell lines (data not shown). In addition, the transcript

was differentially expressed in murine 3T3L1 preadipo-

cytes such that increased levels coincided with the onset

of lipogenesis after their treatment with a mixture of adi-

pogenic hormones known to stimulate terminal differenti-

ation into adipoctyes12 (Figure S2B).

To assess the stabilities of theWTand truncated p.Arg82*

proteins, we subcloned WT and mutated constructs into a

eukaryotic expression vector containing a carboxy-termi-

nal V5 tag and then transfected them into various cell

lines. Both constructs achieved high levels of RNA expres-

sion. WT protein was always expressed at higher levels, as

demonstrated by immunoblotting at 24 and 48 hr post-

transfection (Figure S3A). These findings indicate that the

truncated form was unstable and presumably degraded

through the proteasome pathway. When cells transfected

with WT or p.Arg82* protein were treated with the potent
93, 1061–1071, December 5, 2013 1065



Figure 3. CEP19 Is a Centrosomal Pro-
tein Localizing to the Mother Centriole
and Basal Body
Ectopic expression of V5-tagged WT
CEP19 (V5-CEP19; green) in RPE1-hTERT
cells shows subcellular localization at the
basal body, as determined by detyrosi-
nated tubulin as a marker for cilia (red,
upper panel of A). In nonciliated cells,
V5-CEP19 colocalized with one of the
two CP110 dots (red, lower panel of A)
and Cenexin (red, B), suggesting that
CEP19 is expressed at the mother centriole
in growing cells.With the use of polygluta-
mylated tubulin, GT335 (green) as a ciliary
marker, endogenous CEP19 was specif-
ically localized at the basal body in quies-
cent RPE1-hTERT cells (lower panel of C),
as determined by loss of signal via knock-
down mediated by small hairpin RNA
(shRNA; upper panel of C). Scale bars
represent 1 mm.
proteasome inhibitor MG132, both constructs were pre-

sent at high levels (Figure S3B).

Recently, complementary shotgun proteomic andmicro-

scopic approaches were used for identifying novel com-

ponents of the centriole.10 One of the candidate proteins

identified in this screen was C3orf34, designated by the

authors as CEP19. GFP-tagged CEP19 was shown to be

preferentially associated with the mother centriole in the

centrosome. (Adopting the HGNC change from C3orf34,

we now refer to the gene mutated in the MO1 locus as

CEP19.) To confirm and further explore this finding, we

first expressed V5-tagged CEP19 in the hTERT-immortal-

ized retinal pigment epithelial cell line RPE1-hTERT,

which can be induced to form primary cilia. As shown in

Figures 3A and 3B, ectopically expressed and tagged

CEP19 was localized to the mother centriole and basal

body. When we repeated these experiments by using

an antibody directed against the endogenous CEP19 in

RPE1-hTERT cells, which were stably transfected with a

single small interfering RNA expressed from a retroviral

vector against either CEP19 or luciferase, the endogenous

CEP19 was localized to the basal body of the primary cilia

(Figure 3C).

CEP19 Is Highly Conserved in Evolution

CEP19 orthologs, all annotated as hypothetical genes, were

readily identified across mammalian, amphibian, avian,

and fish species with the use of BLAST searches (Figure S4).

In addition to being present in the vertebrates, CEP19

orthologs were also in some early invertebrates, including

the starlet sea anemone (34% sequence identity, 56%

sequence similarity), a member of the oldest eumetazoan

phylum,13 and Trichoplax adhaerens (31% identity, 50%

similarity), believed to be the simplest known animal.14

No CEP19 orthologs of approximately the same size were

identified through searches of the Drosophila, yeast, or

C. elegans databases.
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Targeted Deletion of Cep19 in Mice Results in an

Obesity Phenotype

We generated KO mice to directly test the hypothesis that

loss of the highly conserved CEP19 would result in obesity

(Figure 4A). Two independent null mouse C57BL/6 sub-

strains, 6J and 6NTac, were generated and characterized

(Figure S5). The heterozygous mice of both strains were

fertile, and littermate breeding resulted in a normal distri-

bution of male and female offspring with the expected F1

Mendelian genotype ratios (C57BL/6J: 83 WT, 189 hetero-

zygote, and 96 KO; C57BL/6NTac: 53WT, 93 heterozygote,

and 52 KO). In the C57BL/6J strain, sex-matched mice had

similar birth weights, but differences were first apparent

between KO and WT males starting at ~8 and 13 weeks

of age for males and females, respectively (Figure 4B). In

the C57BL/6NTac KO and WT mice, differences in weight

were present by 5 weeks of age for both males and females

(Figure 4C). In both strains, when measured at their

greatest differences, both male and female KO mice were

nearly twice the weight of their age- and sex-matched con-

trols. Total body-fat mass and percentages, determined by

MRI, were ~2-fold greater in Cep19-KO mice than in WT

animals (24.4% 5 3.9% and 11.9% 5 1.8%, respectively,

n ¼ 10, p ¼ 0.002) (Figure S6). In addition, both Cep19-

KO male mice strains were ~10% longer than their WT

sex-matched controls, and KO females were ~5% longer

than WT females (Table S4).

The C57BL/6J mice were phenotyped inmetabolic cages.

The KO mice were hyperphagic, as suggested by the fact

that food consumption was significantly higher in both

male and female KO mice than in their control littermates

(Figure S7A).When normalized to LBM, food consumption

was similar between Cep19-KO and WT mice (Figure S7B).

LBM was examined by MRI performed at 5 months of

age and was significantly increased in both Cep19-KO

male and female mice. The LBM of male KO mice was on

average 25.94 g, 63.9% of their total body weight (TBW);
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Figure 4. Cep19-KO Mice Are Obese
The murine Cep19 is composed of four
exons, and the predicted open reading
frame, encoding a 163 amino acid protein,
begins in exon 3 and ends with a stop
codon in exon 4. Because Cep19 exon 1 is
nearly contiguous with the inversely ori-
ented first exon of phosphatidylinositol
glycan anchor biosynthesis, class X (Pigx),
the KO strategy for both lines involved
germline removal of Cep19 exon 3 to avoid
disruption of Pigx. Gene expression anal-
ysis in two different tissues by two
different methods, quantitative RT-PCR
and Affymetrix array (data not shown), of
the three genes directly flanking Cep19—
Pigx, Pak2, and Lrrc33—confirmed that
there were no appreciable differences in
RNA expression of these genes between
WT and KO mice.
(A) Two different views of the same repre-
sentative WT (left; 22.6 g) and Cep19-KO
(right; 57.0 g) females at 36 weeks of
age (C57BL/6NTac strain). Weight gain
occurred starting at postnatal day 1 (P1).
Mice were weaned and separated (five ani-
mals per cage) according to their genotype
and sex at P30. Mice were provided with
normal chow and water ad libitum and
weighed for ~360 days.
(B and C) Growth curves, separated by
sex, of C57BL/6J (B) and C57BL/6NTac
(C) lines. All graphs show the mean 5
SEM calculated from at least three inde-
pendent experiments.
in contrast, the LBM of WT mice was 22.24 g, 73.2% of

their TBW (t test, p < 0.003). The LBM of female KO

mice averaged 21.2 g, 69% of their TBW; the LBM of WT

mice was 17.79 g, 77.9% of their TBW (p < 0.00002; Table

S2). Although whole-body oxygen consumption in Cep19-

KO mice was lower than that in WT animals, the relation-

ship between oxygen-consumption rate and LBM followed

the same regression line (Figure S8A). Moreover, when the

rate of oxygen consumption was adjusted for LBM with

ANCOVA, the mouse genotype had no significant effect

on the rate of oxygen consumption. Similarly, the rate of

heat production in both animal groups was independent

of the genotype (Figure S8B). Locomotor activity (fed and

fasted) was decreased in Cep19-KO mice (Figure S8C).

Finally, and suggestive of differences in whole-body sub-

strate oxidation, the RQ was significantly higher in

Cep19-KO mice than in WT mice (0.96 5 0.01 compared

to 0.93 5 0.01, n ¼ 10, p < 0.05; Figure S8D).

Cep19-KO Mice Exhibit Impaired Glucose and Insulin

Tolerance

To evaluate carbohydrate metabolism and insulin action,

which are impaired in metabolic syndrome, we performed

glucose and insulin tolerance tests in 12- and 18-week-old

C57BL/6NTac KO and WT mice (Figures 5A and 5B). Fast-
The American Jou
ing glucose and HOMA (homeostatic model assessment)

scores in male KOmice were increased at both ages, consis-

tent with an insulin-resistance phenotype (Figures 5C and

5G). Female Cep19-KO mice revealed a similar trend,

although it was less pronounced (Figures 5D and 5H). To

assess glucose clearance, we performed an intraperitoneal

glucose tolerance test. Male 18-week-old KO mice had a

markedly impaired glucose tolerance, which was not yet

evident in 12-week-old mice (Figure 5E and Figure S9A).

Female KOmice showed significant impairment of glucose

tolerance at both time points yet, again, to a lesser degree

(Figure 5F and Figure S9B).

Because insulin resistance is associated with dyslipide-

mia, an important cardiovascular risk factor, the plasma

lipid profiles of the KO mice were determined. Male

Cep19-KO mice had mildly elevated plasma TG levels at

7 weeks of age, but not at 16 weeks (Figure S9E). Fasting

plasma TG levels were significantly elevated in female

KO mice at both ages (Figure S9F). No differences were

detected in plasma NEFA levels between genotypes in

either sex. To probe insulin action in KO mice, we per-

formed intraperitoneal insulin tolerance tests. The ability

of insulin to lower glucose was markedly compromised

in both male and female KO mice (Figures 5I and 5J),

thus confirming the severe insulin-resistance phenotype.
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Figure 5. Cep19-KO Mice Are Glucose Intolerant and Insulin Resistant
Body weight at 12 weeks and 18 weeks in male (A) and female (B) mice was increased in Cep19-KO mice. Fasting glucose was assessed
at 12 and 18 weeks in male (C) and female (D) mice. Impaired glucose tolerance was observed in 17-week-old male (E) and female (F)

(legend continued on next page)
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Figure 6. Cep19-Deficient Mice Show
Impaired Insulin Signaling in the Liver
(A) Representative immunoblot.
(B) Quantification of the immunoblot ana-
lyses (n ¼ 3 per group) of liver samples
derived from mice that were sacrificed
15 min after an intraperitoneal injection
of insulin. Graphs show the mean 5
SEM calculated from at least three inde-
pendent experiments.
Cep19-KO Mice Have Impaired Hepatic Insulin

Signaling

To test whether the observed insulin resistance in C57BL/

6NTac Cep19-KO mice was due to compromised insulin

signaling, we performed intraportal insulin injections.

Insulin receptor b autophosphorylation was significantly

impaired in both male and female Cep19-KO mice (Figures

6A and 6B), whereas total insulin receptor expression was

not altered (Figure 6A). Further, phosphorylation of pro-

tein kinase B (Akt) at Thr308, a downstream insulin

signaling mediator, was decreased in KO mice, demon-

strating that CEP19 deficiency impairs hepatic insulin

signaling in the livers of Cep19-KO mice.
Discussion

Using genomic and biochemical techniques, we have

identified the molecular basis of an autosomal-recessive

morbid-obesity syndrome, demonstrated to be due to a

nonsense mutation in the gene encoding a highly

conserved ciliary protein, CEP19. In humans, CEP19 loss

of function resulted in a phenotype characterized by

morbid obesity, glucose intolerance, dyslipidemia, and

insulin resistance. Cep19-KO mice recapitulated this

phenotype and permitted the characterization of impaired

insulin signaling, which itself plays a central role in the

metabolic phenotype. MO1 syndrome, Bardet-Biedl syn-

drome (MIM 209900), and Alström syndrome (MIM

203800) are the three Mendelian obesity disorders that

result from mutations in genes encoding ciliary proteins.

MO1 syndrome is unique in that it results in morbid

obesity and demonstrates pleiotropy to a lesser extent

than the other two ciliopathies. The average BMI for

homozygous males and females with the MO1 syndrome

was 48.7 kg/m2, which is markedly greater than the

mean BMI for affected individuals with either Bardet-Biedl

or Alström syndromes (those BMIs range between 30 and

35 kg/m2).15,16 Affected individuals with these two disor-

ders can, however, be morbidly obese; for example, up to
Cep19-KO mice. HOMA scores were increased in both male (G) and f
sulin resistance. Insulin-tolerance testing resulted in 18-week-old ma
group. *p < 0.05, WT versus KO; #p < 0.05, heterozygous (HET) vers
three independent experiments.
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25% of individuals with Bardet-Biedl syndrome have a

BMI > 40 kg/m2.17 Affected individuals with MO1 syn-

drome had primarily metabolic abnormalities, although

three individuals (27%) had intellectual disability. In

contrast, Bardet-Biedl and Alström syndromes have highly

prevalent, non-obesity-associated clinical features, includ-

ing visual impairment, sensorineural deafness, polydac-

tyly, and renal disease.18,19

The role of ciliary proteins in maintaining a balance be-

tween leanness and obesity remains unknown, and thus

future studies are required for delineating their pathoge-

nicity in obesity. Moreover, the role of CEP19, whose loss

of function results in markedly greater BMI differences

and features more restricted to the metabolic phenotype,

might provide insights into the obesity phenotype in all

three syndromes. Future studies of the Cep19-KO mice

should permit such investigations. For example, the avail-

ability of mouse embryonic fibroblasts (MEFs) derived

from paired Cep19-KO andWTmice permitted the investi-

gation of the effect of CEP19 expression on adipocyte

differentiation and lipid accumulation. Loss of CEP19

expression caused the number of cells with lipid accumula-

tion to be ~2-fold higher than that of WT cells (Fig-

ure S10A). This difference was accompanied by increased

expression levels of the peroxisome proliferator-activated

receptor gamma (PPARG [MIM 601487]; Figure S10B),

encoding a key adipocyte-differentiation regulator that in-

duces the expression of adipocyte-specific genes.20 Con-

comitant with increased PPARG expression, there was

also increased expression of adipocyte-specific genes, in-

cluding leptin (LEP [MIM 164160]), complement factor

D (adipsin) (CFD [MIM 134350]), adiponectin, C1Q, and

collagen domain containing (ADIPOQ [MIM 605441]),

and fatty-acid-binding protein 4, adipocyte (FABP4 [MIM

600434]).

The Cep19-KO mice and affected males with MO1 syn-

drome were infertile. Examination of the murine testes re-

vealed marked degeneration of spermatogenic cells and

seminiferous tubules (Figure S11). Although the Cep19-

KO spermatozoa developed flagella, many had a fixed
emale (H) 12-week-old Cep19-KO mice exhibiting pronounced in-
le (I) and female (J) mice. All experiments included four mice per
us KO. All graphs show the mean 5 SEM calculated from at least
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abnormal crooked appearance, and sperm motility was

substantially diminished (Movies S1, S2, and S3). These

findings would suggest that loss of CEP19 also can affect

motile cilia, which are structurally related to primary cilia.

Themechanism for these defects in motile cilia is currently

unknown, and there are no apparent differences in the rate

of ciliogenesis or ciliary length in MEFs with loss of CEP19

function (Figure S12).

In summary, our studies have determined that the inac-

tivation of CEP19 results in a morbid-obesity syndrome.

Further studies are required for establishing how the loss

of CEP19 function results in morbid obesity and its rela-

tionship to appetite control, energy expenditure, and

insulin signaling and sensitivity. From an evolutionary

perspective, the high degree of CEP19 sequence conserva-

tion across species is consistent with the ancient origins of

cilia and the relative importance of CEP19 function. By

way of comparison, FTO (MIM 610966), whose association

with BMI and obesity was demonstrated by multiple

GWASs and is the strongest genetic risk factor for

obesity,21–24 is not conserved in invertebrates,25,26 suggest-

ing that the role of CEP19 in energy homeostasis might

have evolved more than ~250 million years earlier. Thus,

CEP19 defines a highly conserved target for understanding

themolecular basis of energy homeostasis and, potentially,

the development of strategies for treating obesity and

malnutrition.
Supplemental Data

Supplemental Data include 12 figures, four tables, and three

movies, and can be found with this article online at http://www.
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Najjar, S., Nagaraja, R., Orrú, M., Usala, G., et al. (2007).

Genome-wide association scan shows genetic variants in the

FTO gene are associated with obesity-related traits. PLoS

Genet. 3, e115.
The American Jou
23. Thorleifsson, G., Walters, G.B., Gudbjartsson, D.F., Steinthors-

dottir, V., Sulem, P., Helgadottir, A., Styrkarsdottir, U., Gretars-

dottir, S., Thorlacius, S., Jonsdottir, I., et al. (2009). Genome-

wide association yields new sequence variants at seven loci

that associate withmeasures of obesity. Nat. Genet. 41, 18–24.

24. Willer, C.J., Speliotes, E.K., Loos, R.J., Li, S., Lindgren, C.M.,

Heid, I.M., Berndt, S.I., Elliott, A.L., Jackson, A.U., Lamina,

C., et al.; Wellcome Trust Case Control Consortium; Genetic

Investigation of ANthropometric Traits Consortium (2009).

Six new loci associated with body mass index highlight a

neuronal influence on body weight regulation. Nat. Genet.

41, 25–34.
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