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Abstract

The amyloid precursor protein (APP) and its processing by the a-, B- and y-secretases is widely believed to play a
central role during the development of Alzheimer’s disease. The three-dimensional structure of the entire protein, its
physiologic function and the regulation of its proteolytic processing remain, however, largely unclear to date. To gain
a deeper understanding of the structure of APP that underlies all of its functions, we first cloned and recombinantly
expressed different constructs in E. coli. Using limited proteolysis followed by mass spectrometry and Edman
degradation as well as analytical gel permeation chromatography coupled static light scattering, we experimentally
analyzed the structural domain boundaries and determined that the large ectodomain of APP consists of exactly two
rigidly folded domains — the E1-domain (Leu18-Ala190) and the E2-domain (Ser295-Asp500). Both, the acidic
domain (AcD) connecting E1 and E2 as well as the juxtamembrane region (JMR) connecting E2 to the single
transmembrane helix are highly flexible and extended. We identified in-between the E1-domain and the AcD an
additional domain of conservation and partial flexibility that we termed extension domain (ED, Glu191-Glu227). Using
Bio-layer interferometry, pull-down assays and analytical gel filtration experiments we demonstrated that the E1-
domain does not tightly interact with the E2-domain, both in the presence and in the absence of heparin. APP hence
forms an extended molecule that is flexibly tethered to the membrane. Its multi-domain architecture enables together
with the many known functionalities the concomitant performance of several, independent functions, which might be

regulated by cellular, compartment specific pH-changes.
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Introduction

Alzheimer’s disease (AD) is one of the most common forms
of dementia worldwide. One important role plays the amyloid
precursor protein (APP) - a type | transmembrane protein that
is expressed in a wide range of different cell types including
neurons [1,2] and belongs to a small gene family of APP-like
proteins including APLP1 and APLP2 [3]. APP can be
proteolytically processed by B- and y-secretase, which leads to
the generation of 38-43 amino acid long peptides
(amyloidogenic pathway). Deposition of these AB-peptides as
amyloid plaques in the brain is one of the immuno-pathological
hallmarks of AD. Alternatively, initiation of the proteolysis
cascade by o-secretase prevents the development of these
toxic peptides due to a cleavage within the AB-sequence (non-
amyloidogenic pathway) [4,5].

Because of its central role during the development of AD,
APP and its proteolytic processing are in the focus of intensive
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research. Nevertheless, the physiologic function and the
structure of the entire protein remain largely unclear until now.
First insights into the domain architecture of APP could be
obtained from homology considerations resulting in the initial
definition of the E1- and the E2-domains within the large
ectodomain [6,7,8]. Highly resolved structures of a number of
individual domains of APP have been determined in the last
~20 years, such as those of its growth-factor-like domain
(GFLD) [9], its copper-binding domain (CuBD) [10,11], its
Kunitz-type protease inhibitor domain (KPI) (not present in the
neuronal APPgs splice form) [12,13], the central APP domain
(called CAPPD or E2-domain) [14,15,16] the structure of its
membrane-proximal region [17] and that of its intracellular
domain AICD [18,19]. In addition, the crystal structure of the
entire E1-domain of APP shows that its constituting CuBD and
GFLD interact tightly with one another, forming one rigid entity
[20]. However, several domains, subdomains and functional
segments are described in the literature with (largely) different
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and overlapping boundaries (Figure 1A). Those include e.g. the
cysteine-rich domain, the GFLD, the CuBD, a heparin-binding
domain, a zinc-binding domain and the acidic domain (AcD)
within the N-terminal half of APP. Similarly, different domains
are also specified for the C-terminal half of the large APP-
ectodomain, including e.g. the central CAPPD, a second
heparin-binding domain, the RERMS-domain, one collagen-
binding domain and the juxtamembrane region (JMR)
[21,22,23,24]. These protein segments must finally function
within the currently unknown structural arrangement of the
entire molecule. A first glimpse of the overall structure and into
the arrangement of the different domains within the full-length
protein could be obtained by small angle X-ray scattering
(SAXS) experiments [25]. Nevertheless, there are only very
limited data on the exact boundaries of folded segments and
the interaction of the individual structural domains within the
full-length protein. In particular, SAXS studies [25] [26] gave
contradictory results with respect to an interaction of different
domains. Investigating its overall structure and domain
architecture will also answer the central question: whether APP
represents one defined fold for its large ectodomain, or if its
ectodomain must be considered rather as individual functional
units that are flexibly connected to one another like pearls on a
string. Additionally, more than one third of the APP-ectodomain
consists of so far structurally uncharacterized regions, the AcD
and the JMR, connecting E1 to E2 as well as E2 to the single
transmembrane helix, respectively.

In order to experimentally analyze the exact domain
architecture of APP, to determine whether its constituting
domains potentially interact with one another within the entire
protein and to get a clear picture of the isolated APP, we
employed herein a number of biochemical and biophysical
methods investigating various recombinantly expressed APP-
constructs.

Materials and Methods

Cloning

The plasmid plK15 for expression of the entire APP-
ectodomain (APP-Ecto, Leu18-Lys624, numbering according to
APPgqs) inclusive a C-terminal Hise-Tag was generated from
pCK1 [27] by polymerase chain reaction (PCR) employing the
primers 5
AAAAAAAAAAAACATATGCTGGAGGTACCCACTG 3" and 57
AAAAAAAAAAGCTTACGACCTTCGATTTTGTTTGAACCCAC
ATCTTCTGCAAAGAACAC 3, followed by digestion with Ndel
and Hindlll and ligation into the vector pET22b(+).

The constructs encompassing APP-E2 and the
juxtamembrane region (APP-E2_JMR, Ser295-Lys624) as well
as the extended APP-E1 domain (APP-E1_ED, Leu18-Glu227)
contain also a C-terminal Hisg-Tag and were generated by PCR
from the template pCK1 using the primers 5°
AAAAAAAACATATGAGTACCCCTGATGCCGTTGACAAG 37
and 5 AAAAAAAA
AAGCTTACGACCTTCGATTTTGTTTGAACCCACATCTTCTG
CAAAGAACAC 3, as well as 5
AAAAAAAAAAAACATATGCTGGAGGTACCCACTG 3" and 57
AAAAAAAA
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GCTTACGACCTTCGATTTCTACTACTTTGTCTTCACTCCCA
TCTGCATAG 3’, respectively, followed by digestion and
ligation as described above.

The constructs APP-E1_ED_AcD (Leu18-R288), APP-E1
(Leu18-Ala190) and APP-E2 (Ser295-D500) were cloned as
described before [15,20,27].

Expression and Purification

APP-Ecto, APP-E1_ED AcD and APP-E1_ED were
expressed in Escherichia coli OrigamiB(DE3), whereas
expression of APP-E2_JMR was performed in E. coli
BL21(DE3)pRIL. Cells were grown in lysogeny broth (LB) at
25 °C, induced with 1 mM IPTG and harvested after 24 h by
centrifugation at 4000 g for 20 min.

The Hisg-tagged proteins were purified using a HisTrap FF
Crude affinity column and a HiLoad Superdex 200 26/60
column. For APP-Ecto and APP-E1_ED an additional HiTrap
Heparin column (all from GE Healthcare) was used. APP-E1
and APP-E2 were expressed and purified as described before
[15,20]. For pull-down assays the C-terminal Hiss-tag was
cleaved with 5 U/mg Factor Xa (Novagen) within 2 h at 20 °C.
Uncleaved protein and Factor Xa were removed using a
HisTrap FF Crude affinity column and a HiTrap Heparin column
(GE Healthcare).

Sequence alignment

Sequences of APP were obtained from the UniProt (UP)
database and aligned using the program ClustalX2 [28]: Homo
sapiens APP (UP code: P05067-4), Sus scofa APP (UP code:
P79307), Bos Taurus APP (UP code: QO8E54), Gallus gallus
APP (UP code: FINDES), Mus musculus APP (UP code:
P12023-2), Rattus norvegicus APP (UP code: P08592),
Xenopus laevis APP (UP code: Q98SGO0), Danio rerio APPa
(UP code: Q6NUZ1), APPb (UP code: Q8UURY).

Limited Proteolysis. Limited proteolysis experiments were
performed in 5 mM Tris pH 8.0, 150 mM NaCl containing
0.5 mg/ml protein and 50 ug/ml of the respective protease. The
reactions were incubated at 25 °C and stopped after fixed time
points using 10 mM PMSF. Samples were analyzed by SDS-
PAGE. All limited proteolysis experiments were repeated in
three independent experiments.

Edman-Sequencing. Limited proteolysis products were
separated on a SDS gel and blotted onto a PVDF membrane.
The membrane was stained with Coomassie and bands were
analyzed using Edman degradation (Procise 494A, Applied
Biosystems, Foster City, CA, USA).

Mass spectrometry. Limited proteolysis samples were
separated on a Superdex 200 5/150 GL column (GE
Healthcare) and the total mass of the fractions were analyzed
at the Center for Molecular Medicine Cologne (ZMMK, Central
Bioanalytic, University of Cologne). In addition, protein
containing fractions were precipitated with acetone. The pellet
was resuspended in ammonium acetate (pH 7.5) and total
mass was measured using Ultraflex Il, Bruker Daltonics.

Calculation of the theoretical MW

The theoretical MW (MW,) was calculated using the
ProtParam tool provided by ExPASy.
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Figure 1. Domain architecture of the amyloid precursor protein (APP). (a) The ectodomain of APP consists of several
subdomains or functional regions that are typically termed: the growth-factor-like-domain (GFLD), the copper-binding-domain
(CuBD), the acidic domain (AcD), the central APP domain (CAPPD) and the juxtamembrane region (JMR) succeeded by a single
transmembrane helix (TM) and the intracellular domain of APP (AICD). The longer splicing forms of APP, APP5, and APP,,, contain
additional regions, the Kunitz-type-inhibitor (KPI) domain and the Ox-2 sequence. Used constructs and limited proteolysis products
of Table 1 are illustrated by double-headed arrows and black bars, respectively. (b-d) Limited proteolysis experiments with V8
protease and trypsin, respectively, demonstrate the flexibility of the acidic and juxtamembrane region and show that the E1- as well
as the E2-domains are rigidly folded. The respective proteolysis conditions are given on top and the sizes of the molecular weight
(MW) marker bands are given on the side of the gel in kDa. The cleavage sites and the sequence of the stable proteolysis
fragments are listed in Table 1.

doi: 10.1371/journal.pone.0081926.g001
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GPC

Analytical size exclusion chromatography was performed in
5 mM Tris pH 8.0, 150 mM NacCl using a calibrated Superdex
200 5/150 GL column (GE Healthcare). All runs were repeated
in three independent experiments. The column was calibrated
using BSA, cytochrome c, carboanhydrase and aprotinin and a
calibration curve was calculated using the molecular weight of
the proteins as a function of the retention volume. The
apparent molecular weight (MW,,) was determined using the
retention volume of the protein and the calculated calibration
curve.

GPC coupled SLS

For SLS measurements an Aekta Explorer system (GE
Healthcare) was connected to a VE 3580 RI and 270 Dual
detector (Viscotek). The absolute molecular weight (MWgs)
was determined using the OmniSEC software (Viscotek)
provided with the instrument and based on the Rayleigh-Gans-
Debye equation. All experiments were performed in 5 mM Tris
pH 8.0, 150 mM NaCl using a Superdex 200 10/300 (GE-
Healthcare) and were done in triplicate.

CD spectroscopy

CD spectra were measured using a J-710 spectropolarimeter
(JASCO Corporation) in 5 mM sodium phosphate buffer pH
7.5. Resulting data were analyzed using Spectra Analysis and
CD Spectra Deconvolution 2.1 (JASCO Corporation). All
measurements were repeated in three independent
experiment.

Pull-down Assay

Pull-down experiments were performed in binding buffer
(5 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole, 0.05 %
Tween20) using 80 pl Ni-NTA material (Qiagen). 5 uM His-
tagged protein were incubated with 5 uM protein without Hisg-
tag at 8 °C for 2 h. Where applicable 50 uM short chain heparin
(low molecular weight heparin sodium salt, Sigma-Aldrich;
corresponding to 10-12 sugar rings) or long chain heparin
(heparin sodium salt, Sigma-Aldrich; corresponding to ~55
sugar rings) was added to the solution. Samples were
centrifuged at 500xg for 1 min and washed with binding buffer.
To analyze bound proteins, the beads were mixed with 2x
sample buffer (0.15 M Tris/HCI pH 6.8, 1.2 % SDS, 30 %
glycerol, 15 % mercaptoethanol and a small amount of
bromophenol blue), incubated at 95 °C for 5 min and samples
were analyzed by SDS-PAGE. All experiments were performed
in triplicate.

Bio-layer interferometry

Interaction analysis between APP-E1_ED_AcD and APP-
E2_JMR domains was performed on an Octet RED96
instrument (ForteBio) at 28 °C. Biotinylated APP-E1_ED_AcD
was prepared by incubating APP-E1_ED_AcD (5 uM) with
Sulfo-NHS-LC-Biotin (Thermo) at a molar ratio of 1:1 for 3
hours at 4 °C in PBS, followed by desalting using a PD
MiniTrap G25 column (GE Healthcare) to remove the excess
biotin reagent. A column of eight Streptavidin biosensor tips
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were loaded with biotinylated APP-E1_ED_AcD (0.2 uM) in 1x
kinetics buffer (10 mM phosphate, 2.7 mM KCI, 137 mM NacCl
(pH 7.4) containing 0.1 mg/ml BSA and 0.002% (v/v) Tween20)
to a final mean level of 0.74 nm. Loaded biosensors were first
washed and transferred to wells containing seven APP-
E2_JMR concentrations of a 2-fold dilution series (40 to 0.625
UM) in 1x kinetics buffer. Association and dissociation kinetics
were recorded at least three times for 2.5 and 5 minutes at a
shake speed of 1000 rpm, respectively. A second column of
eight non-coated sensor tips and a 1x kinetics buffer well were
used for double referencing of the raw data. Data were
processed using Octet Data Analysis Software 7.0 (ForteBio)
and were done in triplicate.

Results

The APPg;-ectodomain consists of two folded domains

In order to test the anticipated multi-domain architecture of
APPg; we expressed the entire ectodomain and subjected it to
limited proteolysis by V8 endoprotease, trypsin, elastase and
thermolysin. The proteases cleave hereby preferentially in
regions of higher flexibility but not within compactly structured
elements, thereby probing the folding-state of a given protein.
The employed proteases gave similar results. The clearest
picture was obtained when we incubated APP-Ecto with V8-
protease. Potential cleavage sites were hereby distributed
throughout the entire protein (Figure S1). Upon exposure to the
protease, the protein is trimmed down to four stable fragments
(Figure 1B). Identification of those fragments by Edman-
Sequencing and MALDI-MS (Table 1, Figure S2-S5) shows
that fragments two and four derive from the N-terminal part,
whereas fragments one and three originate from the second
half of the entire ectodomain indicating two rigidly folded
domains. Further support of this general architecture comes
from the existence of the two longer splicing forms APP,5, and
APP,,, that contain in comparison to APPgy; additional protein
segments (the KPl-region and Ox-2) in between the acidic
region and the E2-domain (Figure 1A). Because of its high
structural homology to other Kunitz-type protease inhibitors
[12], the KPI-region has been described as an independent
folding unit. In line with the notion that sites of alternative
splicing often correspond to structural domain boundaries [29],
also the regions pre- and successing the KPI sequence in
APP.s.770 (and correspondingly the two halves of the
ectodomain in APPg) are likely to represent structurally
independent protein units.

To determine the exact boundaries of potentially folded and
flexible segments within these two protein halves, limited
proteolysis experiments were performed with the isolated APP-
E1_ED_AcD and APP-E2_JMR constructs, corresponding to
the respective complete N- and C-terminal protein segments
(Figure 1A). In this way, we tremendously reduced the inherent
complexity of the limited proteolysis experiments.

Limited proteolysis of APP-E1_ED_AcD with V8-protease
resulted in two major fragments of ~24 kDa and ~20 kDa in
size that remained stable after 24 h of digestion (Figure 1C).
The exact N- and C-terminal boundaries of those fragments
were determined by Edman sequencing and MALDI-MS (Table
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Table 1. Cleavage sites of limited proteolysis products.
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N-terminal sequence

(identified by Edman Molecular weight (determined by

Theoretical molecular

Fragmenta degradation) mass spectrometry) Deduced cleavage site” weight Deduced sequenceh
1 VVRV 27.9 kDa E(524)|T(525) 27.9 kDa V286VRYV ... SLTES24
2 MLEV® 23.7 kDa E(227)](V228) 23.8 kDa ML18EV ... KVVE227
3 AMLN 16.0 kDa E(524)|T(525) 16.1 kDa ASBBMLN ... SLTES24
4 MLEV® 19.9 kDa E(192)]S(193) 20.0 kDa ML'8EV ... LAEE192
5 STPD® 25.5 kDa R(510)/1(511) 25.5 kDa $295Tp . SEPRS10
6 VEAML 15.9 kDa R(510)}1(511)° 14.9 kDa® V386EA ... SEPR510

@ numbers according to Figure 1
b numbering according to APPggs5

¢ sequences identified by Edman degradation correspond to the N-Terminus of the respective APP-constructs

d According to the primary structure the next possible cleavage site is after R510, which is within the experimental error close to the observed molecular weight of 15.9 kDa.

doi: 10.1371/journal.pone.0081926.t001

1) and are identical to the fragments generated by limited
proteolysis of APP-Ecto. Fragment two contains in comparison
to fragment four an additional region of 35 amino acid residues
at its C-terminus that is conserved among vertebrates (Figure
2) and is referred to hereafter as extension domain (ED).
Interestingly, this fragment contains also phosphorylation sites
[30] that could influence the physiological function of APP, and
Vella et al. demonstrated recently that N-terminal fragments
with a similar size are also generated in mouse and human
brains [31]. Likewise, the incubation of APP-E2_JMR with
trypsin results in two stable fragments of around 30 kDa and 20
kDa on SDS-PAGE (Figure 1D). The subsequent determination
of its N- and C-terminal amino acid residues by Edman
degradation and MALDI-MS (Table 1) showed that the longer
fragment five corresponds to an N-terminal extension of
fragment six. Only upon prolonged exposure to trypsin, this
fragment is truncated to fragment six, suggesting some
residual flexibility within the N-terminal region of APP-E2_JMR.
Both fragments were already described by Dulubova et al. [32]
and are similar to the fragments one and three generated upon
exposure of the entire ectodomain to V8 protease.

In summary, these results show that the APP-ectodomain
contains two folded domains that are stable against proteolytic
degradation. Interestingly, the termini of fragments four and five
roughly correspond to the E1- and E2-domains that were
initially identified based on homology between APP and
members of APP-like family of proteins [6,7].

The E1- and E2-domains represent regions of rigid fold

The protein segments corresponding to fragments two and
four (referred to hereafter as APP-E1_ED and APP-Ef,
respectively) were cloned and purified for additional
biochemical studies. In addition, we also investigated an
already existing construct very similar to fragment five (APP-
E2,[15]). The corresponding protein preparations were
analyzed by gel permeation chromatography (GPC) coupled
static light scattering (SLS) to determine both, the
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hydrodynamic radius based molecular weight (MW,,) and the
absolute molecular weight (MWg,5) (Table 2). For tightly folded,
spherical protein-molecules, both values should be similar,
whereas one expects the MW, to be significantly higher than
the MWy if flexible segments are present. For all three
constructs, the MWy fits quite well to the respective
theoretical molecular weights (MW,,), showing that APP-E1,
APP-E1_ED and APP-E2 are monomeric under the employed
experimental conditions. The molecular weights of APP-E1 and
APP-E2 determined by their retention volume in the GPC
experiments (MW,,) are slightly larger than the theoretical
molecular weights. The small difference is, however, readily
explained by their non-spherical shape such that both APP-E1
and APP-E2 represent rigidly folded domains without flexible or
extended linkers. This is also in line with the observation of
these domains as major products in limited proteolysis (see
above) and the fact that both domains were crystallized and
their structures have been solved by X-ray crystallography
[14,15,16,20].

In contrast, the MW, measured by analytical gel filtration for
APP-E1_ED is significantly higher than the absolute molecular
weight indicating the presence of a flexible or extended linker
region. We also observed repeatedly proteolytic degradation
bands in between fragment two (APP-E1_ED) and four (APP-
E1) during the preparation of APP-E1_ED (data not shown)
further suggesting protease accessibility and hence flexibility of
the protein segment at the C-terminus of APP-E1_ED.

The acidic and juxtamembrane regions are flexible

Our limited proteolysis experiments revealed that the acidic
and juxtamembrane regions are readily degraded indicating
less secondary structure elements. To gain a deeper
understanding about the structure of both regions, the
respective molecular weights were first determined by GPC.
Interestingly, APP-E1_ED_AcD and APP-E2_JMR show a
significantly higher MW, than their theoretical molecular weight
(Table 2). Correspondingly, they could either be dimeric in
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Figure 2. Sequence alignment of the acidic region among vertebrates. Fully conserved amino acids are highlighted on an
orange background. The light yellow and darker yellow background indicate a fully conserved strong group and a conserved weaker
group, respectively, according to ClustalX2.1 [28]. The cleavage site of the V8 protease is marked by a vertical arrow. The relative
location of the E1- and the E2-domain are indicated by horizontal arrows.

doi: 10.1371/journal.pone.0081926.9g002

solution or they could contain a flexible section or extended
linker that would result in an increased hydrodynamic radius.
To further analyze this, GPC coupled SLS was performed,
yielding their absolute molecular weights (MWg, ¢). These data
are in excellent agreement with the theoretical molecular
weights of the constructs, indicating that both proteins exist as
monomer in solution. The difference between MW, and MWg, ¢
is, however, too large to be explained solely by the non-
spherical shape of the respective fragments. Correspondingly,
one has to conclude that both, APP-E1_ED_AcD and APP-
E2_JMR contain flexible protrusions. As the isolated E1- and
E2-domains correspond to rigidly folded domains, we conclude
that both, the AcD and the JMR are predominantly flexible
without strong secondary structure elements, which is also in
excellent agreement with our results from limited proteolysis. In
addition, CD experiments of APP-E1_ED_AcD and APP-
E2_JMR confirm a higher amount of random coil in comparison
to the rigidly folded E1- and E2-domains (Figure S6, Table S1).

E1- and E2-domain do not interact tightly

To determine whether the ectodomain of APP is extended or
whether the E1- and E2-domains interact with one another,
analytical gel filtration was performed with the isolated as well
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Table 2. Apparent and absolute molecular weight of APP-
constructs.

MW,, (kDa)  MWss (kDa) MWy, (kDa)
APP-E1 29° 22.9+0.2° 21.7
APP-E1_ED 46 234+25 25.6
APP-E1_ED_AcD 88 336+1.9 323
APP-E2 27 27.0+0.3 25.6
APP-E2_JMR 75 40.6+0.5 40.1
APP-Ecto 178 722458 69.1

@ values taken from [20]
doi: 10.1371/journal.pone.0081926.t002

as the mixed constructs APP-E1_ED_AcD and APP-E2_JMR.
The correct fold of the respective protein preparation was
ensured by confirming their binding to heparin during
purification and the analysis of their expected secondary
structure in CD-spectroscopy (Figure S6). An interaction of
both domains should lead to an increased apparent molecular
weight compared to the respective individual constructs. The
isolated constructs elute in Gaussian shaped peaks at 1.78 and
1.83 ml from the gel filtration column (Figure 3A). Upon mixing
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an intermediate retention volume of 1.82 ml is observed,
showing that no strong interactions between both domains
exist. This could be confirmed by respective pull-down assays
(Figure 3B). APP-E2_JMR without His-tag is represented by a
double band in SDS-PAGE although the N-Terminus
determined by Edman-degradation and the C-Terminus (His-
tag) is identical, since both bands interact with the Hisg
antibody and both bands shift in a SDS gel after His-tag
removal. APP-E2_JMR without the tag does not bind to the
NiNTA beads. If applied together with APP-E1_ED_AcD, it
remains in the soluble fraction whereas only APP-E1_ED_AcD
binds via its His-Tag to the NiNTA beads and elutes as isolated
protein. To analyze whether the flexible regions influence a
possible interaction, pull-down experiments were repeated
using APP-E1 and APP-E2 (Figure 3C). Similar to the longer
constructs also the rigidly folded domains were able to bind to
heparin and were folded in CD-spectroscopy (Figure S6)
demonstrating that the batch of purified protein is well folded.
As expected from the longer constructs, also APP-E2 does not
bind to the NINTA beads, whereas the His-Tag containing
APP-E1 binds and elutes as isolated protein, showing again no
interaction between APP-E1 and APP-E2. This fits nicely to the
very high apparent molecular weight determined for the whole
APP-ectodomain in analytical gel filtration (Table 2). The
absolute molecular weight measured by SLS is in good
agreement with the theoretical molecular weight indicating that
the construct is monomeric in solution under the experimental
conditions. Correspondingly, the large difference between MW,,
and MWyg, ¢ results from an extended non-spherical shape of
the entire ectodomain in solution.

The E1- and E2-domains do not interact in bio-layer
interferometry experiments

To analyze whether there is a potential weak interaction
between the E1- and the E2-domain that might not have been
detected in the above experiments, we performed interaction
studies by bio-layer interferometry (BLI) [33]. In agreement with
other methods, the assay demonstrated that the APP-E2_JMR
domain does not bind to the APP-E1_ED_AcD domain with a
measurable affinity, even at the highest concentration of 40 yM
(Figure 4). This could be confirmed by surface plasmon
resonance (SPR), where we were not able to detect a specific
binding reaction between APP-E1_ED_AcD and APP_E2_JMR
as well as between APP-E1 and APP-E2 (M. C. Mayer and G.
Multhaup, personal communication).

Heparin does not support an interaction between the
E1- and E2-domain

Both, the E1- and the E2-domains bind to heparin [34,35].
Therefore, we hypothesized that heparin might influence the
interaction between both domains. To investigate this, we
performed pull-down assays in the presence of short and long
heparin-chains (10-12 and ~55 sugar rings). As seen before,
APP-E2_JMR remains completely in the soluble fraction,
whereas only isolated His-tag-containing APP-E1_ED_AcD
binds to the Ni-NTA material (Figure 3D and data not shown).
This demonstrates that heparin does not strongly influence an
intramolecular interaction of APP-E1 and APP-E2.
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Discussion

The amyloid precursor protein (APP) and its proteolytic
processing by the a-, - and y-secretases are critically involved
in the development of Alzheimer’s disease, and highly resolved
structural data were obtained by protein crystallography and
NMR-spectroscopy for several segments of this multi-domain
protein. However, until now, rather little is known about its
overall structure, its exact domain architecture, the structure
and the extent of flexible linker segments and the possible
interaction of its constituting domains. Such knowledge is,
however, indispensable to interpret functional data of this
protein within the correct three-dimensional, structural
framework. Our limited proteolysis experiments together with
GPC coupled SLS experimentally demonstrate that the large
ectodomain of APP4ys contains two rigidly folded regions — the
E1- and E2-domains. Correspondingly, the longer splicing
forms APP.;, and APP,;, contain the KPIl-domain as third
rigidly folded building block [12,13] inserted in-between E1 and
E2. We mapped the boundaries of these two domains to be
most likely Leu18-Ala190 (E1-domain) and Ser295-Asp500
(E2-domain), respectively (APPgs-numbering), which fits well
to the regions of defined three-dimensional structure seen in
the respective structures (Leu28-Ala190 for E1-domain [20]
and His313-GIn492 [14] as well as Thr296-Leu491 [16] for E2-
domain). This domain definition is in agreement with and
further refines the extent of the predicted E1- and E2-domains,
which were originally assigned based on homology [7].
Interestingly, the structures of the GFLD and the CuBD within
the E1-domain were initially reported as independent entities
[9,10], and SAXS-studies showed controversial results with
respect to their interaction [25,26]. Using protein
crystallography, limited proteolysis and GPC coupled SLS we
previously found that they interact tightly at slightly acidic pH,
constituting together the E1-domain [20]. Our present study
shows a tight interaction of the GFLD and the CuBD also at
neutral pH.

The E1-domain is followed by a protein segment exhibiting a
high percentage of acidic amino acid residues (56 %) that is
typically referred to as the acidic domain (AcD) and connects
the E1- and the E2-domain. Such a negatively charged region
is unlikely to form a tightly folded structural entity. Sequence
alignments show, however, a certain degree of conservation of
this region between vertebrates (Figure S1), suggesting
functional relevance. We hence analyzed its contribution to the
overall structure of APP and found that it confers flexibility,
evidenced by its rapid degradation in limited proteolysis and by
a dramatically increased hydrodynamic radius of the APP-
E1_ED_AcD construct as compared to the rigidly folded E1-
domain. This finding is in excellent agreement with the
observation that this region is easily degraded in vitro [9].
Directly C-terminal to the E1-domain, a region of ~30 amino
acid residues shows a high degree of conservation, and might
represent another folded segment as it does not contain
primarily acidic residues. Although we identified a respective
band in limited proteolysis, subsequent experiments clearly
showed flexibility within this section. However, the high degree
of conservation and the presence of phosphorylation sites
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Figure 3. Interaction studies of the E1- and E2-domain. (a) Analytical gel filtration using the constructs APP-E1_ED_AcD and
APP-E2_JMR. The UV-traces of the GPC analysis of the isolated and mixed proteins are given as indicated on top of the panel. For
clarity the baseline is shifted arbitrarily. Upon mixing no increase of the molecular weight was observed, indicating the lack of a
strong interaction between both constructs. (b) Pull-down assay with APP-E1_ED_AcD (His-tagged) and APP-E2_JMR (no His-tag)
using Ni-NTA material. After centrifugation, APP-E2_JMR remains completely in the supernatant (soluble) and only His-tagged
APP-E1_ED_AcD can be eluted. The first four lanes show that APP-E2_JMR (no His-tag) does not bind unspecifically to Ni-NTA
(control). The sizes of the molecular weight (MW) marker bands are given on the left of the gel in kDa. (c) The pull-down assay with
the constructs APP-E1 (His-tagged) and APP-E2 (no His-tag) demonstrates no interaction and shows that the flexible linker has no
influence on a potential interaction of the domains. (d) Pull-down assay in the presence of low molecular weight heparin (10-12
sugar rings) indicates that heparin does not influence an interaction of APP-E1_ED_AcD and APP-E2_JMR.

doi: 10.1371/journal.pone.0081926.9g003

within this segment [30] strongly suggest a role for the S1). Using GPC coupled SLS and limited proteolysis we could
physiologic function of APP. This was further demonstrated by experimentally demonstrate that also this region is flexible.

the identification of the corresponding N-terminal APP- Thus, the large ectodomain of APP represents a rather flexible
fragments in human and mouse brains [31]. arrangement of its rigid constituents, the E1- and E2-domains

The folded E2-domain is connected to the single that are connected to one another and to the single
transmembrane helix of APP by the juxtamembrane region transmembrane helix like beads on a string by the flexible
(JMR), which represents a second linker and shows less connections AcD and JMR, respectively (Figure 5). This overall
conservation compared to the E1- and E2-domains (Figure arrangement is further supported by the rather large
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Figure 4. Real-time association and dissociation of APP-E2_JMR to immobilized APP-E1_ED_AcD. (a) Bio-layer
interferometry sensorgrams of 40, 20, 10, 5, 2.5, 1.25, and 0.625 yM APP-E2_JMR binding to APP-E1_ED_AcD loaded on
Streptavidin biosensors. Triplicate measurements were performed at each concentration in a 2-fold dilution series. (b) Plot of the
concentration dependent APP-E2_JMR binding responses at the end of the association phase (150 seconds).

doi: 10.1371/journal.pone.0081926.9g004

hydrodynamic radius exhibited by the whole ectodomain, which under experimental conditions. The observed high MW, might
we could show by SLS-studies to be completely monomeric hereby easily be interpreted as indicating dimerization of the
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Figure 5. Overall structure of the amyloid precursor protein. The APPyy; ectodomain consists of exactly two folded domains:
the E1- (AA18-190) and E2-domain (AA295-500). The acidic domain (AcD) in between both domains is as flexible as the
juxtamembrane region (JMR). Furthermore, the E1- and E2-domains do not interact with one another tightly, leading to an extended
overall conformation. The extension domain (ED, AA191-227) is located in-between E1 and AcD as additional region of partial
structure. The two rigidly folded domains of the ectodomain are shown as surface presentation based on their respective crystal

structures ([20] PDB-ID: 3ktm [16]; PDB-ID: 3nyl).
doi: 10.1371/journal.pone.0081926.g005

APP-ectodomain, underscoring the importance of determining
the absolute molecular weight.

Interestingly, the E1- and E2-domains of APP are highly
conserved between this protein and the APP-like proteins [7,8].
Often such conserved domains are tightly correlated with
specific functions [36], suggesting more than one physiologic
role for the full-length protein. Several such possible functions
have been described for the two rigidly folded domains of APP.
In contrast, functions of the AcD and the JMR are rather
unknown. Prompted by controversial SAXS-results [25,26], we
investigated whether the E1- and E2-domains might interact
directly, potentially induced and regulated by the AcD and/or
the JMR. Using analytical gel filtration experiments and pull-
down assays as well as BLI and SPR we could show that
neither the folded domains E1 and E2 nor the extended
constructs APP-E1_ED_AcD and APP-E2_JMR do interact
with one another. Also different length heparins, that were
shown to bind to both folded domains [20,25,37,38,39], did not
promote such a direct interaction. These data are in excellent
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agreement with the hydrodynamic radius determined here for
the entire ectodomain (APP-Ecto) that fits to a molecule of
elongated shape (Table 2).

Interestingly, the cleavage sites of the (- and the a-
secretase, discriminating between the amyloidogenic and the
non-amyloidogenic processing of APP, are located at the C-
terminus of the JMR next to the single transmembrane helix of
APP. The cleavage of Notch, a cell-surface receptor that is
processed similar to APP by a ADAM-type metalloprotease at
site S2 and afterwards by y-secretase, is regulated by a
conformational change [40]. The high degree of flexibility and
hence the absence of any tight folding inside the APP-JMR
suggest a different regulation mechanism. Correspondingly, it
has been shown that the exposition of APP to the different
secretases is largely influenced by its trafficking. Protein-
protein interaction with F-Spondin and SorlA represent
regulatory events of its trafficking and its processing by
proteolytic enzymes [41,42]. Nevertheless, the insertion of
native APP in the lipophilic environment of the membrane and
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the presence of its single transmembrane helix probably also
influences the structure of other parts of the protein. It is
therefore important to consider the above described results
with respect to the recently determined structure of the APP-
fragment and y-secretase substrate C99 [17]. Its membrane
insertion and the identification of a closeby cholesterol binding
site will probably affect cleavage by a-secretase. The f-
secretase cleavage site after Met596 is located 16 amino acid
residues further N-terminal (at the N-terminus of C99) and was
completely unstructured in line with the data presented here
(Figure 5).

In conclusion, we could experimentally prove that the multi-
domain protein APP has an extended overall topology and
consists of two tightly folded segments, the E1- and E2-
domains. They are linked to one another by the flexible protein
segment AcD, but do not show any direct protein-protein
interaction, neither in the presence nor in the absence of
heparin. This assembly is connected to the membrane by the
again flexible JMR, containing the a- and B-secretase cleavage
sites. This work represents a thorough experimental
characterization of the overall structure of APP by different
methods and will prove very valuable to gain a deeper
understanding about the structure-function-relationship of the
protein in the future. Several described functions of APP were
originally identified with isolated peptides. Only the native
arrangement of functional amino acids in space, however, can
accommodate their true physiologic function, underlining the
importance of the present investigation. On the next level of
organization and interaction, APP is probably subject to a
number of oligomerization events and additional protein-
protein-interactions. Those must build, however, on the here
identified three-dimensional structure of the isolated,
monomeric protein.

Supporting Information

Figure S1. Sequence alignment of the APP ectodomain
among vertebrates. Fully conserved amino acids are
highlighted on an orange background. The light yellow and
darker yellow background indicate a fully conserved strong
group and a conserved weaker group, respectively, according
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