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Abstract
In most clinical applications of functional electrical stimulation (FES), the timing and amplitude
of electrical stimuli have been controlled by open-loop pattern generators. The control of upper
extremity reaching movements, however, will require feedback control to achieve the required
precision. Here we present three controllers using proportional derivative (PD) feedback to
stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then
evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains
were optimized by minimizing a weighted sum of position errors and muscle forces.
Generalizability of the controllers was evaluated by performing movements for which the
controller was not optimized, and robustness was tested via model simulations with randomly
weakened muscles. Robustness was further evaluated by adding joint friction and doubling the
arm mass. After optimization with a properly weighted cost function, all PD controllers performed
fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after
improper tuning. Performance improved slightly as the complexity of the feedback gain matrix
increased.
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1. Introduction
High-level (cervical C1–C4 level) spinal cord injury (SCI) involves the loss of most or all
voluntary muscular function below the neck. In this type of injury, communication between
the brain and skeletal muscles is impaired, while the peripheral neuromuscular system
remains intact. Functional electrical stimulation (FES) can restore voluntary movement, but
is particularly challenging in the proximal upper extremity (UE) (i.e. shoulder and elbow
joints), because arm reaching movements tend to be goal-oriented and unique, requiring a
novel muscle stimulation specification for each reaching task.
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To date, FES systems used in humans have most commonly employed feedforward, or open-
loop, control (Blana et al., 2009; Abbas and Triolo, 1997; Kilgore et al., 1989). Stimulation
parameters are calculated by the controller to generate a desired movement. Feedforward
control has been used for upper extremity movement including hand grasp (Keith et al.,
1989; Mauritz and Peckham, 1987), single-joint arm movements (Lan and Crago, 1994), and
elbow extension (Crago et al., 1998). Feedforward control has the advantage that no sensors
are required, which facilitates rapid movements and greatly simplifies controller
implementation in humans. However, drawbacks include the inability to make corrections if
the actual movement deviates from the desired one due to muscle fatigue or change in
environment, and the requirement to have detailed system behavior in order to produce an
accurate movement (Crago et al., 1996).

Feedback control uses sensors to monitor output and to make corrections when the output
does not behave as desired (Crago et al., 1996). Feedback has been used for a variety of UE
FES applications, including hand grasp (Crago et al., 1991), wrist stabilization (Lemay and
Crago, 1997) and elbow extension (Giuffrida and Crago, 2001). Feedback control has been
investigated for numerous FES applications, as it addresses many of the shortcomings of
feedforward control (Crago et al., 1996; Abbas and Triolo, 1997). However, because body-
mounted sensors are required, the use of feedback control in clinical applications has been
limited (Chizeck et al., 1988). Challenges to the success of feedback control include
limitations in sensor signal quality, the relatively slow response properties of muscles
(Abbas and Triolo, 1997), and inherent delays in system response, which are of particular
concern for fast movements (Stroeve, 1996).

Beyond basic feedback controllers, advanced UE FES controllers have also been developed.
Such controllers have used a variety of techniques, including combined feedforward and
feedback control (Blana et al., 2009; Kurosawa et al., 2005; Abbas and Chizeck, 1995),
reinforcement learning (Thomas et al., 2009; Izawa et al., 2004), and artificial neural
networks (Iftime et al., 2005; Giuffrida and Crago, 2005; Winslow et al., 2003). To
demonstrate the superiority of these advanced controllers, these highly tuned controllers are
often compared to linear proportional-derivative (PD) and proportional-integral-derivative
(PID) controllers (e.g. Dou et al., 1999; Reiss and Abbas, 2000) that may have been
suboptimal. Although tuning algorithms such as the Ziegler–Nichols (Astrom and Hagglund,
2004; Blana et al., 2009) and Chien, Hrones and Reswick (Chien et al., 1952; Kurosawa et
al., 2005) methods are often used for these linear controllers, such controllers cannot be
considered optimized; in fact, the Ziegler–Nichols tuning often gives very poor results
(Astrom and Hagglund, 2001), including excessively large overshoots for nonlinear
processes (Dey and Mudi, 2009). Therefore, simple feedback controllers may have been
dismissed as inferior, without having been tuned or optimized to the same degree as the
more complex controllers. In this paper, we propose to optimize and evaluate a basic PD
controller in order to determine the best possible performance that this simple controller is
capable of, for a range of conditions that approximate the physical challenges faced by FES
subjects. The PD controller architecture is particularly of interest because it recruits muscles
according to the Equilibrium Point hypothesis, which has been successful in explaining
basic features of motor control in the intact nervous system (Feldman et al., 1998).

This work, therefore, had two purposes: (1) to optimize a proportional derivative controller
for a planar, 2-segment arm model and (2) to evaluate this optimized controller to determine
whether it performed well for a range of challenging conditions that approximate a real-
world set of FES reaching tasks.

Jagodnik and van den Bogert Page 2

J Biomech. Author manuscript; available in PMC 2013 December 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Methods
2.1. Biomechanical model

The system used for all experiments described in this paper was a computational
musculoskeletal model that approximated a human arm constrained to move in a single
horizontal plane, as sliding along a tabletop (Fig. 1). Such planar movement is typical of
FES arm movements that utilize mobile planar arm supports (Rahman et al., 2006) and is
often used in basic research on arm control (e.g. Blana et al., 2009; Lan, 1997; Freeman et
al., 2009; Dou et al., 1999). The model has two joints (shoulder, elbow) and six muscles.
The equations of motion are described by

(1)

where M is the mass matrix; φ is the vector of shoulder and elbow joint angles; R is the 2 ×
6 matrix of muscle moment arms; F is the vector of 6 muscle forces; and C is the vector of
gravitational, centrifugal and Coriolis effects, and friction. Equations of motion were
generated by SD/Fast (PTC, Needham, MA). Mass properties of both arm segments were
taken from (Winter, 2005) and listed in Table 1.

The connection between each muscle and the skeleton was modeled by assuming constant
moment arms (listed in Table 2), which implies a linear relationship between muscle–tendon
length Lm and joint angles:

(2)

The four one-joint muscles have only one moment arm, while the biceps and long head of
the triceps have moment arms at both joints. Each muscle was modeled using a standard
Hill-based approach (Zajac, 1989), in which the contractile element (CE) had force–length
and force–velocity properties as well as activation dynamics, and a nonlinear series elastic
element (SEE) transmitted muscle force to the skeleton (Fig. 2). Passive muscle force was
not modeled because it does not play a major role in the range of motion that was studied.
This muscle model is standard in musculoskeletal simulation (Zajac, 1989) and represents
each muscle by two first-order ordinary differential equations (McLean et al., 2003), which
were simulated together with the mechanical state Eq. (1). The complete set of muscle
properties is listed in Table 2.

2.2. Controller and controller optimization
The proportional derivative (PD) controller generates muscle stimulations that are
proportional to the errors in joint angles and their time-derivatives (Fig. 3).

The PD controller generates a vector u of six muscle stimulation levels according to

(3)

where G is the 6 [muscles] × 4 [sensors] gain matrix, and s are sensor values. The four
sensors were the joint angles and angular velocities for shoulder and elbow, expressed in
radians and radians per second, respectively. The vector s0 is a matrix of sensor targets, with
joint angle targets for a specified reaching task and joint angular velocity targets equal to 0.
Controllers with three types of gain matrix G were considered. A 24-parameter controller
had the full 6 × 4 gain matrix, allowing one gain per muscle for each of the four sensors to
be specified. The 16-parameter controller removed 8 parameters from the 24-parameter
controller: for monoarticular muscles, gains corresponding to errors in the joint not directly
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controlled by that muscle were set to zero. The 2-parameter controller was similar to the 16-
parameter version, except that all angle gains and all angular velocity gains had the same
value.

Optimal controller gains G were found by minimizing a cost function consisting of an error
term representing cumulative distance to the reaching target and an effort term derived from
the amount of muscle force used. These costs were summed across a number of reaching
movements. Specifically, the cost function is given by

(4)

where ferror and feffort are

(5)

(6)

where φij is the angle of joint j for movement i in degrees,  are the target joint angles,
Fij is the muscle force of muscle j for movement i in Newtons, and T is duration of the
simulated movement. T was arbitrarily chosen to be 2 s, which allowed sufficient time for
the completion of both normal human reaching movements (approx. 0.5 s) (Gottlieb et al.,
1997), as well as potentially slower movements resulting from weakening of muscles. The
cost functions were calculated over a set of Nm = 12 reaching tasks, representing all possible
movements with each joint angle starting or ending at 20° or 80°. The weight W was set to
0.05° N−1, based on preliminary work that showed that this caused neither term to be
dominant in the cost function during optimization. If the weight was set too low, controller
optimization produced higher gains, causing faster arm movements but oscillatory muscle
activity rather than a relaxed steady state after reaching the target.

Optimizations were performed using the simulated annealing algorithm (Goffe et al., 1994).
The temperature reduction factor of the simulated annealing algorithm set to reduce the
temperature by 10% each time after 100 random variations in all parameters. If the
“temperature” (and consequently, cost function fluctuations) fell below 10−6, the
optimization was terminated and considered complete. All controller gains were constrained
between a lower bound of −2 and an upper bound of 2. These gains are equivalent to
producing full muscle stimulation at a position error of 0.5 radians or a velocity error of 0.5
radians per second.

2.3. Simulation experiments
2.3.1. Effect of controller architecture—In this investigation, the type of gain matrix
used in the PD controller was varied, from 2 independent parameters, to 16, to 24. Gain
parameters for each of the three controllers were optimized as described above. To
determine whether a global optimum was found, we performed two optimizations of each
controller, differing only by the random number seed used by the simulated annealing
algorithm.
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2.3.2. Generality test—To test the ability of the controllers to perform tasks for which
they had not been optimized, each of the three optimized controllers was applied to a set of
1000 randomly generated reaching tasks that had not been included in the 12-task set. Each
task specified an initial and target joint angle between 20° and 80° for both shoulder and
elbow.

2.3.3. Robustness test—To investigate the robustness of the controllers, each of the six
muscles included in our model was randomly weakened (maximal force was allowed to
range between 0% and 100% of nominal muscle strength) to simulate muscle fatigue or
atrophy, and the three already optimized controllers were applied to the 1000 randomly
generated tasks as described above.

2.3.4. Added-friction test—To investigate controller performance in the presence of
friction, as in an arm brace or when an arm slides along a tabletop, a frictional moment of
1.0 N m was applied to both joints in the arm, and the set of 1000 reaching tasks used above
was performed. This friction value is within the range found in assistive devices (Tickel et
al., 2002).

2.3.5. Doubled-mass test—To test the viability of the controller should mass properties
of an actual subject substantially differ from the modeled values, the mass of the arm was
doubled, and the same 1000 reaching tasks test were again performed.

In all of the above tests, we defined a failed trial as a movement in which one or both joints
were not within 5° of their target angle after 2 s. For trials that did not fail, steady-state (SS)
error was defined using (5), with the integration starting when both joint angles are within 5°
of their target angles. Furthermore, error and effort were quantified using Eqs. (5) and (6).

3. Results
3.1. Effect of controller architecture

Optimized cost function values were lower with increasing number of controller parameters
(Table 3). Fig. 4 shows joint angles and muscle forces and activations for a single reaching
task performed by the optimized 24-parameter controller. Animations of the optimized 24-
and 2-parameter controllers performing the set of 12 reaching tasks are included as
Electronic Supplementary Material. Optimized gains were similar for repeated optimizations
with a different random number seed. The largest differences between corresponding gains
for different optimizations of the same controller were 9.27%, 12.01% and 0.12% for 24-,
16- and 2-parameter controllers, respectively. Optimized gain values for all 3 controllers are
provided in the supplementary appendix.

3.2. Generality test
Results of the generality test, in which the optimized controllers were applied to a set of
1000 randomly generated reaching tasks, are shown in Table 4. Error values were slightly
lower for the more complex controllers, indicating better generalization to new movement
tasks. There were no failed trials for any of the controllers (Table 4).

3.3. Robustness test
Table 4 also presents results from the robustness test, in which muscles were randomly
weakened. Similar to the results of the generality test, the controllers with more independent
parameters performed better on all performance measures.
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3.4. Added-friction test
When friction was added, error for each controller increased slightly, compared to
corresponding values for the generality test on the unaltered model, while effort values were
similar (Table 4). However, steady-state error increased to around three times its value for
the generality test. The number of failed trials was relatively small, and decreased as number
of controller parameters increased (Table 4).

3.5. Doubled-mass test
Error values for the doubled-mass condition were slightly but consistently larger than error
values for the analogous generality and added-friction tests (Table 4). Steady-state error was
slightly but consistently larger than values for the generality test. Effort values were
approximately 37–39% larger than generality test values. All trials in the doubled-mass
condition were successful (Table 4).

4. Discussion
We designed a PD controller for a 2-segment, 6-muscle UE model with Hill-type muscle
properties. After optimization of feedback gains to minimize a combination of error and
effort, arm movement generated by this controller in simulations (Fig. 4) was similar to
typical human performances: smooth and sigmoid-shaped joint angle curves (Gottlieb et al.,
1997), and the completion of movements was on a similar time scale as in humans (Wadman
et al., 1980). Joint moments showed acceleration followed by deceleration, corresponding to
alternating agonist and antagonist muscle activities.

In practical applications, angular velocity information may be noisy due to differentiation of
angle sensor signals. We therefore also tested a proportional-only (P)-controller and found
that it produced slower movements with overshoot of the target position. While muscle
fibers (the contractile element in the model) provide damping, the series elastic coupling to
the skeleton makes this less effective to stabilize arm movement. We conclude that
derivative information is necessary to damp movements, but care must be taken to filter
sensor signals to prevent noise from affecting performance. A PID controller was also
investigated because of its potential to reduce steady-state error. We found that a PID
controller could leave muscles activated when the reaching target has been achieved, which
is a consequence of having more actuators than degrees of freedom.

While the more complex 24-parameter controller performed best for all controller tests
performed, the differences were small (Table 4), and the 2-parameter controller with
identical gains for all muscle–joint combinations may be preferred in clinical applications
because of simpler tuning.

As expected, muscle weakness in the robustness test decreased the speed and accuracy of
movements compared to generality test results (Table 4), as shown by larger error values. In
contrast, average effort decreased for the robustness test, due to the lower muscle forces
generated by the weakened muscles. Movements were still generally accurate but
approximately 10% of the simulated movements failed to reach within 5° of the target
angles (Table 4). From inspection of these failed trials, we found that most occurred when
the difference between the initial joint angle and the target joint angle was very small for
one or both joints; the set of 12 reaching tasks on which the PD controllers had been
optimized had not included any small-angle reaching tasks. Had a wider diversity of
reaching tasks been included in the optimization, these failures may have been avoided.

Friction caused an increase in steady-state error because the arm tends to “stick” when close
to the target, because the PD controller generates insufficient muscle activity to overcome
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friction. This would affect precision of movements. Increased mass mainly caused slower
movements, but no loss of precision. The results of the muscle weakening, friction and
doubled-mass experiments (Table 4) demonstrate that performance of the optimized PD
controller may be satisfactory, even when applied to a system that is very different from the
model for which it was optimized.

The model on which experiments were performed is a simplification of human arm
dynamics. While the muscle model is standard (Zajac, 1989), it does not represent certain
known properties of muscle, such as history-dependent effects (Herzog, 2004). Such effects
would be somewhat similar to muscle weakness and friction, so we expect the controller to
be robust with respect to these muscle properties, but further research is needed to confirm
this.

5. Conclusion and future directions
By optimization on a biomechanical arm model, a PD controller was designed that produced
accurate and efficient arm movements. It was found to be important that the optimality
criterion consist of appropriately weighted contributions of position error and muscular
effort. Without much loss of performance, the feedback gain matrix could be simplified by
having only two independent gain parameters, one for angle error and one for its derivative,
and by eliminating feedback from joints not directly controlled by a muscle. The optimized
controllers performed well for all reaching movements within the range of motion, even in
the presence of muscle weakness, friction, and added mass.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Top view of the 2-joint, 6-muscle biomechanical arm model. Y-axis is anterior. Movements
occur in the sagittal plane with no gravity, as sliding across a frictionless tabletop.
Antagonistic muscle pairs are as follows, listed as (flexor, extensor): monoarticular shoulder
muscles: (A: anterior deltoid, B: posterior deltoid); monoarticular elbow muscles: (C:
brachialis, D: triceps brachii (short head)); biarticular muscles: (E: biceps brachii, F: triceps
brachii (long head)). φ1 and φ2 are shoulder and elbow joint angles, respectively.
Adapted from (Lan, 1997). Moment arm values: d1 = 30 cm, d2 = 50 cm.
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Fig. 2.
Hill muscle model. CE is contractile element; SEE is series elastic element. LCE is length of
the contractile element.
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Fig. 3.
PD controller architecture. φ1 and φ1_target are actual and target shoulder angles,
respectively. φ2 and φ2_target are actual and target elbow angles, respectively. u(6) are
muscle stimulation values.
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Fig. 4.
Optimized (W = 0.05) 24-parameter controller outputs for the (20° shoulder, 20° elbow) to
(80°, 80°) reaching task: (a) shoulder and elbow joint angles; (b) muscle forces and (c)
muscle activations.

Jagodnik and van den Bogert Page 13

J Biomech. Author manuscript; available in PMC 2013 December 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jagodnik and van den Bogert Page 14

Table 1

Mass properties of arm segments.

Upper arm Forearm

Mass (kg) 2.24 1.76

Length (m) 0.33 0.32

CoM (m)1 0.1439 0.2182

I0 (kg m2) 0.0253 0.0395

CoM is distance between center of mass and prescribed joint; I0 is moment of inertia with respect to the center of mass. With reference to (Winter,

2005).
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Table 3

Performance of the 3 optimized PD controllers (W=0.05) on the 12 reaching task set.

Controller (# parameters) Cost function Error (deg.) Effort (N)

24 13.69 11.54 42.99

16 13.94 11.57 47.38

2 14.51 11.93 51.66

Values are averaged over 12 movements. Error and Effort values are calculated from (5) and (6), respectively.
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