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Resampling-based multiple testing procedures are widely used in genomic studies to identify differentially expressed genes and
to conduct genome-wide association studies. However, the power and stability properties of these popular resampling-based
multiple testing procedures have not been extensively evaluated. Our study focuses on investigating the power and stability of
seven resampling-based multiple testing procedures frequently used in high-throughput data analysis for small sample size data
through simulations and gene oncology examples. The bootstrap single-step min𝑃 procedure and the bootstrap step-down min𝑃
procedure perform the best among all tested procedures, when sample size is as small as 3 in each group and either familywise
error rate or false discovery rate control is desired. When sample size increases to 12 and false discovery rate control is desired,
the permutation max𝑇 procedure and the permutation min𝑃 procedure perform best. Our results provide guidance for high-
throughput data analysis when sample size is small.

1. Introduction

With rapidly developing biotechnology,microarrays and next
generation sequencing have been widely used in biomedical
and biological fields for identifying differentially expressed
genes, detecting transcription factor binding sites, and map-
ping complex traits using single nucleotide polymorphisms
(SNPs) [1–7]. The multiple testing error rates associated with
thousands, even millions of hypotheses testing, need to be
taken into account. Common multiple testing error rates
controlled in multiple hypotheses testing are the familywise
error rate (FWER), which is the probability of at least one
false rejection [8, 9] and the false discovery rate (FDR), which
is the expected proportion of falsely rejected null hypotheses
[10].

Resampling-based multiple testing procedures are widely
used in high-throughput data analysis (e.g., microarray and
next generation sequencing), especially when the sample size
is small or the distribution of test statistic is nonnormally

distributed or is unknown. Resampling-based multiple test-
ing procedures can account for dependent structures among
𝑃 values or test statistics, resulting in lower type II errors.The
commonly used resampling techniques include permutation
tests and bootstrap methods.

Permutation tests are nonparametric statistical signifi-
cance tests, where the test statistics’ distribution under the
null hypothesis is constructed by calculating all possible
values or a concrete number of test statistics (usually 1000 or
above) from permuted observations under the null hypoth-
esis. The theory of the permutation test is based on the
work by Fisher and Pitman in the 1930s. Permutation tests
are distribution-free, which can provide exact 𝑃 values even
when sample size is small.

The bootstrap method, first introduced by Efron [11] and
further discussed by Efron and Tibshirani [12], is a way
of approximating the sampling distribution from just one
sample. Instead of taking many simple random samples from
the population to find the sampling distribution of a sample
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statistic, the bootstrap method repeatedly samples with
replacement fromone random sample. Efron [11] showed that
the bootstrap method provides an asymptotically unbiased
estimator for the variance of a sample median and for error
rates in a linear discrimination problem (outperforming
cross-validation). Freedman [13] conclusively showed that
bootstrap approximation of the distribution of least square
estimates is valid. Finally, Hall [14] showed that the boot-
strap method’s reduction of error coverage probability, from
𝑜(𝑛
−1/2

) to 𝑜(𝑛−1), makes the bootstrap method one order
of magnitude more accurate than the delta method. The
𝑃 values computed by the bootstrap method are less exact
than 𝑃 values obtained from the permutation method, and
additionally, 𝑃 values estimated by the bootstrap method are
asymptotically convergent to the true 𝑃 values [15].

Different resampling methods can draw different con-
clusions, however, when applied to the same data set. An
investigation of multiple testing error rate control, power,
and stability of those resampling methods under different
situations is necessary to provide guidance for data analysis,
so that optimal methods in different scenarios could be used
tomaximize power andminimizemultiple testing error rates.

In this paper, we focus on investigating the power and sta-
bility properties of several commonly used resampling-based
multiple testing procedures: (1) the permutation tests [16];
(2) the permutation-based significant analysis of microarray
(SAM) procedure [17]; and (3) the bootstrap multiple testing
procedures [15].

2. Materials and Methods

2.1. Permutation Test. To carry out a permutation test based
on a test statistic that measures the size of an effect of interest,
we proceed as follows.

(1) Compute the test statistics for the observed data set,
such as two sample 𝑡-test statistics.

(2) Permute the original data in a way that matches
the null hypothesis to get permuted resamples and
construct the reference distribution using the test
statistics calculated from permuted resamples.

(3) Calculate the critical value of a level 𝛼 test based on
the upper 𝛼 percentile of the reference distribution, or
obtain the raw 𝑃 value by computing the proportion
of permutation test statistics that are as extreme as or
more extreme than the observed test statistic.

Westfall and Young [16] proposed two methods to adjust
raw𝑃 values to control themultiple testing error rates. One is
single-stepmin𝑃 procedure and the other is single-stepmax𝑇
procedure.

The single-stepmin𝑃 adjusted𝑃 values are defined as [18]

𝑝
𝑖

= Pr(min
1≤𝑙≤𝑚

𝑃
𝑙

≤ 𝑝
𝑖

| 𝐻
𝑀

) . (1)

The single-step max𝑇 adjusted 𝑃 values are defined in terms
of test statistics 𝑇

𝑖

, namely, [18]

𝑝
𝑇

𝑖

= Pr(max
1≤𝑙≤𝑚

𝑇𝑙
 ≥
𝑡𝑖
 | 𝐻𝑀) , (2)

where 𝐻
𝑀

is the complete null hypothesis. 𝑃
𝑙

is the raw 𝑃
value for the 𝑙th hypothesis, and𝑇

𝑙

is the observed test statistic
for the 𝑙th hypothesis.

2.2. Significance Analysis of Microarrays (SAM) Procedure.
The Significance Analysis of Microarrays (SAM) procedure
proposed by Tusher et al. [17] identifies genes with significant
changes in expression using a set of gene-specific 𝑡-tests.
In SAM, genes are assigned with scores relative to change
in gene expression and its standard deviation of repeated
measurements. Scatter plots of the observed relative differ-
ences and the expected relative differences estimated through
permutation identifies statistically significant genes based on
a fixed threshold.

Based on the description of SAM in Tusher et al. [17], the
SAM procedure can be summarized as follows.

(1) Compute a test statistic 𝑡
𝑖

for each gene 𝑖 (𝑖 =

1, . . . , 𝑔).
(2) Compute order statistics 𝑡

(𝑖)

such that 𝑡
(1)

≤ 𝑡
(2)

≤

⋅ ⋅ ⋅ ≤ 𝑡
(𝑔)

.
(3) Perform 𝐵 permutations of the responses/covariates
𝑦
1

, . . . , 𝑦
𝑛

. For each permutation 𝑏, compute the
permuted test statistics 𝑡

𝑖,𝑏

and the corresponding
order statistics 𝑡

(1),𝑏

≤ 𝑡
(2),𝑏

≤ ⋅ ⋅ ⋅ ≤ 𝑡
(𝑔),𝑏

.
(4) From the 𝐵 permutations, estimate the expected

values of order statistics by 𝑡
(𝑖)

= (1/𝐵)∑
𝐵

𝑏=1

𝑡
(𝑖),𝑏

.
(5) Form a quantile-quantile (Q-Q) plot (SAM plot) of

the observed 𝑡
(𝑖)

versus the expected 𝑡
(𝑖)

.
(6) For a given threshold Δ, starting at the origin, and

moving up to find the first 𝑖 = 𝑖
1

such that 𝑡
(𝑖)

− 𝑡
(𝑖)

>

Δ. All genes past 𝑖
1

are called significant positives.
Similarly, starting at the origin and moving down to
the left, find the first 𝑖 = 𝑖

2

such that 𝑡
(𝑖)

− 𝑡
(𝑖)

> Δ. All
genes past 𝑖

2

are called significant negatives. Define
the upper cut point Cutup(Δ) = min{𝑡

(𝑖)

: 𝑖 ≤ 𝑖
1

} =

𝑡
(𝑖

1
)

and the lower cut point Cutlow(Δ) = max{𝑡
(𝑖)

: 𝑖 ≥

𝑖
2

} = 𝑡
(𝑖

2
)

.
(7) For a given threshold, the expected number of

false rejections 𝐸(𝑉) is estimated by computing the
number of genes with 𝑡

𝑖,𝑏

above Cutup(Δ) or below
Cutlow(Δ) for each of the𝐵permutation and averaging
the numbers over 𝐵 permutations.

(8) A threshold Δ is chosen to control the Fdr (Fdr =
(𝐸(𝑉)/𝑟)) under the complete null hypothesis, at an
acceptable nominal level.

2.3. Bootstrap Method. The bootstrap method based on
estimated null distribution of test statistics was introduced by
Pollard and van der Laan [15] and proceeds as follows:

(1) Compute the observed test statistic for the observed
data set.

(2) Resample the data with replacement within each
group to obtain bootstrap resamples, compute the
resampled test statistics for each resampled data set,
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and construct the reference distribution using the
centered and/or scaled resampled test statistics.

(3) Calculate the critical value of a level 𝛼 test based on
the upper 𝛼 percentile of the reference distribution, or
obtain the raw 𝑃 values by computing the proportion
of bootstrapped test statistics that is as extreme as or
more extreme than the observed test statistic.

The MTP function based on the bootstrap method in-
cludes single-step min𝑃 and max𝑇 adjusted 𝑃 values, as well
as step-down min𝑃 and step-down max𝑇 adjusted 𝑃 values.
The single-stepmax𝑇 andmin𝑃 adjusted𝑃 values are defined
as before.

The step-down min𝑃 adjusted 𝑃 values are defined as

𝑝
𝑟
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= max
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and the step-down max𝑇 adjusted 𝑃 values are defined as
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where |𝑡
𝑠

1

| ≥ |𝑡
𝑠

2

| ≥ ⋅ ⋅ ⋅ ≥ |𝑡
𝑠

𝑚

| denote the ordered test
statistics [18].

2.4. Simulation Setup. Simulation studies were conducted
to compare the power and stability of the resampling-
based multiple testing procedures for both independent test
statistics and dependent test statistics. According to Rubin et
al. [19], the power is defined as the expected proportion of
true positives.The stability ismeasured as the variance of true
discoveries and variance of total discoveries.

In our first simulation study, each set includes 100
independently generated groups of two samples with equal
sample size of 3 or 12 in each group. 100 repetitions are
chosen because computationally 100 is more efficient than
1000 or even higher repetitions. 1000 repetitions are also
tried and similar results are obtained. Thus, 100 repetitions
are chosen for computational efficiency. The total number
of genes (𝑚) is set to be 2000 with the fraction of true null
hypotheses (𝑚

0

/𝑚) at 50%. In the two-group comparison,
the standardized logarithms of gene expression levels are
generated from multivariate normal distribution. One group
has 50% of genes with means at 𝜇 and the remaining with
means at 0. All genes in the other group have means at 0.The
mean expression level 𝜇 on log2 scale is set to be from 1 to 6
with step 0.50 for the first simulation study. The variances of
the standardized logarithmof gene expression levels are equal
to 1 in both groups. Thus, the mean differences of 𝜇 in gene
expression between the two groups are the Cohen’s 𝑑 effect
sizes.The pairwise correlation coefficients of test statistics are
set to be 0 in our simulation study. The test statistics used
are equal variance 𝑡-test throughout the simulation study.The
FWER/FDR level is set at 5% (𝛼 = 0.05).

We conducted another simulation study to examine the
effect of fraction of true null hypotheses on power and stabil-
ity. In our second simulation study, each data set includes 100
independently generated samples of two groups with equal

sample size of 3. The total number of genes (𝑚) is set to
be 1000, with the fraction of differentially expressed genes
((𝑚 − 𝑚

0

)/𝑚) equal to 10%, 25%, 50%, 75%, and 90% to cover
all possible scenarios. In the two-group comparison, the gene
expression level on log2 scale is generated randomly from a
multivariate normal distribution with 𝜇 = 0 and 𝜎 = 1. The
correlations between genes are randomly fluctuated between
0 and 1 to mimic the correlations in real microarray data.
The mean differences are set between 1 and 2, with the step
equaling the inverse of the number of differentially expressed
gene (𝑚 − 𝑚

0

). The variances are set to 1. Equal variance 𝑡-
tests are used for this simulation study, and the FWER/FDR
level is set at 5% (𝛼 = 0.05).

The mt.max𝑇 and mt.min𝑃 functions in 𝑅 were used
to evaluate the Westfall and Young’s permutation test. The
sam function in 𝑅 was used for the SAM procedure. The
Bootstrap method proposed by Pollard and van der Laan
[15] was executed using the MTP function in 𝑅. The MTP
function includes the max𝑇 method, the min𝑃 method,
the single step procedure, and the step-down procedure,
which results into four different functions, including single-
stepmax𝑇 (ss.max𝑇), single-stepmin𝑃 (ss.min𝑃), step-down
max𝑇 (sd.max𝑇), and step-down min𝑃 (sd.min𝑃).

2.5. Cancer Microarray Example. Ovarian cancer is a com-
mon cause of cancer deaths in women [20]. Microar-
ray experiments were conducted to identify differentially
expressed genes between chemotherapy favorable patients
and chemotherapy unfavorable patients [21]. Those differ-
entially expressed genes could be used to develop optimal
treatment for a new ovarian cancer patient by predicting
possible response to chemotherapy.The gene expression data
of 12,625 genes from 6 patients’ mRNA samples, obtained
from Moreno et al.’s ovarian cancer microarray study, were
used to show the differences in the number of total discoveries
among those resampling-based multiple testing procedures
with FWER or FDR controlled at 5% (data accessible at NCBI
GEO database [22], accession GSE7463). The preprocessing
of the ovarian cancer data set was done using the RMA
background correction, quantile normalization, and robust
linear model summarization. The raw 𝑃 values and the
adjusted 𝑃 values of comparisons between the chemotherapy
favorable group (3 subjects) and chemotherapy unfavorable
group (3 subjects) were calculated using the resampling-
based multiple testing functions in the multitest package and
the siggenes package in 𝑅.

3. Results

Simulation studies were conducted to compare the power
and stability across all tested multiple testing procedures
for normally distributed data with either independent or
randomly correlated test statistics.The sample size is 3 or 12 in
each group for independent test statistics and 3 in each group
for randomly correlated test statistics.

3.1. Simulation Results for Independent Test Statistics. For
independent test statistics with FWER controlled at 5%,
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Figure 1: Power and stability properties of resampling-basedmultiple testing procedures for independent test statistics with FWER controlled
at 5% and small sample size of 3 in each group (𝑚

0

/𝑚 = 50%). Solid blue line: permutation single-step max𝑇 procedure (mt.max𝑇 function);
red dashed line: permutation single-step min𝑃 (mt.min𝑃 function); green dotted line: bootstrap single-step max𝑇 (MTP ss.max𝑇 function);
violet dashed line: bootstrap single-step min𝑃 (MTP ss.min𝑃 function); orange dashed line: bootstrap step-down max𝑇 (MTP sd.max𝑇
function); pink dashed line: bootstrap step-down min𝑃 (MTP sd.min𝑃 function).

the two bootstrap min𝑃 procedures outperformed all other
tested procedures when sample size is 3 in each group
(Figure 1). Both the bootstrap single-step min𝑃 and the
bootstrap step-down min𝑃 procedures were more powerful
than all other tested procedures, and their FWER estimates
were close to 5% nominal level. The two permutation-
based procedures (mt.max𝑇 and mt.min𝑃) had no power to
detect any significant difference between groups, and their
FWER estimates were close to 0. The power of the bootstrap
max𝑇 procedures (ss.max𝑇 and sd.max𝑇) were between the
permutation procedures and the bootstrapmin𝑃 procedures.

The estimated variances of true discoveries and total number
of discoveries were around 0 for all tested resampling-based
multiple testing procedures. The estimated FWER, power,
and stability were constant across effect sizes.

The bootstrap single-step and step-down min𝑃 proce-
dures remained to have the largest power among all tested
procedures when FDR was controlled at 5% and sample size
was 3 in each group (Figure 2). The FDR estimates from the
bootstrap single-step and step-down min𝑃 procedures also
stayed around 5% nominal level. Both the SAM procedure
and the two permutation-based max𝑇 and min𝑃 procedures
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Figure 2: Power and stability properties of resampling-based multiple testing procedures for independent test statistics with FDR controlled
at 5% and small sample size of 3 in each group (𝑚

0

/𝑚 = 50%). Yellow dashed line: permutation single-step max𝑇 procedure (mt.max𝑇
function); black dashed line: permutation single-step min𝑃 (mt.min𝑃 function); solid blue line: bootstrap single-step max𝑇 (MTP ss.max𝑇
function); red dashed line: bootstrap single-stepmin𝑃 (MTP ss.min𝑃 function); green dashed line: bootstrap step-downmax𝑇 (MTP sd.max𝑇
function); violet dashed line: bootstrap step-down min𝑃 (MTP sd.min𝑃 function); orange dashed line: SAM procedure (sam function).

had no power to detect any significant difference, and their
FDR estimates were also close to 0. Both the FDR estimates
and power of the two bootstrap single-step and step-down
max𝑇 procedures were between the SAM procedure, the
permutation procedures, and the bootstrapmin𝑃procedures.
All resampling-based multiple testing procedures had esti-
mated variances of true discoveries and total number of
discoveries around 0.The estimated FDR, power, and stability
were constant across effect sizes.

The bootstrap step-down min𝑃 procedure had the
largest power across all tested procedures when sample size

increased to 12 in each group (Figure 3). The bootstrap
single-step max𝑇 procedure, the bootstrap step-down max𝑇
procedure, and the permutation single-step min𝑃 procedure
showed almost zero power for detecting any difference
between groups. All tested procedures had FWER estimates
around 0 and showed very small estimated variances of true
rejections and variances of total rejections. The estimated
FWER and power remained constant across effect sizes.

The permutation single-step max𝑇 procedure and the
permutation single-step min𝑃 procedure performed the best
when FDR is controlled at 5% and sample size is 12 in each
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Figure 3: Power and stability properties of resampling-basedmultiple testing procedures for independent test statistics with FWER controlled
at 5% and moderate sample size of 12 in each group (𝑚

0

/𝑚 = 50%). Solid blue line: permutation single-step max𝑇 procedure (mt.max𝑇
function); red dashed line: permutation single-step min𝑃 (mt.min𝑃 function); green dotted line: bootstrap single-step max𝑇 (MTP ss.max𝑇
function); violet dashed line: bootstrap single-step min𝑃 (MTP ss.min𝑃 function); orange dashed line: bootstrap step-down max𝑇 (MTP
sd.max𝑇 function); pink dashed line: bootstrap step-down min𝑃 (MTP sd.min𝑃 function).

group (Figure 4). The two permutation max𝑇 and min𝑃
procedures had much larger power than the four bootstrap
MTP procedures and also had estimated FDR less than
5%. The SAM procedure failed to control the FDR at the
desired level of 5%, although it had larger power than all
other tested procedures. The estimated variances of total
discoveries from the SAM procedure were much larger than
all other procedures when the effect size is around 1. The
permutation single-step max𝑇 and min𝑃 procedures had
small variances of true discoveries and total discoveries. The

four bootstrap MTP procedures had low power but similar
stability as the permutation max𝑇 andmin𝑃 procedures.The
estimated FDR and power were also constant across effect
sizes.

3.2. Simulation Results for Dependent Test Statistics. The two
bootstrap min𝑃 procedures (ss.min𝑃 and sd.min𝑃) showed
higher power than all other tested procedures across various
proportions of nontrue null hypotheses, when test statistics
are dependent and FWER is controlled. The two bootstrap
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Figure 4: Power and stability properties of resampling-based multiple testing procedures for independent test statistics with FDR controlled
at 5% and small sample size of 12 in each group (𝑚

0

/𝑚 = 50%). Yellow dashed line: permutation single-step max𝑇 procedure (mt.max𝑇
function); black dashed line: permutation single-step min𝑃 (mt.min𝑃 function); solid blue line: bootstrap single-step max𝑇 (MTP ss.max𝑇
function); red dashed line: bootstrap single-stepmin𝑃 (MTP ss.min𝑃 function); green dashed line: bootstrap step-downmax𝑇 (MTP sd.max𝑇
function); violet dashed line: bootstrap step-down min𝑃 (MTP sd.min𝑃 function); orange dashed line: SAM procedure (sam function).

min𝑃 procedures had desired FWER control as well, when
the proportions of nontrue null hypotheses were greater
than 50% (Table 1 and Figure 5). The two bootstrap max𝑇
procedures (ss.max𝑇 and sd.max𝑇) had lower power than
the two bootstrap min𝑃 procedures. They showed desired
FWER control, however, when the proportions of nontrue
null hypotheses were over 25%. The permutation single-
step max𝑇 and min𝑃 procedures had no power to detect
any significant difference between groups. All resampling-
based procedures had estimated variances of true discoveries

and total discoveries around 0 across various proportions of
nontrue null hypotheses, when sample size was as small as 3
in each group.

The power and stability of all four bootstrap methods
(ss.min𝑃, sd.min𝑃, ss.max𝑇, and sd.max𝑇) and the two per-
mutation methods (mt.max𝑇 and mt.min𝑃) showed similar
results, when FDR were controlled, as that when FWER
were controlled (Table 2 and Figure 6). The SAM procedure
had decent FDR control, but very low power when the
proportions of nontrue null hypotheses were less than 50%.
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Table 1: Comparison of the estimated FWER and power for the resampling-based multiple testing procedures with FWER controlled at 5%.

(𝑚 − 𝑚
0

)/𝑚 mt.maxT mt.minP ss.maxT ss.minP sd.maxT sd.minP

FWER

0.10 0.00 0.00 0.18 0.53 0.14 0.53
0.25 0.00 0.00 0.07 0.19 0.05 0.19
0.50 0.00 0.00 0.02 0.06 0.02 0.07
0.75 0.00 0.00 0.01 0.02 0.01 0.02
0.90 0.00 0.00 0.00 0.01 0.00 0.01

Power

0.10 0.00 0.00 0.11 0.27 0.09 0.30
0.25 0.00 0.00 0.12 0.32 0.11 0.32
0.50 0.00 0.00 0.10 0.28 0.09 0.29
0.75 0.00 0.00 0.11 0.27 0.10 0.28
0.90 0.00 0.00 0.11 0.28 0.11 0.28

mt.maxT: permutation single-step maxT procedure; mt.minP: permutation single-step minP procedure; ss.maxT: bootstrap single-step maxT procedure;
ss.minP: bootstrap single-step minP procedure; sd.maxT: bootstrap step-down maxT procedure; sd.minP: bootstrap step-down minP procedure.

Table 2: Comparison of the estimated FDR and power for the resampling-based multiple testing procedures with FDR controlled at 5%.

(𝑚 − 𝑚
0

)/𝑚 mt.maxT mt.minP ss.maxT ss.minP sd.maxT sd.minP sam

FDR

0.10 0.00 0.00 0.13 0.53 0.13 0.54 0.04
0.25 0.00 0.00 0.05 0.20 0.05 0.20 0.00
0.50 0.00 0.00 0.02 0.07 0.02 0.07 0.00
0.75 0.00 0.00 0.01 0.02 0.01 0.02 0.15
0.90 0.00 0.00 0.00 0.01 0.00 0.01 0.55

Power

0.10 0.00 0.00 0.08 0.29 0.09 0.28 0.04
0.25 0.00 0.00 0.10 0.31 0.10 0.33 0.00
0.50 0.00 0.00 0.08 0.29 0.09 0.28 0.00
0.75 0.00 0.00 0.09 0.29 0.10 0.28 0.15
0.90 0.00 0.00 0.09 0.29 0.10 0.29 0.55

mt.maxT: permutation single-step maxT procedure; mt.minP: permutation single-step minP procedure; ss.maxT: bootstrap single-step maxT procedure;
ss.minP: bootstrap single-step minP procedure; sd.maxT: bootstrap step-down maxT procedure; sd.minP: bootstrap step-down minP procedure; sam: the
SAM procedure.

Both the estimated FDR and power increased when the
proportions of nontrue null hypotheses were greater than
50% for the SAM procedure.

3.3. Real Data Example. The gene expression levels of 12625
genes from 6 subjects on log2 scale were used to com-
pare total number of discoveries identified from all tested
resampling-based multiple testing procedures (Table 3).
The two bootstrap min𝑃 procedures had more rejections
than the two bootstrap max𝑇 procedures, when FWER
was controlled at 5%. The bootstrap step-down min𝑃 and
single-step min𝑃 procedures remained higher number of
rejections than the bootstrap step-down max𝑇 and single-
step max𝑇 procedures, when FDR was controlled at 5%.
The SAM procedure only rejected 2 genes. The permuta-
tion max𝑇 and min𝑃 procedures rejected none of those
genes. The bootstrap multiple testing procedures has higher
power than all other tested procedures and rejected much
more null hypotheses compared to the permutation test
procedures. The bootstrap min𝑃 procedures rejected more
hypotheses than the bootstrap max𝑇 procedures. The total
number of rejections from this real microarray data anal-
ysis is consistent with the results from the simulation
studies.

Table 3: Comparisons of number of total discoveries for the
resampling-basedmultiple testing procedures for the ovarian cancer
example with 12,625 genes.

Resampling methods
Rejected number of hypothesis

FWER controlled
at 5%

FDR controlled at
5%

mt.maxT 0 0
mt.minP 0 0
ss.maxT 250 385
sd.maxT 407 397
ss.minP 1785 1649
sd.minP 1766 1706
sam 2
mt.maxT: permutation single-step maxT procedure; mt.minP: permutation
single-step minP procedure; ss.maxT: bootstrap single-step maxT proce-
dure; ss.minP: bootstrap single-step minP procedure; sd.maxT: bootstrap
step-downmaxT procedure; sd.minP: bootstrap step-downminP procedure;
sam: the SAM procedure.

4. Discussion

This paper investigated the power and stability proper-
ties of several popular resampling-based multiple testing
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Figure 5: Power and stability properties of resampling-based multiple testing procedures for dependent test statistics with random
correlations and the FWER is controlled at 5% (𝑛 = 3 in each group). Blue dashed line: permutation single-step max𝑇 procedure (mt.max𝑇
function); solid red line: permutation single-step min𝑃 (mt.min𝑃 function); green dotted line: bootstrap single-step max𝑇 (MTP ss.max𝑇
function); orange dashed line: bootstrap step-down max𝑇 (MTP sd.max𝑇 function); violet dashed line: bootstrap single-step min𝑃 (MTP
ss.min𝑃 function); pink dashed line: bootstrap step-down min𝑃 (MTP sd.min𝑃 function).

procedures for both independent and dependent test statis-
tics, when sample size is small or moderate, using available
functions in 𝑅. Our simulation results and real data example
show that the bootstrap single-step and step-down min𝑃
procedures perform the best for both small sample size data
(3 in each group) and moderate sample size data (12 in each
group) when FWER control is desired. The bootstrap single-
step and step-down min𝑃 procedures are the best when
FDR control is desired for data with small sample size (3 in
each group). The permutation max𝑇 and min𝑃 procedures

perform the best for data with moderate sample size when
FDR control is desired. The SAM procedure overestimates
FDR, although it has higher power than the permutation and
bootstrap max𝑇 and min𝑃 procedures.

The simulation results also showed that the permutation
test procedures have no power to detect any significant differ-
ences between groupswhen sample size is as small as 3 in each
group; the permutation test procedures perform well when
sample size increases to 12 in each group; the SAM procedure
has no power for detecting significant differences when
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Figure 6: Power and stability properties of resampling-based multiple testing procedures for dependent test statistics with random
correlations and the FDR is controlled at 5% (𝑛 = 3 in each group). Yellow dashed line: permutation single-step max𝑇 procedure (mt.max𝑇
function); black dashed line: permutation single-step min𝑃 (mt.min𝑃 function); solid blue line: bootstrap single-step max𝑇 (MTP ss.max𝑇
function); green dashed line: bootstrap step-downmax𝑇 (MTP sd.max𝑇 function); red dashed line: bootstrap single-stepmin𝑃 (MTP ss.min𝑃
function); violet dashed line: bootstrap step-down min𝑃 (MTP sd.min𝑃 function); orange dashed line: SAM procedure (sam function).

the proportion of nontrue null hypotheses is less than 50%
and sample size is 3; the bootstrapmultiple testing procedures
perform better than the permutation test procedures and the
SAM procedure for small sample size data.

The zero power of the permutation test procedures is due
to its limited number of permutated test statistics for data set
with small sample sizes. For example, the complete number
of enumeration is only 20 for both permutation single-
step max𝑇 procedure and permutation single-step min𝑃
procedure when sample size is only 3 in each group.Thus, the

smallest raw 𝑃 value from the permutation procedures will
be 0.05. After adjusting the raw 𝑃 values to control FWER or
FDR, all adjusted 𝑃 values will be larger than 0.05, thus no
hypotheses will be rejected. As such, the estimated FWER,
FDR, and power will all be zero.

Our current investigation only focuses on normally
distributed data. Further investigation is needed to extend
the distribution in the simulations from multivariate normal
to other distributions, such as lognormal and binomial
distributions. To examine the power and stability properties
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of those resampling-basedmultiple testing procedures, under
nonnormal distributions, will be a focus for our future
research.
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