
REPORT

Recessive Mutations in SLC38A8 Cause Foveal Hypoplasia
and Optic Nerve Misrouting without Albinism

James A. Poulter,1,14 Musallam Al-Araimi,1,14 Ivan Conte,2 Maria M. van Genderen,3

Eamonn Sheridan,1,4 Ian M. Carr,1 David A. Parry,1 Mike Shires,1 Sabrina Carrella,2 John Bradbury,5

Kamron Khan,1 Phillis Lakeman,6 Panagiotis I. Sergouniotis,7,8 Andrew R. Webster,7,8

Anthony T. Moore,7,8 Bishwanath Pal,8 Moin D. Mohamed,9 Anandula Venkataramana,10

Vedam Ramprasad,11 Rohit Shetty,10 Murugan Saktivel,11 Govindasamy Kumaramanickavel,10

Alex Tan,12 David A. Mackey,12 Alex W. Hewitt,12 Sandro Banfi,2,13 Manir Ali,1 Chris F. Inglehearn,1,*
and Carmel Toomes1,*

Foveal hypoplasia and optic nerve misrouting are developmental defects of the visual pathway and only co-occur in connection with

albinism; to date, they have only been associated with defects in the melanin-biosynthesis pathway. Here, we report that these defects

can occur independently of albinism in people with recessive mutations in the putative glutamine transporter gene SLC38A8. Nine

different mutations were identified in seven Asian and European families. Using morpholino-mediated ablation of Slc38a8 in medaka

fish, we confirmed that pigmentation is unaffected by loss of SLC38A8. Furthermore, by undertaking an association study with SNPs

at the SLC38A8 locus, we showed that common variants within this gene modestly affect foveal thickness in the general population.

This study reveals a melanin-independent component underpinning the development of the visual pathway that requires a functional

role for SLC38A8.
Foveal hypoplasia is a developmental defect found in

a number of eye conditions, including aniridia (MIM

106210), achromatopsia (MIM 216900), and retinopathy

of prematurity, but to date, it has only been identified in

association with optic nerve misrouting in cases of ocular

(MIM 300500) or oculocutaneous (MIM 203100) albi-

nism.1 Mutations in multiple genes have been reported

to be responsible for the different forms of nonsyndromic

and syndromic albinism, and each of these results in a

defect in melanin biosynthesis or melanocyte differentia-

tion.2,3 However, we recently described FHONDA (foveal

hypoplasia, optic-nerve-decussation defects, and anterior

segment dysgenesis) syndrome, which combines these

features in the absence of albinism.4 Individuals with

FHONDA syndrome all have a poorly defined foveal avas-

cular zone, absent or abnormal foveal and/or macular

reflexes, and absent foveal pits, consistent with a diagnosis

of foveal hypoplasia (Figure 1). Visual-evoked potential

(VEP) analysis has shown that these individuals have optic

nerve misrouting, in which an increased number of axons

cross the optic chiasm to innervate the contralateral cortex

(Figure 1). In addition, people with FHONDA syndrome

have either posterior embryotoxon or Axenfeld anomaly,

indicating dysgenesis of the anterior segment.4,5 However,

they do not display any of the pigmentation defects asso-
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ciated with albinism or ocular albinism; these include

hypopigmentation of the skin and hair (from careful clin-

ical examination and from inspection of baby pictures or

comparison with siblings), reduced pigmentation of the

iris and retina, and iris transillumination.4,6

Using a combinationof linkage analysis andautozygosity

mapping in two consanguineous families (F1 and F2;

Figure 2), we mapped the gene mutated in FHONDA syn-

drome to a 3.1 Mb locus in chromosomal region 16q23.3–

24.1 (chr16: 83,639,061–86,716,445; UCSC Genome

Browser, hg19).4 To identify the mutated gene, we used

Sanger sequencing to screen the coding sequence andflank-

ing splice sites of all 33 genes within the FHONDA locus in

a single affected member from both families. Primers were

designed with the ExonPrimer script accessed through

the UCSC Genome Browser (Table S1, available online).

Genomic DNAwas extracted and amplified by PCR accord-

ing to standard protocols. PCR products were processed

with ExoSAP-IT (Affymetrix USB), sequenced with BigDye

Terminator v.3.1 (Applied Biosystems), and run on an

ABI3130xl Genetic Analyzer (Applied Biosystems) accord-

ing to the manufacturers’ instructions. Informed consent

was obtained from all subjects tested, and ethical approval

was provided by the Leeds Teaching Hospitals NHS Trust

Research Ethics Committee (Ref. N. REC 03/362).
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Figure 1. Foveal Hypoplasia and Chiasmal Misrouting Are Present in Individuals with Recessive SLC38A8 Mutations
(A and B) Fundus photographs of the left (A) and right (B) eyes of individual IV:1 from family F5 at 12 years of age show retinal vessels
within the normally avascular macula region, signifying foveal hypoplasia.
(C) A normal control fundus is included for comparison. Note that the fundus pigmentation in (A)–(C) is normal and represents natural
variation. An optical-coherence-tomography scan of the left eye of the same child at the age of 11 years confirmed foveal hypoplasia.
(D) A fundus image showing the position of the scan (green arrow) spans the presumptive foveal region (white circle).
(E) Scan results show normal retinal morphology but the absence of a foveal pit.
(F) Flash VEP results of individual IV:1 from family F1 show contralateral asymmetry of VEP, demonstrating chiasmal misrouting. The
arrow shows the N2 peak, which is similar to that seen in albinos. Abbreviations are as follows: OD, right eye; and OS, left eye. Note that
the time on the x axis begins at �15 ms.
This analysis revealed different homozygous mutations

in SLC38A8 in both families (RefSeq accession number

NM_001080442.1). We identified a homozygous missense

mutation (c.707T>A [p.Val236Asp]) in family F1 and a

homozygous 1 bp deletion resulting in a frameshift

(c.1002delG [p.Ser336Alafs*15]) in family F2 (Figure 3).

Each mutation segregated with the disease in its respective

family (Figure 2) and was excluded from ethnically

matched controls and publically available databases

(National Heart, Lung, and Blood Institute [NHLBI]

Exome Sequencing Project Exome Variant Server [EVS]

and dbSNP). Conservation analysis showed that the

substituted valine amino acid is fully conserved down

to zebrafish, with the exception of the Tasmanian devil

(Figure S1). In addition, six different pathological pre-

diction tools support the pathogenic nature of the

p.Val236Asp substitution (Table S2).

Screening of SLC38A8 in a further 12 individuals with

foveal hypoplasia in the apparent absence of albinism

identified mutations in five additional cases (Figure 3). In

a third family (family F3), we found an apparently homo-

zygous mutation (c.1234G>A [p.Gly412Arg]) in a non-

consanguineous Northern European female with foveal

hypoplasia, optic nerve misrouting, and Kartagener

syndrome (MIM 244400).6 This missense mutation is pre-
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dicted to be damaging by six prediction tools and is fully

conserved in all orthologs except gorilla, whose predicted

protein sequence deviates from all other species for the

last 40 amino acids (Figure S1). Unexpectedly, mutation

screening in the female’s parents only confirmed the

mother as a heterozygous mutation carrier and failed to

identify the mutation in her father (Figure 2). However,

we confirmed paternity by genotyping ten fluorescently

labeled microsatellite markers (Figure S2), thus indicating

that this individual inherited a large deletion from

her father and is actually hemizygous for the SLC38A8

missense mutation. Interestingly, a known gene nearby

(DNAAF1 [MIM 613190]) is mutated in Kartagener disease,

and a large 640 kb deletion encompassing both genes has

previously been reported.7 We suspect that the presence

of a similar large deletion in this individual is the most

likely explanation for the co-occurrence of these two rare

disorders in a nonconsanguineous family.

In a female simplex case with foveal hypoplasia and

consanguineous Pakistani parents (family F4), we identi-

fied a homozygous frameshift deletion (c.1029delG

[p.Leu344Cysfs*7]). Unfortunately, no additional family

DNA samples were available, so we were unable to

perform segregation analysis for this mutation. In

another female simplex case with foveal hypoplasia and
mber 5, 2013



Figure 2. Pedigrees of Families Reported in This Study and Mutation Segregation Data
Affected individuals are shaded black. Detailed descriptions of members of F1, F2, F3, and F6 have been reported previously.4–6,8 The
husband of the affected individual in F3 has oculocutaneous albinism (gray shading). In family F6, the members with a question
mark have not undergone a full clinical examination, but the fact that they have esotropia, poor vision, and nystagmus suggests that
they have the same condition. The mutation genotypes for all tested family members are shown below each individual—M represents
the mutant allele, and þ represents the wild-type allele.
optic-nerve-decussation defects, we identified a homozy-

gous missense mutation (c.101T>G [p.Met34Arg]). This

female is from a consanguineous Turkish family (family

F5), and SNP microarray genotyping showed that her

largest region of homozygosity is ~19 Mb spanning

SLC38A8. As expected, both of her parents were found to

be heterozygous for the mutation, but DNA was unfortu-

nately not available for her unaffected sibling, so further

segregation analysis was not possible (Figures 2 and 3).

Conservation analysis showed that the methionine resi-

due substituted in this individual is not conserved and is

frequently replaced with leucine (Figure S1). However,

bothmethionine and leucine are similarly sized hydropho-

bic amino acids, whereas the substituted arginine residue

is positively charged and is therefore likely to disrupt the

hydrophobic edge of the transmembrane helix. Further-
The American Jou
more, four of the six pathogenic prediction tools class

this substitution as deleterious (Table S2).

Screening in a large highly consanguineous Indian fam-

ily (family F6) affected by foveal hypoplasia variably asso-

ciated with additional developmental eye defects8 led to

the identification of another homozygous missense muta-

tion (c.697G>A [p.Glu233Lys]). The mutated gene in this

family had previously been mapped to an ~4 Mb region

overlapping the FHONDA locus (maximum LOD score ¼
2.3 for marker rs254347).9 The mutation segregates with

the disease phenotype in all available family members,

and the substituted glutamic acid residue is fully conserved

in all species. However, the pathogenicity prediction tools

gave mixed responses: three predicted benign outcomes,

and three predicted deleterious effects (Table S2). All

affected members of this family have bilateral foveal
rnal of Human Genetics 93, 1143–1150, December 5, 2013 1145



Figure 3. Mutations in SLC38A8 Cause Foveal Hypoplasia and Optic-Nerve-Decussation Defects
(A) A schematic representation of the SLC38A8 genomic structure and transcript shows the location and sequence traces of eight
mutations identified in this study.
(B) A schematic diagram of SLC38A8 shows the location of the alterations within the protein domains. The compound-heterozygous
changes are in parentheses.
hypoplasia, but IV:7 also has bilateral microphthalmia and

a unilateral retinochoroidal coloboma. Similarly, his

9-year-old daughter (VI:1) also has bilateral microphthal-

mia, but his 6-year-old daughter (VI:2) only has foveal hy-

poplasia. Not all members of this family have undergone

a full clinical examination, but the fact that three

further members suffer from esotropia, poor vision, and

nystagmus suggests that they have the same condition

(Figure 2). Finally, we identified compound-heterozygous

mutations in two affected sisters from a Northern Euro-

pean family (F7). The first mutation is a nonsense change

(c.598C>T [p.Gln200*]), and the second is an in-frame

deletion causing the removal of a single amino acid

(c.845_847delCTG [p.Ala282del]). The deleted amino

acid is fully conserved in mammals, and both parents are

heterozygous for one of the mutations. One of the sisters

has FHONDA syndrome, but the other only has foveal

hypoplasia and optic nerve misrouting and does not

have any anterior segment abnormalities.

All mutations were excluded from ethnically matched

controls by sequencing. Control samples were European

Collection of Cell Cultures (ECACC) Human Random

Control Panel DNA, ECACC Human Ethnic Diversity
1146 The American Journal of Human Genetics 93, 1143–1150, Dece
Panel DNA, or unaffected, unrelated members of families

who had been recruited for genetics studies. None of the

mutations were present in dbSNP or the NHLBI EVS except

for p.Gln200* (rs149592537), which has a frequency of

1/12,999 in the NHLBI EVS and 1/4,545 in dbSNP and is

therefore likely to be a pathogenic allele identified in car-

riers. The seven individuals without SLC38A8 mutations

might indicate possible genetic heterogeneity. However,

it is possible that our screening strategymissed somemuta-

tions, especially large deletions such as the one identified

in family F3. Indeed, SNP microarray genotyping in one

of these individuals showed a large region of homozygosity

around SLC38A8, suggesting that mutations were missed

(data not shown). Unfortunately, because the clinical in-

formation for these cases is limited, especially regarding

pigmentation and iris transillumination, we cannot

exclude the possibility that they might actually be undiag-

nosed cases of albinism.

No iris transillumination or reduced pigmentation was

evident in the skin, hair, or eyes of any of the SLC38A8-

mutation-affected individuals, including 12 affected mem-

bers of five Asian families and three from two European

families. However, pigmentation defects in albinism can
mber 5, 2013



Figure 4. Morpholino Knockdown of
Slc38a8 in Medaka Fish Results in Micro-
phthalmia, Coloboma, and Lens Defects,
but No Skin- or Ocular-Pigmentation
Abnormalities
(A) Bright-field stereomicroscope images
show lateral views of representative fish
for the controls and Mo-50UTR-slc38a8
c3þc6 and Mo-50UTR-Slc38a8 c3þc6/Mo-
p53 mutants. The red bracket highlights
the reduced eye size in morphants, and
the arrows highlight displaced lenses.
Ocular pigmentation identical to that of
the controls can clearly be seen in the
mutant fish.
(B) The frequency of each phenotype
observed in the medaka fish is given as a
percentage of 300.
be subtle (see GeneReviews inWeb Resources). This has led

to speculation that FHONDA syndrome is actually mild

albinism,1 especially given that anterior segment dysgen-

esis is observed in albinism.10,11 Medaka fish (Oryzias

latipes) have been shown to be a reliable model system

for investigating pigmentation defects,12 so we examined

the effect of morpholino-mediated ablation of Slc38a8 in

these fish. All experiments were conducted in strict accor-

dance with the institutional guidelines for animal research

and approved by the Department of Public Health, Animal

Health, Nutrition and Food Safety of the ItalianMinistry of

Health in accordance with the law on animal experimenta-

tion (article 7, D.L. 116/92, protocol number 00001/08/

IGB, approval date October 22, 2008). Furthermore, all

animal treatments were reviewed and approved in advance

by the ethics committee of the Institute of Genetics and

Biophysics Animal House (Naples).

Morpholinos were designed against both medaka

SLC38A8 orthologs present in the UCSC Genome

Browser (October 2005 v.1.0): ENSORLT00000016172

on chromosome 6 (19,760,744–19,770,301 bp) and

ENSORLT00000011189 on chromosome 3 (20,486,490–

20,491,975 bp), along with corresponding mismatch

controls (Table S3). The Cab strain of wild-type medaka

fish was used, and embryos were staged according to Iwa-

matsu.13 Morpholinos (Gene Tools) were injected into

1-cell fertilized embryos according to established proto-

cols.14 Optimal morpholino concentrations were deter-

mined on the basis of morphological criteria. Specificity

and inhibitory efficiency of each morpholino were deter-

mined as previously detailed.15

Both orthologs of SLC38A8 were simultaneously tar-

geted with either morpholinos targeting the 50 UTR or
The American Journal of Human Genetics
the splice donor site of exon 4. Off-

target effects of themorpholino injec-

tions were excluded by repeated

experiments with mismatched mor-

pholinos or by coinjection with a

p53 morpholino.16 None of the re-

sulting morphant embryos were
found to have any pigmentation defects of the eyes or

tegument, as determined by morphological analysis of

both the retinal pigment epithelium and tegument mela-

nophores (Figure 4 and Figure S3). Structural abnormalities

were restricted to the eye. Compared to controls, the

majority of the knockdown embryos (87%–92%) had

microphthalmia, a significant number (29%–60%) had

lens defects, and a smaller number (16%–36%) had fissure

coloboma (Figure 4). Given that medaka fish do not have a

fovea, one would not expect to see a fully overlapping

phenotype between humans and fish, but it is interesting

to note that members of family F6 have microphthalmia

and coloboma.

To investigate the effects of Slc38a8 knockdown on optic

nerve decussation, we repeated the morpholino experi-

ment on Athonal5::GFP transgenic medaka embryos,

which have GFP-labeled retinal ganglion cells.17 However,

we observed no differences between the optic chiasm

of wild-type medaka and the knockdown embryos

(Figure S4). This result was not unexpected given that the

lateral position of the eyes in medaka prevents overlap of

the visual fields so that all retinal ganglion axons cross

the midline at the optic chiasm.18 The significantly over-

lapping visual space in humans, however, makes it essen-

tial that ~40% of the axons do not cross the midline but

rather project ipsilaterally to allow binocular vision.19 Indi-

viduals with FHONDA syndrome display an increase in the

number of axons projecting contralaterally,4,6 indicating a

defect in the specification of the ipsilateral projections that

are absent in medaka.

Examination of the clinical phenotypes of the individ-

uals with SLC38A8 mutations showed that not all fulfill

the criteria for FHONDA syndrome (Table S4). Foveal
93, 1143–1150, December 5, 2013 1147



hypoplasia was present in all affected individuals, and

optic-nerve-decussation defects were present in all individ-

uals examined for this feature except one in whom the VEP

analysis was inconclusive (F4). However, anterior segment

abnormalities were only present in 3/7 families (F1, F2, and

F7), making this a variable component of the phenotype in

individuals with recessive SLC38A8 mutations. At this

time, it is not possible to determine whether the micro-

phthalmia and retinochoroidal coloboma phenotypes

observed in one of our families (and in the medaka fish)

are related to the SLC38A8 mutations, and further pheno-

type-genotype studies are thus needed. A number of cases

of isolated foveal hypoplasia have been reported in the

literature, and it would be interesting to screen SLC38A8

in these cases.20,21 Similarly, VEP analysis is often used

for diagnosing albinism in fair-skinned populations, where

pigmentation defects can be hard to identify, so it is likely

that some of these cases might actually harbor SLC38A8

mutations.22

To test the hypothesis that common variants in SLC38A8

influence fovea thickness in the general population,we car-

ried out an association study in a population cohort of

Northern European ancestry from the Western Australian

Pregnancy Cohort (Raine) 20-year follow-up eye study.23

As part of a comprehensive eye examination performed

in this study, the foveal thickness of both eyes in each

participant was imaged through dilated pupils by spec-

tral-domain optical coherence tomography (Spectralis; Hei-

delberg Engineering) by an experienced operator. Retinal

thickness at the fovea was automatically determined by

the instrument software as the distance between the inter-

nal limiting membrane and retinal pigment epithelium.

The ratio of foveal thickness to the mean parafoveal thick-

ness and the ratio of foveal thickness to the average perifo-

veal thickness for each eye were also recorded. Given the

high correlation between the right and left eyes (intraclass

correlation coefficient of 0.872 [95% confidence interval

(CI) ¼ 0.834–0.905], 0.911 [95% CI ¼ 0.847–0.943], and

0.733 [95% CI ¼ 0.576–0.819] for central foveal thickness,

fovea-parafovea ratio, and fovea-perifovea ratio, respec-

tively), the mean values for each participant were used for

analysis after inverse normal transformation.

DNA samples and consents for genome-wide association

studies (GWASs) were available from previous assessments.

Genotype data were generated with the genome-wide Illu-

mina 660 Quad Array at the Centre for Applied Genomics

(Toronto) and processed for quality control (QC). We used

the EIGENSTRAT program24 to conduct principal-compo-

nent analysis and constructed the first five principal

components for a subset of 42,888 SNPs that were not in

linkage disequilibrium with each other. Additionally, we

performed the GWAS imputation of 22 autosomes in the

MACH v.1.0.16 software by using the CEU (Utah residents

with ancestry from northern and western Europe from the

CEPH collection) samples from HapMap phase 2 (build 36,

release 22). A linear regression model in R with a PLINK

interface25 was used for determining associations between
1148 The American Journal of Human Genetics 93, 1143–1150, Dece
SNPs and foveal thickness, the ratio of foveal to parafoveal

thickness, or the ratio of foveal to perifoveal thickness. The

model was adjusted for age, sex, and the first two principal

components that accounted for the population stratifica-

tion. After QC, phenotypic and genetic data were available

from 679 individuals. We focused our analysis on SNPs sur-

rounding SLC38A8. These data suggest that variants at

this locus confer an effect in normal fovea variation and

suggest that SNP rs7200988 (allele A) is the most associated

with foveal thickness (p ¼ 5.77 3 10�4) (Figure S5 and

Table S5).

SLC38A8 encodes an orphan member of the SLC38

sodium-coupled neutral amino acid transporter (SNAT)

family of proteins, which are widely expressed and pre-

dominantly have glutamine as their preferred substrate.26

To determine the expression of SLC38A8, we performed

RT-PCR with primers spanning intron 7 on cDNA created

from a panel of mRNA from human adult and fetal tissue

(Clontech) according to standard protocols. SLC38A8

expression was found predominantly in neuronal tissue

(adult brain, fetal brain, and spinal cord), and very weak

expression was also present in the kidneys, thymus, and

testes (Figure S6).

Using a custom-made rabbit polyclonal antibody

(GenScript) raised against 14 amino acids located at the

N terminus of SLC38A8 (QTPGSRGLPEKPHP), we investi-

gated the protein localization of SLC38A8 by using human

brain and eye tissues obtained from the Leeds Tissue

Bank. SLC38A8 was shown to be located throughout the

neuronal retina but had strong staining in the inner and

outer plexiform layers and the photoreceptor layer

(Figure S6). Similarly, in the brain we showed that

SLC38A8 is localized in the cell body and axon of the

majority of neuronal cells and in a subset of glial cells

(Figure S6). These data are almost identical to those

obtained for the recently characterized glutamine trans-

porter SLC38A7,27 the closest homolog of SLC38A8,28

and suggest that both proteins have similar functions.

Glutamine is present at high concentrations in the brain

extracellular fluid and cycles between neurons and glial

cells, where it serves as an intermediate metabolite for

the formation of the neurotransmitters glutamate and

gamma-amino butyric acid. The location of SLC38A8 in

the retina is consistent with a synaptic neurotransmitter-

recycling role. However, this would not adequately explain

the developmental defect observed in SLC38A8-mutation

carriers. Active synapses are known to play a role in the

formation and remodeling of neural circuits, including

the projecting retinal ganglion cells,29 providing one

possible developmental disease mechanism. Alternatively,

the localization of SLC38A8 in the somata and axons of

brain cells might imply an additional role or roles for this

protein. Consistent with this hypothesis, there is emerging

evidence that neurotransmitters play a role in the devel-

oping retina bymodulating the proliferation of retinal pro-

genitor cells even before synapses are formed.30 In turn,

the number and spatiotemporal development of retinal
mber 5, 2013



cells are then believed to influence the extent to which

projecting axons cross at the chiasm or project ipsilaterally,

thus providing an alternative hypothesis to explain the

defects seen in individuals with defects in SLC38A8.31

In summary, we have shown that recessive mutations in

the putative glutamine transporter SLC38A8 cause foveal

hypoplasia and optic nerve misrouting. We show that

pigmentation is not affected by loss of SLC38A8 and thus

identify a melanin-independent component essential for

the development of these structures.
Supplemental Data

Supplemental Data include six figures and five tables and can be

found with this article online at http://www.cell.com/AJHG.
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