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Abstract To improve antibody production in Chi-

nese hamster ovary (CHO) cells, the humanized

antibody-producing CHO DP-12-SF cell line was

transfected with the gene encoding activating tran-

scription factor 4 (ATF4), a central factor in the

unfolded protein response. Overexpression of ATF4

significantly enhanced the production of antibody in

the CHO DP-12-SF cell line. The specific IgG

production rate of in the ATF4-overexpressing CHO-

ATF4-16 cells was approximately 2.4 times that of the

parental host cell line. Clone CHO-ATF4-16 did not

show any change in growth rate compared with the

parental cells or mock-transfected CHO-DP12-SF

cells. The expression levels of mRNAs encoding both

the antibody heavy and light chains in the CHO-

ATF4-16 clone were analyzed. This analysis showed

that ATF4 overexpression improved the total produc-

tion and specific production rate of antibody without

affecting the mRNA transcription level. These results

indicate that ATF4 overexpression is a promising

method for improving recombinant IgG production in

CHO cells.

Keywords Activating transcription factor 4 �
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Introduction

Since the 1990s, the production of antibodies and

recombinant proteins has become much more effi-

cient, and it is now possible to produce up to 10 g/l in

some cases (Huang et al. 2010; Werner 2004; Wurm

2004). These higher yields are mainly attributed to

increased viable cell concentrations (Wurm 2004), but

remarkable progress in the improvement of specific

production rates were recently reported. For instance,

the specific production rate of recombinant cell lines

reaches around 50 pg/cell/day (Butler and Meneses-

Acosta 2012), or around 90 pg/cell/day (Kober et al.

2013). However, a plasma cell can secrete several

thousands of immunoglobulin M molecules (Randall

et al. 1992), indicating that a 2.5–12-fold increase in

specific productivity is possible (Khan and Schroder

2008).

Three main engineering strategies have been

used for improving biopharmaceutical production
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in Chinese hamster ovary (CHO) cell lines (Omasa

et al. 2010). First, the conventional methods focused

on process and reactor design and media formulation

development (Wurm 2004) to increase viable cell

concentration. Second, gene amplification methodol-

ogies, including the construction of gene-amplified

cell lines, target integration into hot spots on CHO

chromosomes, or the use of strong promoters and/or

stable elements in vectors, can increase yield by

increasing mRNA translation (Barnes and Dickson

2006; Omasa 2002; Omasa et al. 2010; Park et al.

2010). Third, protein folding, post-translational mod-

ification and secretion have been improved, which is

of particular importance because the amount of

secreted heterologous protein does not always increase

proportionally with gene copy number (Parekh et al.

1995; Yoshikawa et al. 2000), mRNA (Barnes et al.

2004) or even the amount of intracellular heterologous

protein (Schroder and Friedl 1997). Thus, it appears

that the bottleneck for high protein production

involves folding, posttranslational modification and

protein secretion. These steps occur mainly in the

endoplasmic reticulum (ER) and Golgi apparatus.

In this study, we highlight the importance of the

third engineering strategy for improving antibody

production.

Immunoglobulin (Ig) is complicated in its structure

and function compared with other recombinant pro-

teins produced in CHO cells. IgG is a heterodimeric

molecule composed of two heavy and two light chains.

The light chains consist of about 214 amino acids in 2

domains, while the heavy chains consist of 445 amino

acids in 4 domains. The heavy and light chains are

connected by several inter- and intra-disulfide bonds.

The assembly of heavy and light chains inside the ER

is strictly controlled (O’Callaghan et al. 2010). The

heavy chains cannot be secreted without being

assembled with the light chains because the CH1

domain controls the assembly and secretion of IgG

(Feige et al. 2009). After assembly, N-glycosylation

takes place at the Asn residues of the Asn-X-Ser/Thr

sequons in the Golgi apparatus (Zheng et al. 2011)

(Fig. 1).

The endoplasmic reticulum is the major organelle

involved in the synthesis of proteins and it forms a

membranous network throughout the cell. According

to a previous report, about one-third of the total

proteins produced are synthesized in the ER (Shimizu

and Hendershot 2007). The ER lumen possesses a

unique environment for high quality control of protein

folding and assembly. It contains high concentrations

of molecular chaperones, folding enzymes and ATP,

which aid in the proper maturation of proteins (Gomez

et al. 2008). However, if the amount of proteins to be

folded exceeds the capacity of the folding machiner-

ies, unfolded proteins will accumulate in the ER and

the unfolded protein response (UPR) is triggered. The

UPR restores homeostasis inside the ER by attenuating

protein translation, activating the folding machineries,

degrading unfolded proteins, and finally inducing

apoptosis (Brewer and Hendershot 2005).

Many UPR genes and chaperones provide an

enhancing effect on recombinant protein production.

PDI overexpression increased the secretion of heter-

ologous protein (Mohan et al. 2007). BiP overexpres-

sion also increased heterologous protein secretion

(Hsu and Betenbaugh 1997). In CHO-K1 cells, XBP-

1s overexpression improved the secretion of several

heterologous proteins (Ku et al. 2008; Tigges and

Fussenegger 2006). Our previous study reported that

the overexpression of ATF4 in antithrombin III-

expressing CHO cells remarkably increased the spe-

cific production rate of antithrombin III (Ohya et al.

2008). However, activating transcription factor 4

(ATF4) technology has not been tested with compli-

cated proteins such as IgG, which is strictly assembled

in the ER. In this study, we investigated whether the

ATF4 overexpression approach could improve IgG

production in CHO cells to determine whether this

approach is product-specific.

Materials and methods

Cell line and medium

The serum-free adapted CHO cell line, CHO-DP12-

SF, producing human anti-IL-8 IgG was used in this

study (Kim et al. 2010). The cell culture medium

was Dulbecco’s modified Eagle’s medium DMEM

(Sigma-Aldrich, St. Louis, MO, USA) supplemented

with 10 % dialyzed fetal bovine serum FBS (SAFC

Biosciences, Lenexa, KS, USA) and 200 nM

methotrexate (Sigma-Aldrich, St. Louis, MO,

USA). Methotrexate at is added at this concentration

during all the experiments.
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Construction of the ATF4-overexpressing CHO

cell line

The CHO ATF4 cDNA was cloned as described

previously (Ohya et al. 2008). The cDNA was inserted

into the KpnI/XbaI sites of pcDNA3.1/Hygro(?)�

(Invitrogen, Carlsbad, CA, USA) to construct the

pcDNA3.1/Hygro(?)-ATF4 vector. ATF4 was consti-

tutively expressed under the control of the human

cytomegalovirus (CMV) immediate early promoter.

The pcDNA3.1/Hygro(?)-ATF4 vector was transfec-

ted into the CHO DP-12-SF cell line using TransIT-

LT1 transfection reagent (Mirus Bio Madison, WI

USA). Single cell clones were obtained using the

limiting dilution method. The transfected cell lines

were selected using 200 lg/ml hygromycin (Wako,

Osaka, Japan). Chromosomal DNA was isolated from

the obtained single cell clones after 72 h of cultivation

using DNeasy Blood & Tissue Kit (Qiagen, Hilden,

Germany). The primers 50-TAATACGACTCACTA

TAGGG-30 and 50-TAGAAGGCACAGTCGAGG-30

were employed for the amplification of the non-coding

region of pcDNA3.1/Hygro(?)-ATF4 to detect the

integration of the designated plasmid into the CHO

chromosome. PCR was performed using Ex Taq

polymerase (Takara Bio, Otsu, Shiga JAPAN) with

100 ng of genomic DNA. RNA was also isolated after

72 h of cultivation of the obtained clones using the

RNeasy mini kit (Qiagen). cDNA equivalent to 1 lg of

RNA was prepared using the Omniscript RT kit

(Qiagen), and PCR was performed using the same

primers used for chromosomal detection.

Fig. 1 Schematic diagram for the intracellular production of

both AT-III and IgG (modified from Omasa et al. 2010;

O’Callaghan et al. 2010). Immunoglobulin G requires two

mRNAs for the heavy (HC) and light (LC) chains. In the case of

IgG, assembly in the ER is necessary after the translation of both

mRNAs
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Determination of specific growth and IgG

production rates

CHO cells were grown in 6-well plates containing

DMEM supplemented with 10 % FBS, 200 nM meth-

otrexate and 200 lg/ml of hygromycin using the replica

culture method (Lee et al. 2013). Cell concentration was

determined using a Coulter Vi-Cell automated cell

viability analyzer (Beckman Coulter, Inc., Fullerton,

CA, USA). IgG concentration was determined by

sandwich enzyme linked immunosorbent assay

(ELISA) according to a previous report (Kim et al.

2010). In brief, a 96-well plate (Corning, Corning, NY,

USA) was coated with a goat anti-human IgG-Fc

polyclonal antibody (100 ll/well, 10 lg/ml; Bethyl

Laboratories, Montgomery, TX, USA) in 0.1 M sodium

hydrogen carbonate buffer overnight at room temper-

ature. The plate was washed three times with phosphate-

buffered saline (PBS) containing 0.05 % (v/v) Tween

20 (PBS-T). The unbound active sites were blocked

using 300 ll/well of 1 % (v/v) bovine serum albumin

BSA (KPL, Gaithersburg, MD, USA) in PBS for 1 h at

room temperature. The plate was then washed with

PBS-T. Human serum reference (Athens Research &

Technology, Athens, GA, USA) and samples were

added to the plate and incubated for 2 h at room

temperature. After incubation, the plate was washed

three times with PBS-T and then incubated for 1 h at

room temperature with horseradish peroxidase-conju-

gated goat anti-human IgG-Fc polyclonal antibody

solution (100 ll/well, 1 lg/ml; Bethyl Laboratories) in

1 % (v/v) BSA/PBS. Finally, the plate was washed three

times with PBS-T, and 100 ll/well of enhanced chemi-

luminescence solution (KPL, Geithersburg, MD, USA)

was added. The reaction was stopped after 30 min at

room temperature by adding 100 ll/well of peroxidase

stop solution. The absorbance was measured at 405 nm

using a microplate reader (Tecan, Männedorf, Switzer-

land). The specific growth and IgG production rates

were calculated as described previously (Ohya et al.

2008). Statistical analysis was performed using the two-

sided unpaired t test.

Quantification of mRNA

In order to determine mRNA levels, total RNA was

isolated from CHO cells at 72 h for ATF4 and C/EBP-

homologous protein (CHOP) mRNAs and at 24, 48, 72,

96, 120 and 144 h for heavy and light chain mRNAs

using the RNeasy Mini Kit (Qiagen). mRNA quantifi-

cation was performed using the SYBR� Green quan-

titative real-time polymerase chain reaction (PCR) and

the Step One Plus Real-Time PCR System (Applied

Biosystems, Foster City, CA, USA). The efficiency of

reverse transcription was verified by standardization to

the house-keeping gene, ACTB (b-actin). The mRNA

expression level is evaluated by delta delta Ct method

according to the Step One Plus program as described

previously (Lee et al. 2013). The primers used for real

time PCR are shown in Table 1. Statistical analysis was

performed using the two-sided unpaired t test.

Results and discussion

Evaluation of the effect of ATF4 overexpression

on IgG production

After introducing pcDNA3.1-ATF4/Hygro(?) into

CHO DP-12-SF cells, 26 clones were selected in

DMEM supplemented with 10 % FBS and 200 lg/ml

hygromycin using the limiting dilution method. In

order to confirm that the construct was integrated into

the CHO genome, PCR analysis was performed. By

using primers from the noncoding region of the vector

(T7 promoter and BGH as shown in Fig. 2a and

Table 1), the genome integration of ATF4 was

confirmed in the obtained CHO single clones. Out of

the 26 clones, only 4 clones were confirmed to possess

a genomic insert of about 1.2 kb in the CHO DP-12-SF

chromosome (Fig. 2b). Reverse transcriptase PCR

Table 1 Real time PCR primers

Primer name Sequence

T7-promoter 50-TAATACGACTCACTATAGGG-30

BGH 50-TAGAAGGCACAGTCGAGG-30

Heavy chain-F 50-ACGGTGTCGTGGAACTCAG-30

Heavy chain-B 50-ACGCTGCTGAGGGAGTAGAG-30

Light chain-F 50-ACCAAGGTGGAGATCAAACG-30

Light chain-B 50-ATTCAGCAGGCACACAACAG-30

b-actin-F 50-ACTCCTACGTGGGTGACGAG-30

b-actin-B 50-AGGTGTGGTGCCAGATCTTC-30

CHOP-F 50-GGGAGCTGGAAGCCTGGTAT-30

CHOP-B 50-GGGACCCCCATTTTCATCTG-30

ATF4-F 50-TTCTCCAGCGACAAGGCTAAG-30

ATF4-B 50-GCACTGACCAACCCATCCA-30
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analysis revealed that only three clones possessed the

insert (Fig. 2c).

To evaluate cell growth and IgG production in the

three clones, batch cultivations were performed using

6-well plates. The clones, DP-12-ATF4-12, -10, and

the mock transfected cells showed similar high viable

cell concentrations at 144 h of 8.1 9 105, 7.4 9 105,

and 7.4 9 105 cells/ml, respectively. In addition,

DP-12-SF and DP-12-ATF4-16 showed lower viable

cell concentrations after 144 h of 5.7 9 105 and

5.5 9 105 cells/ml, respectively (Fig. 3a). A significant

increase in IgG concentration was observed in clones

DP-12-ATF4-10, -12, and -16, which showed positive

expression of the pc-DNA3.1-ATF4/Hygro(?) insert

(Fig. 3b).

The specific production rate was evaluated from

time courses of viable cell and IgG concentrations

(Fig. 4). The results showed that clones DP-12-ATF4-

10, -12, and -16 showed high specific production rates

of 4.8, 4.9 and 7.2 pg/cell/day, respectively, compared

with the mock transfected cells and the DP-12-SF

clone, which produced 2.8 and 3.6 pg/cell/day,

respectively. Therefore, the specific rates for clones

10, 12, 16 increased approximately 1.7, 1.7 and 2.5

times, respectively, compared with the original DP-

12-SF cell line (Fig. 4b).

Regarding the specific growth rates of the ATF4-

expressing clones, clones DP-ATF4-10, -12 showed

slightly higher specific growth rates of 0.029 and

0.030 h-1, respectively (Fig. 4a). Clone DP-ATF4-16

showed the same specific growth rate, 0.025 h-1, as

the DP-12-SF clone and the mock transfected cell line

(0.026 h-1 for both). Clone DP-ATF4-16 was selected

for further study of ATF4 overexpression because of

its high productivity and growth rate. The results of

this experiment were in agreement with our previous

results which showed that overexpression of ATF4

increased the total production of antithrombin III and

the specific production rate of antithrombin III (Ohya

et al. 2008).

CHO DP-12-SF
Genomic DNA

ATF4Genomic PCR

HygromycinATF4

pcDNA3.1_forward 
primer (T7 promoter)

pcDNA3.1_reverse 
primer (BGH)

ATF4

pcDNA3.1/Hygro(+)-ATF4
(6.8Kbp)

Hygromycin

A 

B

RT-PCRC 

26 Clones

4 Clones
1.5kb
1.0kb

Transfection

1.5kb
1.0kb

3 Clones
(DP-12-ATF4-10,
DP-12-ATF4-12
DP-12-ATF4-16)

Fig. 2 Summary of the construction of the ATF4-overexpress-

ing CHO cell line. a Transfection of IgG producing CHO DP-12-

SF cells with the ATF4 expression plasmid, pcDNA3.1/

Hygro(?)-ATF4, and the position of forward and backward

primers for genomic PCR. b Detection of the ATF4 transgene

integrated into the CHO genome. Numbers 10, 12, 16 and 17

are clone numbers. Positive indicates the positive control,

pcDNA3.1(?)-ATF4. DP-12-SF is the genomic content of the

host cell before transfection. Mock is the genomic content of the

host cell (CHO DP-12-SF) after transfection with empty vector

pcDNA3.1(?)/Hygro. c Analysis of ATF4 expression after 72 h

of cultivation. RNA was extracted, reverse transcribed into

cDNA, and then amplified by PCR with the pcDNA3.1 Forward

and Backward primers
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Quantification of ATF4, CHOP and IgG mRNAs

It has been reported that ATF4 expression is able to

induce the expression of subsets of UPR target genes,

including CHOP (Harding et al. 2002). In order to

elucidate the reason for the enhancement of IgG

production by ATF4 overexpression, the levels of

ATF4 and CHOP mRNAs expressed by clone DP-12-

ATF4-16 were measured. The results showed that

ATF4 expression was slightly increased in the over-

expressing cells by approximately 1.4 times compared

with the mock-transfected cell line (Fig. 5). CHOP

expression reached approximately 1.58 times com-

pared with the mock-transfected cell line (Fig. 5).

These results are in accordance with our previous

results showing that ATF4 expression was slightly

increased, while CHOP expression was increased

further (Ohya et al. 2008). In order to confirm that the

levels of heavy and light chain mRNAs were not

affected by the overexpression of ATF4, quantitative

mRNA measurement was performed during batch

cultivation (Fig. 6). The relative expression levels of

heavy and light chain mRNAs in DP-12-ATF4-16 did

not change significantly through the time course of

batch culture compared with the mock-transfected cell

line.

UPR is thought to be associated with the production

of most recombinant proteins (Feige et al. 2010;

Nishimiya et al. 2013). In order to obtain productive

cells with higher specific production rates, it is

important to engineer the secretory pathway (Hou

et al. 2012; Le Fourn et al. 2013). ATF4 overexpres-

sion can enhance the dephosphorylation of phosphor-

ylated eIF2a by activating the expression of GADD34

(Ohya et al. 2008; Omasa et al. 2008). In addition, the

production of heterologous protein is always accom-

panied by overproduction of disulfide bonds inside the

ER, which leads to the production of reactive oxygen

species (ROS) (Shimizu and Hendershot 2009).

Although ROS are formed in all cellular compart-

ments, the ER appears to be a major place for their

production. Oxidative protein folding in the ER is
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IgG production rate **P \0.001, two sided unpaired t test
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responsible for about one-fourth of the ROS produced

in a professional secretory cell (Tu and Weissman

2004).

Studies on ATF4-null cells revealed that ATF4

regulates a number of genes important for protection

against oxidative stress (Lange et al. 2008). These

include genes involved in the import and metabolism

of thiol-containing amino acids that serve as precur-

sors to glutathione, and proteins involved in redox

reactions such as heme oxygenase-1 (Harding et al.

2003), glutathione peroxidase, and peroxiredoxin-1

(Kitiphongspattana et al. 2007), which protect the cell

from oxidative stress (Shimizu and Hendershot 2009).

ATF4 acts to relieve this ROS stress inside the cell in

different ways. Overexpression of ATF4 was shown to

enhance CHOP expression in mouse embryonic stem

cells (Harding et al. 2003) and in antithrombin III

secreting CHO cells (Ohya et al. 2008).

In this study, all clones with confirmed expression

of ATF4 showed a higher total antibody production.

ATF4 and CHOP were significantly elevated in clone

DP-12-ATF4-16, which revealed 2.5 times increased

productivity with no change in growth rate. Recently,

it was reported that CHOP might help to improve

antibody secretion (Nishimiya et al. 2013). Although

CHOP is considered to be a pre-apoptotic gene, it did

not affect the growth of any of the confirmed clones in

this study. We used CMV promoter for evaluation of

ectopic CHO ATF4 expression. The suitable expres-

sion level for ATF4 for enhancing antibody secretion

without inducing apoptosis is not clear. To elucidate

this point, the effect of ATF4 expression should be

investigated using controllable expression system, i.e.,

Tet-on/off system in future.

Regarding the quantitative measurement of the heavy

and light chain mRNAs during cultivation, the results

were in agreement with our previous data showing that

antithrombin III mRNA did not change significantly but

the specific production rate increased (Omasa et al.

2008). The increased specific production rate correlated

with the release of translation attenuation by dephos-

phorylation of phosphorylated eIF2-a. This leads to the

conclusion that the overexpression of ATF4 did not

affect the transcription of the heavy and light chains.

Overexpression of ATF4 might enhance its translation,

leading to increased secretion of antibody as with AT-III

production. These results suggest that the assembly

process of heavy and lights chain is not the rate-limiting

step in antibody production. Recently, new type of

complicated artificial antibody with the Fc portion (i.e.,
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Fig. 5 Real-time RT-PCR analysis of ATF4 and CHOP

mRNAs in the DP-12-ATF4-16 clone. Total RNA was isolated

from CHO cells after 72 h of cultivation. The mRNA levels

were standardized to b-actin in CHO cells and were then

compared to the expression level in the original host cell line at

72 h. Error bars represent the standard error of the mean

(n = 3; single determination from each of three independent

culture samples). **P \ 0.001, two sided unpaired t test
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single-chain diabody Fc) has been attractive molecules

as new therapeutic reagents (Asano et al. 2008; Onitsuka

et al. 2012). It is estimated that the assembly process is

rate-limiting step for these complicated artificial anti-

body production in CHO cells. We are now trying to

investigate the effect of the overexpression of ATF4 on

the production of these artificial antibodies.

Finally, we can conclude that ATF4-mediated

translational control is likely a promising strategy for

improving the production of secreted protein pharma-

ceuticals in CHO cells. The action of ATF4 in

increasing the specific productivity is not cell line

specific. Not only did ATF4 enhance the specific

productivity of antithrombin III by twofold compared

with the parental 13D-35D cell line, but it also

enhanced the specific productivity of IgG by 2.5-fold

compared with the parental DP-12-SF cell line.
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