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of MEF2C for maintenance of endothelial
integrity is also intriguing in light of the
recent association of premature coronary
artery disease and myocardial infarction
with a mutation in the human MEF2A gene
(20). Since MEF2A is highly expressed in
the endothelium and is a substrate for
BMK1, it is likely to act within the same EC
survival pathway as MEF2C.

A remarkable number of processes with-
in the cardiovascular system are dependent
on signaling from MAPKs to MEF2 (7). In
addition to its requirement for EC survival,
this signaling pathway is important for dif-
ferentiation and morphogenesis of cardiac
and smooth muscle cells, and has been
implicated in numerous cardiovascular
disorders, including cardiac hypertrophy,
dilated cardiomyopathy, coronary artery
disease, and myocardial infarction. Further
insights into the functions and mecha-
nisms of action of this signaling module
promise to provide new opportunities for
its therapeutic manipulation in the set-
tings of human disease.
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Insig: a significant integrator of nutrient 
and hormonal signals
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Lipogenesis is regulated by sterols and by insulin through the regulated
expression and activation of the sterol regulatory element–binding proteins
(SREBPs). A new study shows one way in which sterol and insulin regula-
tion can be decoupled (see the related article beginning on page 1168). In
transgenic mice overexpressing a protein that regulates SREBP activation,
lipogenesis is more sensitive to cholesterol and less sensitive to insulin.

Animal cells, like nations, have a domes-
tic and a foreign policy. “Domestic poli-
cy” involves local control of metabolism,
responses to energy charge, redox status,
or the concentration of key allosteric
regulators (e.g., malonyl-CoA and fruc-
tose 2,6-bisphosphate). The world of a
multicellular organism imposes a “for-
eign policy” on its cells. They must

respond to global signals in the interest
of the whole organism.

Global and local signals invariably con-
verge (as former Congressman Tip O’Neil
famously quipped, “All politics is local.”).
Lipogenesis is a case in point. Feeding, fast-
ing, and refeeding cause large changes in
the rates of fatty acid and cholesterol syn-
thesis. These changes are evoked by both
the carbohydrate and the lipid components
of the diet. We now have a molecular win-
dow into some of the key molecules that
integrate nutrient-derived signals.

A key breakthrough was the simultaneous
discovery by Tontonoz et al. (1) and Yokoya-
ma et al. (2) of the sterol regulatory ele-
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ment–binding protein/adipocyte differenti-
ation factor-1 (SREBP/ADD1). The Brown
and Goldstein laboratory went on to show
that in the liver, two isoforms, SREBP-1c and
SREBP-2, are master transcriptional regula-
tors of the fatty acid and cholesterol synthe-
sis pathways, respectively (3). The SREBPs
reside as inactive precursors in the ER mem-
brane. Upon vesicular transport to the Golgi,
they are proteolytically cleaved to liberate a
fragment that enters the nucleus and acti-
vates SRE-containing genes. The transport
step is blocked by sterols. This defines the ER
membrane as a locus wherein proteins sense
lipids and act as the gatekeepers of SREBPs.

What are the protein gatekeepers? Through
somatic cell genetic studies of mutant cell
lines with defective feedback regulation of
sterol synthesis, Brown and Goldstein dis-
covered an SREBP escort protein, SREBP
cleavage–activating protein (SCAP). SCAP
has a sterol-sensing domain that is necessary
for sterols to inhibit SREBP transport to the
Golgi (4). Without SCAP, cells require exoge-
nous cholesterol to survive.

Gene dosage studies of SCAP in hamster
cells suggested that an additional factor
could be titrated to abolish the sterol respon-
siveness of SREBP processing (5). Coim-
munoprecipitation studies led to the discov-
ery of a SCAP-interacting protein, Insig-1 (6).
A homologous gene, Insig-2, was also identi-
fied (7). Careful gene dosage studies of Insig-
1 showed that only within a narrow window
of the Insig-1/SCAP stoichiometry does the
system respond to sterol regulation. When
SCAP is in molar excess relative to Insig-1,
SREBP processing is insensitive to sterols.
With a large excess of Insig-1, SREBP is
retained in the ER, even in the absence of
sterols. This has led researchers to ask
whether these titration studies extend to the
liver of an intact animal.

Insig-1 overexpression suppresses
lipogenesis in vivo
In this issue of the JCI, Engelking and co-
workers show that hepatic overexpression of
Insig-1 in transgenic mice caused a marked
reduction in nuclear SREBPs, which further

decreased when mice were fed a high-choles-
terol diet (8). Thus, the in vitro titration
experiments correctly predicted the effect of
Insig-1 on the lipogenesis rate in vivo. The
in vivo effects of cholesterol on expression
of SREBP are complicated by the fact that
sterols activate SREBP-1c (not SREBP-2)
gene expression through the liver X receptor
transcription factors (9). Thus, at low levels,
dietary cholesterol decreases the level of
mature SREBP-1c protein, but at higher lev-
els, it induces SREBP-1c gene expression (8).

Insig-1 overexpression reduces the
sensitivity of lipogenesis to insulin
The first link between SREBP and insulin
came from the discoveries that insulin
increases the expression of SREBP-1c (10,
11), that transgenic mice overexpressing
SREBP-1c do not suppress lipogenesis in
response to fasting (12), and that lipogen-
esis is not induced in mice lacking SREBP-1c
when they are fed a high-carbohydrate
diet (13). Given that lipogenesis is regu-
lated by insulin, inevitable questions arise:
How do cells integrate regulation of lipo-
genesis by insulin with regulation by
lipids? What molecules “sense” lipid and
hormonal status? When they act together,
which signals are dominant?

Normally, fasting causes a downregulation
of SREBP-1c and thus a reduction in mature
SREBP-1c. Refeeding leads to an induction of
SREBP-1c and Insig-1 and greatly increased
levels of mature SREBP-1c (Figure 1). Surpris-
ingly, transgenic overexpression of Insig-1
blunted the insulin response; refeeding pro-
duced only a modest increase in SREBP-1c
(8). In contrast, the sensitivity of SREBP-1c
processing to cholesterol was enhanced.

Insulin cycling during the transition from
feeding to fasting causes the liver to switch
from glycolysis/lipogenesis to gluconeogen-
esis/ketogenesis. After refeeding, insulin
suppresses the expression of insulin receptor
substrate-2 (IRS-2) and phosphoenolpyru-
vate carboxykinase, resulting in decreased
gluconeogenesis (14, 15). This pathway was
intact in the Insig-1 transgenic mice (8).

Left undefined is the role of Insig-2a, a
liver-specific isoform of Insig-2. Like Insig-1,
Insig-2a causes retention of SREBP in the ER;
however, it does so only in the presence of a
concentration of sterols (7). Unlike Insig-1,
Insig-2a is suppressed by insulin and induced
by fasting. Early in the transition from fast-
ing to feeding, Insig-1 levels are low and
Insig-2a expression is repressed, allowing the
insulin-induced SREBP-1c protein to be pro-
cessed. Increased SREBP-1c induces Insig-1

Figure 1
Integration of metabolic signals at the ER membrane. (A) During fasting, expression of the
SREBP-1c precursor (pSREBP-1c) is reduced. Insig-2a is expressed and binds to SCAP, caus-
ing retention of a very low amount of pSREBP-1c in the ER in the presence of sterols. (B) Upon
refeeding, insulin increases the expression of pSREBP-1c and decreases the expression of
Insig-2a.The low abundance of both Insig-1 and Insig-2a leads to greatly increased processing
of pSREBP-1c to mature SREBP-1c (mSREBP-1c), leading to a lipogenesis rate that is more
than tenfold higher than that of the basal state, which represents an “overshoot.” The increased
level of mSREBP-1c promotes expression of Insig-1.At a critical stoichiometry relative to SCAP,
Insig-1 restores sterol-mediated regulation of pSREBP-1c processing.The lipogenesis rate then
returns to the original basal level. (C) With transgenic overexpression of Insig-1, the cycling of
lipogenesis between the fed and fasted states is dampened. The high ratio of Insig-1 to SCAP
causes retention of pSREBP-1c in the ER. Fasted mice have a modest additional drop in lipo-
genesis due to the reduction of pSREBP-1c expression and increased Insig-2a levels. (D) With
refeeding, the transgenic mice express extremely low levels of pSREBP-1c due to their inability
to produce enough mSREBP-1c to drive the transcription of the pSREBP-1c gene. The persis-
tently elevated level of Insig-1 abolishes the dramatic “overshoot” in lipogenesis seen in the wild-
type refed mice but still mediates an enhanced sensitivity of pSREBP-1c processing to sterols.
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expression and restores sterol sensing (Figure
1). Upon fasting, Insig-2a levels rise, sup-
pressing lipogenesis in a sterol-dependent
fashion. Insulin cycling might be critical for
the prevention of excessive lipogenesis. It cre-
ates a brief window during refeeding when
Insig levels begin to decline and there is insuf-
ficient Insig-1 to suppress lipogenesis. How-
ever, with induction of Insig-1, lipogenesis is
held in check. Thus, a wild-type refed animal
“overshoots” its rate of lipogenesis (7). In
contrast, transgenic mice overexpressing
Insig-1 effectively abolish the cycling of
Insig-1 expression and therefore do not over-
shoot lipogenesis upon refeeding (Figure 1).
This leads to a dramatic 80% reduction in
plasma triglycerides in the refed mice (8).

Potential implications for insulin
resistance
With chronic hyperinsulinemia, the normal-
ly converse relationship between lipogenesis
and gluconeogenesis can be disrupted (16).
This occurs in models of leptin deficiency
(e.g., the leptinob mutation or congenital
lipodystrophy) or leptin resistance. Deletion
of IRS-2 leads to leptin resistance (17), sug-
gesting a convergence between the leptin and
insulin signaling pathways. Leptin resistance
boosts lipogenesis in the liver through
increased SREBP-1c. Deletion of SREBP-1c
reduces the rate of lipogenesis of leptin-defi-
cient animals but does not reverse insulin
resistance, hence other aspects of leptin sig-
naling influence insulin signaling (18).

The focus of the Insig story will likely
turn to Insig-2a. Is Insig-2a affected by lep-
tin deficiency or leptin resistance? What
happens to Insig-2a under conditions of
chronic hyperinsulinemia? We hope to
learn why two closely related proteins are
oppositely regulated by insulin.
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Understanding of autoimmune sensorineural hearing loss (ASNHL) has
been hindered by the inaccessibility of the inner ear to biopsy and the lack
of workable animal models. A report in this issue of the JCI describes a
mouse model of CD4+ T cell–mediated ASNHL induced by immunization
with peptides from the inner ear–specific proteins cochlin and ββ-tectorin
(see the related article beginning on page 1210).

The inner ear (IE), like most other special-
ized tissues and organs, can become the
target of an autoimmune attack. Sen-
sorineural hearing loss (SNHL) is often an
early, although presumably secondary,
complication of various non–organ-specif-
ic autoimmune diseases; however, the IE
can also represent the primary focus of a

unique disease entity, autoimmune IE dis-
ease (AIED) (1). Fortunately the disease is
rare, but the small population size of
affected individuals and the inaccessibility
of the IE during an acute attack have hin-
dered progress in our understanding of the
etiology, diagnosis, and treatment of this
disease. AIED is diagnosed by exclusion of
other disorders that mimic it. The hearing
loss is typically bilateral, asymmetric, and
fluctuating and deteriorates rapidly over
weeks or months; balance and equilibrium
may or may not be affected. Diagnosis of
AIED is tentatively confirmed if there is a
positive response to trial corticosteroid
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