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Abstract

Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Meta-
bolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively 
identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the 
underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/
mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy 
controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis 
(OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers 
for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the 
model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites 
such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites 
were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating 
OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both 
VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, 
fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum 
metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms. 
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Gastric cancer is the fourth most common type of cancer 
and the second most frequent cause of cancer mortality in 
the world (1,2). It is one of the most prevalent and deadly 
forms of cancers with nearly a million new cases diagnosed 
each year worldwide. A majority of the gastric cancer patients 
diagnosed at an already advanced stage, is the result of 
the relatively asymptomatic nature in the early stages of the 
disease and the lack of adequate screening methods. The 
prognosis of advanced cancer still remains poor because of 
its high recurrence rate and metastatic features (3). Gastros-
copy is widely used for early screening, but this methodology 

is invasive, uncomfortable and costly. An effective way to 
improve the prognosis is to predict the carcinogenesis and 
metastasis at an early stage, to understand the molecular 
mechanism of carcinogenesis, and to identify the biomarkers 
at the early diagnosis of human gastric cancer. Although 
some serum biomarkers have been studied as noninva-
sive tools for screening gastric cancer (4,5), these serum 
tests are not available as screening or surveillance tests 
because of their low specificity and sensitivity (5). However, 
with the use of highly sensitive metabolomic techniques, 
serum metabolomic profiles may offer the opportunity to 
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understand the molecular mechanism of carcinogenesis 
and help to noninvasively identify the potential biomarkers 
for an early diagnosis of human gastric cancer.

Metabolomics is a recently developed technology for the 
detection, identification and quantification of low molecular 
weight metabolites that are involved in the metabolism of an 
organism at a specified time under specific environmental 
conditions (6). This method has already been used as an 
effective tool for disease diagnosis (7), biomarker screening 
(8,9), and characterization of biological pathways (6). Recent 
technological advances in NMR spectroscopy and mass 
spectrometry (MS) have also further improved the sensitiv-
ity and spectral resolution for cancer metabolomic study 
(10). Among various techniques conventionally used for 
metabolic profiling, gas chromatography/MS (GC/MS) has 
proven to be a robust metabolomic tool widely applied to the 
identification and quantitation of cancer metabolites based 
on its high sensitivity, peak resolution, and reproducibility 
(11). Since cancers are known to possess highly unique 
metabolic profiles, identification of specific biomarkers in 
serum using a metabolomic approach could be noninvasive 
and useful for early cancer detection and prognosis.

In the present study, we hypothesized that the global 
analysis of metabolites in serum would define a metabolic 
signature that discriminates gastric cancer patients from 
healthy controls. To test the hypothesis, we conducted a 
comprehensive analysis of the serum metabolites using GC/
MS. We aimed to determine whether variations in gastric 
cancer metabolites are reflected in serum, thereby possi-
bly creating an alternative, noninvasive means for cancer 
detection. The study also intended to gain knowledge of 
potential metabolic biomarkers associated with gastric 
cancer morbidity, which can be used for early diagnosis, 
staging, and therapeutic strategies.

Material and Methods

Sample collection and reagents
The study protocol was approved by the Review 

Board of the Sixth Affiliated Hospital, Sun Yat-sen 
University and written informed consent was ob-
tained from all participants before the study. Thirty 
patients aged from 39 to 88 years were diagnosed 
with gastric cancer. The pathological diagnosis was 
confirmed in routine histopathological H&E-stained 
specimens and categorized according to postopera-
tive classification of malignant tumors (TNM) (12): 
stage I, 4 patients; stage II, 5 patients; stage III, 15 
patients; stage IV, 6 patients. None of the patients 
were diagnosed with metabolic diseases such as 
diabetes mellitus or hyperthyroidism and none 
receive any medication before sample collection. 
The normal control group consisted of 30 healthy 
individuals aged 42 to 82 years, confirmed by gas-
troscopy. Each gastric cancer patient was matched 

with a healthy control based on gender and age. Clinical 
information about the participants is provided in Table 1. 
Venous blood (4 mL) was collected in the morning after an 
8-h fasting from a total of 30 gastric cancer patients and 
30 healthy controls at the Sixth Affiliated Hospital, Sun 
Yat-sen University.

Pyridine and N, O-Bis (trimethylsilyl)trifluoro-acetamide 
(BSTFA) were purchased from Sigma-Aldrich (USA). Chro-
matography grade methanol, ethyl acetate (EA), chloroform, 
and reference standards such as amino acids (methionine, 
phenylalanine, proline, lysine, tyrosine, and glutamate), 
fatty acids (lauric acid, palmitic acid, stearic acid, oleic acid, 
arachidonic acid), glucose, and cholesterol were purchased 
from Sijia Chemicals Group Corporation (China). 

Specimen preparation for GC/MS analysis
Individual 100-µL serum samples were transferred to 

2.0-mL Eppendorf tubes, lyophilized and extracted with 
300 µL of a mixture of methanol/chloroform (3:1, v/v) and 
vortexed for 30 s (13). After storing for 10 min at -20°C, 
the samples were centrifuged at 12,000 g for 10 min at 
4°C. A 200-µL aliquot of the supernatant was collected 
and transferred to 1.5-mL Eppendorf tubes. All samples 
were dried using liquid nitrogen and 50 µL EA was added 
to each of the dried serum extracts, and vortex-mixed for 
1 min. A widely used derivatization reagent, a mixture of 
BSTFA, pyridine and EA (3:1:1, v/v/v), was then added to 
the extract for derivatization for 16 h at room temperature 
(14). The solution thus obtained was then vortexed for 1 min 
and transferred to an amber glass vial for GC/MS analysis. 
In order to prevent a batch effect, all assays were conducted 
in a random- and double-blind manner.

One milligram of reference standards including amino 
acids (methionine, phenylalanine, proline, lysine, tyrosine, 
and glutamate), fatty acids (lauric acid, palmitic acid, stearic 
acid, oleic acid, arachidonic acid), glucose, and cholesterol 

Table 1. Summary of the anatomical and clinicopathological characteris-
tics of the gastric cancer patients and healthy controls studied.

Gastric cancer 
patients

Healthy 
controls

Number 30 30
Male/female 15/15 15/15
Age (median, range) 63 (39-88) 62 (42-82)
TNM stage I  4 -
TNM stage II  5 -
TNM stage III 15 -
TNM stage IV  6 -
Poorly differentiated adenocarcinoma 23 -
Moderately differentiated adenocarcinoma  5 -
Well-differentiated adenocarcinoma  2 -

TNM = tumor node metastasis.



80 Hu Song et al.

www.bjournal.com.brBraz J Med Biol Res 45(1) 2012

was dissolved in 5 mL pyridine to give a final concentra-
tion of 200 µg/mL. Each 200 µL reference standard was 
transferred to 1.5-mL Eppendorf tubes and derivatized as 
described above and prepared for GC/MS analysis accord-
ing to the methodology described below.

GC/MS analysis
Analysis was performed on an Agilent 7890A gas chro-

matography system equipped with an Agilent 5975C Series 
autosampler (Agilent Technologies, USA). Separation was 
achieved on an Agilent DB-5MS capillary column (30 m x 
0.25 mm ID x 0.25 μm film thickness). Each 2-µL aliquot of 
the derivatized solution or derivatized reference standard 
was injected in the splitless mode and helium was used as 
the carrier gas at a constant flow rate of 1.0 mL/min. The 
temperatures of inlet, transfer line, ion source, and qua-
drupole were maintained at 270°, 260°, 200°, and 150°C, 
respectively. The GC temperature programming was set 
to 2 min isothermal heating at 80°C, followed by 10°C/min 
oven temperature ramps to 180°C, 5° to 240°C/min, 20° 
to 290°C/min, and a final 10-min maintenance at 290°C. 
Data acquisition was achieved using MS in the electron 
impact mode at 70 eV and in the full-scan monitoring mode 
from m/z 30 to 600 with an acquisition rate of 20 spectra/s. 
Solvent delay time was set at 5 min.

Data processing and statistical analysis 
GC/MS was employed to profile serum samples of gas-

tric cancer patients and normal controls. Each sample or 
reference standard was represented by a GC/MS total ion 
current (TIC) chromatogram. Among the detected peaks, a 
multidimensional vector was constructed manually to char-
acterize the biochemical profile (14). Peaks due to column 
bleeding and derivatization reagent were removed. Peaks 
were taken into account only when they were consistently 
detected in at least 80% of the samples. All the detected 
peaks were identified by comparing the MS spectra (15) 
with those available in the NIST mass spectral library (Wi-
ley registry, 2008 edition) and customized reference mass 
spectral libraries (16). The mass spectra obtained were 
investigated manually and only those compounds with a 
matching probability of more than 80% were considered. 
The retention time and m/z data pairs were used as the 
identifier for each peak within each sample and the ion 
intensities for each peak were normalized to the sum of 
the peak intensities in that sample. To account for any dif-
ference in concentration between samples, all data were 
normalized to a total value of 100.

Statistical analysis was performed using multivariate 
statistics combined with univariate statistics. Normalized 
data were exported to SIMCA-P + (Version 11.5, Umet-
rics, Sweden) to perform orthogonal partial least squares 
discriminant analysis (OPLS-DA) and a model was built to 
identify variables that accounted for the differentiation of 
gastric cancer and non-gastric cancer cohorts, and group-

ing trends were observed in the data (17). Indication of 
significance was based on non-parametric two-tailed paired 
Wilcoxon analysis performed with SPSS 13.0 for Windows 
(SPSS, USA). P values of <0.05 were considered to be 
statistically significant. The fold change (FC) was based 
on the mean value of 30 gastric cancer patients relative to 
the mean of normal controls.

Results

GC/MS metabolic profiling and OPLS-DA modeling
Typical GC/MS TIC chromatograms of serum samples 

from a gastric cancer patient and the matched normal con-
trol are shown in Figure 1. Within one TIC chromatogram, 
over 60 signals were usually detected in a single specimen 
and some of these peaks were not investigated further as 
they were not consistently found in other sets of samples, 
too low in concentration, or of poor spectral quality to be 
confirmed as metabolites. As shown in Table 2, a total of 
44 endogenous metabolites such as amino acids, organic 
acids, carbohydrates, fatty acids, and steroids were de-
tected sequentially and these compounds are involved 
in many biochemical processes in biosystems, such as 
energy metabolism, lipid metabolism and amino acid 
metabolism. The first three fragment-ion m/z values with 
the highest abundance within each fragmentation pattern 
and the matching percentage to the NIST library are also 
listed in Table 2.

For the metabolic profile, the OPLS-DA model demon-
strated satisfactory modeling and predictive abilities using 
one predictive component and three orthogonal components 
(R2Ycum = 0.745, Q2cum = 0.671). Distinct separation 
trends were achieved between the metabolite profiles of the 
two groups, as shown in Figure 2A. However, a separate 
OPLS-DA model using one predictive component and three 
orthogonal components (R2Ycum = 0.575, Q2cum = 0.0379) 
failed to discriminate different pathological stages (I-IV) of 
gastric cancer sera, although separation trends could be 
observed between the gastric cancer group and non-gastric 
cancer group as displayed in Figure 2B.

Analysis of highlighted metabolites 
To identify which variables were accountable for such 

significant separation, variable importance in the projection 
(VIP) statistics from OPLS-DA modeling was first used to 
pre-select variables. As shown in Table 2, according to the 
criterion for VIP statistics (VIP >1), a total of 13 variables 
were obtained, which mostly contributed to discriminating 
metabolic profiles between the two groups. The Wilcoxon 
test (P < 0.05) was used to investigate the differences of 
biomolecules between gastric cancer patients and normal 
controls. A total of 18 metabolites including carbohydrates, 
amino acids, fatty acids, and steroids were detected with 
significant differences, as displayed in Table 2. Only 3 of 
the metabolites detected were found to be higher in cancer 
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tissues, while 15 were lower. Valine, showing the greatest 
fold change (FC = 2.63), was the serum metabolite found 
to be most increased in gastric cancer patients compared 
to controls and hexanedioic acid was the metabolite most 
depleted (FC = -4.69) in gastric cancer patients. Eleven 
metabolites were identified using both VIP values (VIP >1) 
and the Wilcoxon test (P < 0.05).

Discussion

Metabolic profiling of digestive cancer using GC/MS 
has been reported (8,9,13,14,18), while few studies have 
focused on the investigation of the metabolic profile of the 
serum of gastric cancer patients. The present study explored 
the serum metabolic fingerprints of gastric cancer patients 
compared to healthy controls. Since the metabolomic data 
typically contain a large number of variables that are inter-
related, a multivariate statistical method such as OPLS-DA 
coupled with a univariate statistical method such as the Wil-
coxon test was used and selection of differential metabolites 

was performed with a threshold of 1.0 by VIP and a P value 
set at 0.05, to identify variables with biological significance 
as endpoints of altered biochemical pathways.

Previous studies have indicated that a supervised model 
could be a robust model for discrimination in multivariate 
analysis and the OPLS-DA model has been adopted to 
separate cancer and non-cancer cohorts in human col-
orectal cancer tissue and serum specimen (13,14,18). The 
OPLS-DA model derived from our current metabolomic 
data showed satisfactory and adequate separation trends 
between the cancer and non-cancer groups, indicating 
the diagnostic potential of serum metabolic profile. It has 
been reported that the unsupervised principal component 
analysis model also could separate gastric cancer tissues 
from normal mucosa (19). Our attempt to stratify gastric 
cancer patients according to pathological stages (TNM 
I-IV) was not successful. A similar result has been reported 
for a serum study of colorectal cancer (13). We infer that 
metabolic perturbations may not be directly associated with 
the different pathological stages of gastric cancer, or that 

Figure 1. Typical gas chromatography/mass spectrometry (GC/MS) total ion current (TIC) chromatograms. A and B show that, within 
one TIC chromatogram, over 60 signals were usually detected in a single gastric cancer serum or normal control serum specimen. C 
shows a base peak at the retention time of 30.864 min that was extracted and magnified. D shows that the mass spectrogram at the 
peak summit was selected and compounds were identified via mass spectral match to the National Institute of Standards and Technol-
ogy library. The m/z values of the first three highest abundance of fragmentation patterns were 43.1, 105.1, and 386.4.
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Table 2. Serum differential metabolites derived from gas chromatography/mass spectrometry analysis.

Functional class Retention 
time

m/z 
(No. 1)a

m/z 
(No. 2)a

m/z 
(No. 3)a

Match 
percentb

Compoundc VIP 
valued

Fold 
changee

P 
valuee

Trend of 
gastric cancer

Amino acid metabolism
 1 10.695 69 41.1 97.1 83 dl-Ornithine 0.7922 1.93
 2 11.368 67 128 206 84 D-Alanine 0.032 1.03
 3 11.439 191.2 57.1 229.1 85 l-Proline 0.1954 1.17
 4 12.151 156.1 51 102.1 97 l-Glutamine 0.9197 -1.77 0.032 ↓
 5 12.222 187.1 156.1 69 80 l-Valine 1.0919 2.63 0.031 ↑
 6 12.817 188.1 60.1 40 80 l-Isoleucine 0.5739 -2.18
 7 12.888 188.1 69 110.1 82 Glycine 0.5828 -2.01
 8 12.92 69 41.1 188.1 86 l-Leucine 0.1553 1.14
 9 13.897 71.1 40 113.1 85 Valeric acid 0.1255 1.05
10 22.261 73.1 32 225.1 83 Sarcosine 0.9688 1.93 0.049 ↑
11 24.913 91.1 44 207.1 8 Glycyl-dl-alanine 0.5387 1.67
12 24.234 57.1 98.1 207 80 Hexanedioic acid 1.3538 -4.69 0.022 ↓

Fatty acid metabolism
13 16.924 74.1 43.1 143.1 98 Hexadecanoic acid 0.0215 1.00
14 17.688 67.1 95.1 40 82 9,12-Octadecadienoic acid 1.0384 -1.68 0.043 ↓
15 17.778 69.1 111.1 32.1 87 cis-9-Hexadecenoic acid 0.8822 -1.47
16 18.141 43.1 110.1 222.3 84 cis-13-Octadecenoic acid 1.1333 1.27
17 19.518 67.1 96.1 40 96 10,13-Octadecadienoic acid 0.9204 -1.71
18 19.622 55.1 97.1 264.3 97 9-Octadecenoic acid 1.2315 -1.69 0.017 ↓
19 20.016 74.1 43.1 143.1 97 Heptadecanoic acid, 15-methyl ester 0.113 1.02
20 20.256 55.1 83.1 111.1 99 trans-13-Octadecenoic acid 0.9642 -1.82 0.011 ↓
21 20.605 73.1 43.1 129.1 93 Octadecanoic acid 0.333 1.20
22 20.954 59.1 32 207 86 Octadecanamide 0.7332 -1.33
23 23.775 59.1 32 95.1 85 9-Octadecenamide 0.5218 -1.46
24 24.118 59 32 207.1 83 Tetradecanamide 0.2383 1.45
25 25.541 55.1 97 276.3 80 Nonahexacontanoic acid 1.155 -2.35 0.021 ↓
26 25.631 136.1 97.1 247 89 Docosanoic acid 0.8334 -2.04

Cholesterol metabolism
27 28.555 207 43.1 368.4 97 Cholesta-3,5-diene 2.0449 -2.14 0 ↓
28 29.331 368.4 43.1 207 89 Cholesterol, pentafluoropropionate 2.092 -2.12 0 ↓
29 30.864 43.1 105.1 386.4 99 Cholesterol 0.9811 -1.87 0.046 ↓
30 31.595 368.4 207 81.1 81 Cholest-5-en-3-ol 1.5286 -2.68 0.001 ↓

Nucleotide synthesis
31 10.52 69 40 136.1 85 Adenine 0.615 1.93

Glycometabolism
32 9.046 73.1 43.1 267 85 Fumaric acid 0.7632 -1.87 0.03 ↓
33 14.195 69 32 184.1 80 2-O-Mesyl arabinose 0.7436 -1.65 0.049 ↓
34 15.255 43.1 110 194.2 85 d-Glucopyranoside 0.7927 1.16
35 17.235 69.1 41.1 98.1 83 d-Fructopyranose 0.6557 -1.27
36 17.468 73.1 43.1 129.1 91 l-(+)-Ascorbic acid 0.6204 1.27

Others
37 15.592 80.1 129.1 39.1 88 Barbituric acid 0.5453 1.25
38 16.556 108 69 32.1 91 Hexadecanenitrile 0.7939 1.45 0.041 ↑
39 19.227 69 40 113.1 81 Adipic dihydroxamic acid monohydrate 0.0687 -1.04
40 19.706 73.1 40 281.1 84 Heptadecanenitrile 1.0089 1.91
41 25.321 55.1 97.1 136.1 83 Oleanitrile 0.5013 1.17
42 27.488 207.1 43.1 145.1 80 Benzeneacetonitrile, 2.0218 -2.03 0 ↓
43 28.264 207 43.1 281 83 2-Amino-4-hydroxy-pteridinone 1.7826 -2.31 0.001 ↓
44 29.545 207.1 43.1 281.1 80 1,2,4-Benzenetricarboxylic acid 1.9467 -2.72 0 ↓

aThe first three fragment-ion m/z values with the highest abundance within each fragmentation pattern are listed. bThe matching per-
centage to the NIST library is listed. cMetabolites are identified using available standard reference or NIST library databases. dVariable 
importance in the projection (VIP) was obtained by orthogonal partial least squares discriminant analysis (OPLS-DA) with a threshold 
of 1.0. eP value and fold change  were calculated using the nonparametric Wilcoxon test (significance at P < 0.05). Fold change with 
a positive value indicates a relatively higher concentration present in gastric cancer serum, while a negative value means a relatively 
lower concentration as compared to the normal control.
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a limited sample number may not be effective enough to 
discriminate different TNM stages in the model.

The metabolic profile also revealed several marker 
metabolites related to the metabolic disturbance in gastric 
cancer serum. First of all, perturbations of amino acid 
metabolism were noted in the present study. Valine was 
observed to be significantly increased in gastric cancer 
serum compared with healthy controls while glutamine 
was found to be significantly decreased. Other amino 
acids such as proline, isoleucine and leucine also varied, 
although no statistically significance could be demonstrated. 
Most cancer cells produce energy by glycolysis rather than 
oxidative phosphorylation via the tricarboxylic acid (TCA) 
cycle (20), termed as Warburg effect (21). As reported, an 
increase in valine has been detected in cancer tissue due to 
increased glycolysis (19). Increased levels of serum valine 
may be related to valine catabolism in cancer cells. In addi-
tion, branched chain amino acids including valine, leucine 
and isoleucine share the same enzyme systems and are 
considered as a group to maintain amino acid homeostasis 
(22). This explains the opposite altered trends of different 
branch chain amino acids. Previous studies have shown 
that tumors consume large amounts of glutamine as an 
energy source. Malignant cells transport glutamine across 
the cytoplasmic membrane to form glutamate at a faster rate 
than their non-malignant counterparts (23). Glutaminase, 
which catalyzes glutamine to glutamate, has been found to 
be overexpressed in tumor cells (24). Thus, our finding of 
decreased glutamine levels in serum is consistent with the 
hypothesis that rapidly growing tumor cells use glutamine 
from serum as an energy source.

Several essential and non-essential amino acids have 
been found to be related to abnormal protein synthesis in 

the process of carcinogenesis in colorectal cancer (14). The 
present results suggest that abnormal protein synthesis also 
occurs in gastric cancer cells and the altered amino acid 
levels could be the phenotypic markers in serum. In the 
present study in gastric cancer, sarcosine, but not glycine, 
was found to be significantly elevated in gastric cancer 
serum. It has been recently reported that the prevalence 
of sarcosine increases with escalating severity of prostate 
cancer as it progresses towards metastatic disease and 
amino acid metabolism increases along nitrogen break-
down pathways (25). Sarcosine was further validated as 
a potential biomarker for early disease detection and as a 
predictor of aggressiveness because it was undetectable 
in any benign tissue samples. We infer that sarcosine may 
be a potential biomarker for the progression of gastric 
cancer metastasis.

Another notable feature of the analysis was alteration of 
fatty acid metabolism in serum from gastric cancer patients. 
The levels of a wide spectrum of fatty acids were found 
to be significantly decreased in cancer sera compared 
to normal controls. Fatty acid metabolic perturbation has 
been observed in several kinds of cancers. Saturated and 
monounsaturated fatty acids were found to be significantly 
elevated in serum of non-Hodgkin lymphoma patients, 
while linoleic acid and the levels of polyunsaturated fatty 
acids were significantly reduced (26). The levels of a wide 
spectrum of fatty acids, from C-12 to C-22, together with 
various glycerols were found to be significantly elevated 
in colorectal polyps and cancerous tissues compared to 
the adjacent normal mucosa (14). Decreased levels of 
palmitic acid, myristic acid and carnitine, the carrier of fatty 
acids, were observed in colorectal cancer sera compared 
to healthy controls (13). Fatty acids are used for both cell 

Figure 2. Establishment of orthogonal partial least squares discriminant analysis (OPLS-DA) models. A shows the score plot of OPLS-
DA modeling for serum metabolomic data. It can be seen that healthy controls tended to cluster to the left, while the gastric cancer 
patients generally clustered to the right. The OPLS-DA model demonstrated satisfactory modeling and achieved a fairly distinct separa-
tion between the two groups. B illustrates the score plot of normal control and different TNM stages and the model could not separate 
gastric cancer patients in different TNM stages although separation trends could be observed between the gastric cancer group and 
non-gastric cancer group.
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membrane structural purposes and energy production, such 
as β-oxidation. Fatty acid synthase is highly expressed 
in many human cancers (27), leading to transcription-
ally up-regulated fatty acid synthesis. The production of 
polyunsaturated fatty acids has also been associated with 
tumor cell proliferation, apoptosis, and tumor angiogenesis 
(28,29). The present findings indicate that gastric cancer 
cells consume a lot of fatty acids to meet the demand of 
cell membrane synthesis and energy production, resulting 
in the depletion of serum fatty acids. 

The levels of cholesterol and intermediate products 
of cholesterol synthesis such as cholesta-3,5-diene and 
cholest-5-en-3-ol were significantly decreased. Previous 
studies have confirmed increased levels of cholesterol 
in colorectal cancer tissue (18) and serum cholesterol 
levels were significantly lower in colon cancer, stomach 
cancer, and oral cancer patients (30). Many experimental 
studies have observed a positive association of tumor cell 
proliferation with cholesterol synthesis, which is needed 
for new membrane biogenesis (31). The present result 
suggests that a large amount of cholesterol is utilized for 
biomembrane synthesis and serum cholesterol may be 
ingested by gastric cancer cells. Promotion of glycolysis 
and disruption of the TCA cycle occur in gastric cancer cells 
and the intermediate products such as fumaric acid and 
α-ketoglutaric acid prominently increase in the metabolic 
profile of gastric cancer tissue (19). One crucial observation 
of the present study is that fumaric acid levels significantly 
decreased in the gastric cancer serum, suggesting that 
marker metabolites in serum may not change in parallel with 
metabolic perturbations of tumor tissue. This observation 
may indicate an overutilization of the organic acid and that 
tumor cells adopt a complementary pathway to scramble 
for energy-rich metabolites to ‘fuel’ tumor growth. Increased 
levels of adenosine, monophosphates, xanthine, and hy-

poxanthine accompanied by a decrease of uric acid were 
found in colorectal cancer (14) while adenine was found 
to be about 1.93 times higher in concentration in gastric 
cancer patients compared to healthy controls in the present 
study. This suggests that the highly proliferative nature of 
cancer cells requires large quantities of these molecules 
for transmission of ATP and synthesis of nucleic acids. 
Our current study indicates that adenine, a compound for 
nucleotide synthesis, may be an indicator of abnormal cell 
proliferation.

With the use of highly sensitive metabolomic techniques, 
we were able to identify a metabolic signature in gastric 
cancer serum with multivariate and univariate statistical 
significance. The unique metabolic profiles generated by 
GC/MS revealed metabolic perturbations of amino acids, 
carbohydrate, fatty acids, cholesterol, and nucleotide. The 
results of this study also indicate the potential of this suf-
ficiently robust profiling approach for the detection of gastric 
cancer. Metabolites such as valine, sarcosine, hexanedioic 
acid, and cholesterol could be possibly potential biomarkers 
and need to be validated. A limitation of the current study 
was that many differential endogenous biomarkers as well 
as macromolecular metabolites are worth exploring further 
and yet to be identified. Serum metabolic profile has great 
potential in detecting gastric cancer and helping to under-
stand its underlying mechanisms.

Acknowledgments

We thank the patients for taking part in this study. We 
are grateful to the National Engineering Research Center of 
Genetic Medicine, Ji Nan University, for technical support. 
Research supported by the Science Technology Develop-
ment Program of Guangdong (#2008B030301105).

References

 1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statis-
tics, 2002. CA Cancer J Clin 2005; 55: 74-108.

 2. Crew KD, Neugut AI. Epidemiology of gastric cancer. World 
J Gastroenterol 2006; 12: 354-362.

 3. Cunningham D, Chua YJ. East meets west in the treatment 
of gastric cancer. N Engl J Med 2007; 357: 1863-1865.

 4. Vaananen H, Vauhkonen M, Helske T, Kaariainen I, Rasmus-
sen M, Tunturi-Hihnala H, et al. Non-endoscopic diagnosis 
of atrophic gastritis with a blood test. Correlation between 
gastric histology and serum levels of gastrin-17 and pep-
sinogen I: a multicentre study. Eur J Gastroenterol Hepatol 
2003; 15: 885-891.

 5. Miki K, Morita M, Sasajima M, Hoshina R, Kanda E, Urita 
Y. Usefulness of gastric cancer screening using the serum 
pepsinogen test method. Am J Gastroenterol 2003; 98: 735-
739.

 6. Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabo-
nomics: a platform for studying drug toxicity and gene func-

tion. Nat Rev Drug Discov 2002; 1: 153-161.
 7. Wikoff WR, Gangoiti JA, Barshop BA, Siuzdak G. Metabo-

lomics identifies perturbations in human disorders of propi-
onate metabolism. Clin Chem 2007; 53: 2169-2176.

 8. Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, et al. A serum 
metabolomic investigation on hepatocellular carcinoma pa-
tients by chemical derivatization followed by gas chromatog-
raphy/mass spectrometry. Rapid Commun Mass Spectrom 
2008; 22: 3061-3068.

 9. Wu H, Xue R, Lu C, Deng C, Liu T, Zeng H, et al. Metabolo-
mic study for diagnostic model of oesophageal cancer using 
gas chromatography/mass spectrometry. J Chromatogr B 
Analyt Technol Biomed Life Sci 2009; 877: 3111-3117.

10. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. 
Nat Rev Cancer 2004; 4: 551-561.

11. Jonsson P, Johansson AI, Gullberg J, Trygg J, Jiye A, Grung 
B, et al. High-throughput data analysis for detecting and 
identifying differences between samples in GC/MS-based 



Serum metabolic fingerprinting of human gastric cancer 85

www.bjournal.com.br Braz J Med Biol Res 45(1) 2012

metabolomic analyses. Anal Chem 2005; 77: 5635-5642.
12. Sobin LH, Fleming ID. TNM Classification of Malignant 

Tumors, Fifth Edition (1997). Union Internationale Contre 
le Cancer and the American Joint Committee on Cancer. 
Cancer 1997; 80: 1803-1804.

13. Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, et al. Serum 
metabolite profiling of human colorectal cancer using GC-
TOFMS and UPLC-QTOFMS. J Proteome Res 2009; 8: 
4844-4850.

14. Ong ES, Zou L, Li S, Cheah PY, Eu KW, Ong CN. Metabolic 
profiling in colorectal cancer reveals signature metabolic shifts 
during tumorigenesis. Mol Cell Proteomics 2010 (in press).

15. Gorgenyi M, Fekete ZA, Van Langenhove H, Dewulf J. Tem-
perature dependence of the Kovats retention index. Convex 
or concave curves. J Chromatogr A 2008; 1206: 178-185.

16. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Se-
houli J, et al. Mass spectrometry-based metabolic profiling 
reveals different metabolite patterns in invasive ovarian car-
cinomas and ovarian borderline tumors. Cancer Res 2006; 
66: 10795-10804.

17. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabo-
nomics. J Proteome Res 2007; 6: 469-479.

18. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, 
et al. Metabolic profiling of human colorectal cancer using 
high-resolution magic angle spinning nuclear magnetic reso-
nance (HR-MAS NMR) spectroscopy and gas chromatogra-
phy mass spectrometry (GC/MS). J Proteome Res 2009; 8: 
352-361.

19. Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H, et al. Me-
tabolomic investigation of gastric cancer tissue using gas 
chromatography/mass spectrometry. Anal Bioanal Chem 
2010; 396: 1385-1395.

20. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, 
Onozuka H, et al. Quantitative metabolome profiling of 
colon and stomach cancer microenvironment by capillary 
electrophoresis time-of-flight mass spectrometry. Cancer 

Res 2009; 69: 4918-4925.
21. Warburg O. On the origin of cancer cells. Science 1956; 123: 

309-314.
22. Landel AM, Hammond WG, Meguid MM. Aspects of amino 

acid and protein metabolism in cancer-bearing states. Can-
cer 1985; 55: 230-237.

23. Medina MA. Glutamine and cancer. J Nutr 2001; 131: 
2539S-2542S.

24. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 
The biology of cancer: metabolic reprogramming fuels cell 
growth and proliferation. Cell Metab 2008; 7: 11-20.

25. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao 
Q, Yu J, et al. Metabolomic profiles delineate potential role 
for sarcosine in prostate cancer progression. Nature 2009; 
457: 910-914.

26. Cvetkovic Z, Vucic V, Cvetkovic B, Petrovic M, Ristic-Medic 
D, Tepsic J, et al. Abnormal fatty acid distribution of the se-
rum phospholipids of patients with non-Hodgkin lymphoma. 
Ann Hematol 2010; 89: 775-782.

27. Kuhajda FP. Fatty acid synthase and cancer: new application 
of an old pathway. Cancer Res 2006; 66: 5977-5980.

28. Hyde CA, Missailidis S. Inhibition of arachidonic acid me-
tabolism and its implication on cell proliferation and tumour-
angiogenesis. Int Immunopharmacol 2009; 9: 701-715.

29. Lu X, Yu H, Ma Q, Shen S, Das Undurti N. Linoleic acid sup-
presses colorectal cancer cell growth by inducing oxidant 
stress and mitochondrial dysfunction. Lipids Health Dis 
2010; 9: 106.

30. Abiaka C, Al-Awadi F, Al-Sayer H, Gulshan S, Behbehani A, 
Farghally M, et al. Serum antioxidant and cholesterol levels 
in patients with different types of cancer. J Clin Lab Anal 
2001; 15: 324-330.

31. Dessi S, Batetta B, Anchisi C, Pani P, Costelli P, Tessitore 
L, et al. Cholesterol metabolism during the growth of a rat 
ascites hepatoma (Yoshida AH-130). Br J Cancer 1992; 66: 
787-793.




