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Inferring the hydrophobic interaction from the properties
of neat water
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The present paper by Hummer et al. (1), building on previous
developments in scaled-particle theory (2) and information
theory (3-6) and using molecular simulations to test theoret-
ical ideas, shows how one can predict the free energies of the
hydrophobic hydration and the hydrophobic interaction of
solutes composed of hard spheres from an analysis of spon-
taneous cavity formation in neat liquid water. Hummer et al.
(1) dramatically extend ideas from scaled particle theory and
demonstrate a simple, highly efficient approach to computing
solution thermodynamic properties from either simulation or
theory. This paper is a commentary on the background and the
ideas presented in the paper by Hummer et al. (1).
The whole field of condensed matter chemistry has been

greatly advanced by the power of computer simulation (7). It
wasn't until the second half of the 1960s that the first molecular
dynamics simulations were performed on simple molecular
liquids (8, 9). Molecular simulations provide clear data for
theories of liquids, allow direct tests of theoretical approxi-
mations, and often point the way to better simplifying approx-
imations to be made in analytical theories. The present paper
uses both theory and simulation data to find simple answers to
an apparently complicated question. It is difficult to imagine
this kind of simplicity without the extensive development of
simulation techniques that have gone before.
Water has been studied with simple force fields (10) since

the 1970s, and the solubility of inert gases in water has been
modeled by treating the inert gas atom as a hard sphere that
excludes the center of the water molecule from a region around
it (11). Studies of such systems give insight into "hydrophobic
hydration," the reorganization of water structure around the
hard sphere, as well as the free energy of hydration of the
sphere. More realistic solute-solvent interactions can then be
treated by statistical perturbation (12) theory using the hard
sphere reference system. Such an approach was pioneered by
Pratt and Chandler (11). When two hard spheres of typeA are
dissolved in water, there is a solvent-induced force driving the
spheres into association. This is the so-called "hydrophobic
interaction." The free energy change, W(R), on bringing the
two spheres together from infinity to a separation R, called the
potential of mean force (pmf), is related to the radial distri-
bution function of the two spheres, gAA(R), through the
relation (12, 13)

W(R) = -kTln gAA(R).

Likewise, the methylene groups in n-butane can be approxi-
mated by spheres and one can define a potential of mean force,
W(4O), for changing the torsion angle from the transconfor-
mation (4 = 0) to any other angle. In that case, the pmf is
related to the probability distribution of the torsion angle s(o)
through the relation (12, 14, 15)

W(O) = -kTln s(4)).

In 1977, Pratt and Chandler (11) presented a semiempirical
theory of hydrophobic hydration and the hydrophobic inter-
action of hard spheres. From experimental measurements of
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the oxygen-oxygen radial distribution function, they deter-
mined both the free energy of hydration of one hard sphere
solute and the pmf of two hard spheres and predicted that the
pmf would exhibit two minima: one corresponding to the
contact pairing, and the other corresponding to a solvent
separated pairing. They also showed that the solvent-separated
pair was more probable than the contact pair, a result distinctly
at odds with the prevailing intuitive view of that time. Pratt and
Chandler (11) also extended the theory to include the more
realistic van der Waals interactions between the solute sphere
and the water molecules. The theoretical hydration free en-
ergies when corrected for the attractive solute-solvent inter-
action were in good agreement with experiment (11). Based on
this, the results for the pmf were thought to be accurate even
though there were no measurements of this property at that
time.

Shortly after the appearance of the Pratt and Chandler work,
Pangali et al. (16, 17) performed computer simulations of inert
gas atoms in water and corroborated the main findings of the
Pratt and Chandler paper (11). This, the first simulation of the
full potential of mean force for the solute pair, showed that the
solvent-separated pair corresponded to a intersolute distance
such that the water could form two fluctuating clathrate cages
around the pair with a hydrogen bond in the plane bisecting the
intersolute position vector. It also showed that the solvent-
separated pair was indeed more probable than the contact pair.
Many papers subsequently confirmed and extended these
findings (18, 19). The pmf of n-butane was also determined by
simulation where it was found that water shifted the confor-
mational equilibrium towards the gauche conformer (15, 20,
21).
The hard sphere model of the solute is a useful model for

understanding the essential features of hydrophobicity, as
shown by Pratt and Chandler (11). In the hard sphere model,
the solute merely excludes water molecules from a region
called the "excluded volume." For example, if the solute
consists of one hard sphere of radius RA, the center of no water
oxygen atom can get closer to it than A = RA + Rw, where Rw
is the radius of the water molecule. The solute thus defines an
excluded volume Av(A) = 4ikrA3/3. The reversible work re-
quired to introduce this cavity into the solvent, Atlex(A), is the
excess free energy of hydration of the hard sphere (2). When
two hydrated hard spheres are brought from infinite separa-
tionR -> 00 to a separationR closer than the correlation length
of the spatial correlations in pure water, the solvent begins to
reorganize further. For each pair separation, R, the excluded
volume Av(R; A) will then depend on R. The reversible work
(or potential of mean force), W(R; A), required to bring the
spheres from R -0> to a distance R can be related to the
reversible work to create two spherical cavities separated by R,
W(R; A) = A,tex(R; A) - A u!X(R -> om; A). Because each solute
sphere orders neighboring water molecules, the two hard
spheres will order more water molecules in their first solvent
shells when they are distantly separated than when they are in
contact. It is thus expected that W(R) will exhibit a global
minimum when the hard spheres are in contact. Thus, there
should be an entropic driving force that induces the two hard



Proc. Natl. Acad. Sci. USA 93 (1996) 8801

spheres to be in contact. This solvent-induced driving force is
the so called hydrophobic interaction.

Similarly, the hard sphere model of butane will have an
excluded volume Av(o, A), which is a function of the torsion
angle 4 and depends on the exclusion radius A of the methylene
spheres. Then the part of the pmf arising from the solute-
solvent interaction will be related to the reversible work
required to create a cavity with the shape and excluded volume
Av(4), A) of the n-butane molecule.

In the simulation literature, the method usually used to
compute the hydration free energy is based on thermodynamic
perturbation theory. In this method, the solute solvent poten-
tial is turned on by small steps and the change is computed in
free energy corresponding to each growth step. This method
requires one to redo the simulation for each different solute.
Pratt and Pohorille (22, 23) showed that there is a much better
alternative for hard sphere solutes. The basic approach comes
from the scaled particle theory first introduced by Reiss et al.
(2). One simulation of pure (or neat) water can be analyzed to
determine the likelihood, po(A), that cavities of size equal to
or greater than A will exist at an arbitrary point in the neat
solvent such that a hard sphere solute of radius RA could be
inserted. From this point of view, po(A) is the probability that
no solvent molecules will be found in cavities equal to the
excluded volume. This is accomplished by analyzing each neat
water configuration generated in the simulation to determine
the distribution function of cavities of all different sizes. Thus,
in one simulation one can determine the probabilities of
insertion of any kind of cavity, just so long as the volume of the
system simulated is sufficiently large compared to the cavities
(and thus the hard sphere solutes) of interest. In scaled particle
theory, it is shown that

po(A) = e-W(A)/kT [1]

where W(A) = A,teX(A) is the reversible work required to form
the cavity, and

W(A) = A/,eX(A) = -kTlnpo(A).

and Pohorille (22, 23) have shown that the "squeezing force"
due to this strain in the hydrogen bond network reaches a
maximum near cavity diameters of 2.4 A.

Scaled particle theory shows (2) that p0 can also be ex-
pressed as

po(A) = E (- y (! ( )! = 1 - (n)

+ 2! (n(n - 1)) + * * *, [4]

where n is the number of water molecules in neat water that
are found in a region of geometry and volume equal to the
excluded volume of the solute. These quantities can also be
evaluated from the neat solvent configurations.
One can also define the probabilitypn that n water molecules

can be found in a region of the shape of the excluded volume.
The first two binomial moments appearing in Eq. 4 can be
obtained from theoretical, experimental, or computer simu-
lated results for the radial distribution function goo(r),

00

(n)= Inpn= PAV, [51
n=O

00

(n(n- 1))= >n(n- 1)pn,= p2 d3r1
n=O Av

I d3r2goo(1r2 - rI), [6]
v

but higher moments like

[2]
Thus, in principle, an analysis of fluctuations in occupation
numbers in regions of size and shape of the excluded volume
in neat water can be used to determine free energies of
solvation and potentials of mean force for hard spheres in
solution.

Pratt and Pohorille (22, 23) were the first to show that, from
the study of transient cavity formation in neat water by
molecular dynamics, they could determine po(A) and W(A). In
a set of important papers, they were able to clarify the
differences between solubility in water and solubility in non-
associated liquids like hexane. They found that the sizes of
cavities are more sharply defined in liquid water than in
corresponding nonassociated liquids despite the fact that the
most probable cavities are about the same size in these two
different kinds of liquids.
Another property from scaled particle theory (2) is

1 a W(A)
pG(A) = 4ikA2kT A[

where pG(A) is the number density of water at the surface of
the excluded volume. For small cavities, this density ap-
proaches that of liquid water, whereas Stillinger (24) has shown
that this density approaches the equilibrium vapor density of
water when the cavity becomes much larger than a single water
molecule. Water molecules are expelled from a region near the
surface of the large cavity. This dewetting is caused by the
strain in the hydrogen bonding network for large solutes. Small
solutes can neatly fit into a clathrate cage without distorting the
network but as the cavity size is increased strain develops. Pratt

00

(n(n - 1)(n - 2)) = > n(n - 1)(n - 2)pn
n=O

= p3fAd3r,1 d3r2f d3rg(3) (r1, r2, r3)
J v v J v

[7]

can only be calculated accurately from computer simulations.
No matter how small the cavity it can always accomodate at

least the oxygen site of one water molecule but it may be too
small to accomodate two water molecules. Thenpo = 1 - (n).
As the cavity is made larger, one gets to a volume where no
more than two water molecules will fit and po(A) will be
determined by only the first two moments (n) and (n(n - 1)).
Then the only information needed for the determination of
po(A) and W(A) is p and goo(R). For larger cavities, higher
moments and higher order correlation functions will be re-
quired (for example, see Eq. 7). Thus, for small enough
cavities, only information about p and goo(R) will be needed.
Nevertheless, it was not known how to use this information to
determine p0.
The current paper by Hummer et al. (1) presents a very

simple information theoretic method for determining po(A)
and thereby A,ex(A) and W(R) for solute molecules made up
of hard spheres from information about fluctuations in pure
(or neat) liquid water. This paper goes beyond scaled particle
theory and provides information about the set of probabilities
p, in neat water defined above. Hummer et al. (1) posit a
default model of the probabilities {p,n} and compute the
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information gained on determining the real probabilities {p,} .
This information is

00

7q=-pnln . [8]
n=O Pn

To compute the probabilities {Pn }, one maximizes q subject to
normalization and various binomial moments of the probabil-
ities {pn} such as the moments (n), (n(n - 1)), and higher
moments that appear in Eq. 4.
Three default models are suggested but the one that was

used is that of uniform probabilitiesj5 = constant. Maximiz-
ing i1 subject to normalization and knowledge of the two
moments (n) and (n(n - 1)) then gives

Pn = exp[Ao + A1n + A2n2], [9]

where the constants Ao, A2, and A3 are determined from the
computed moments. From this the free energies of solvation
are determined.
Hummer et al. (1) show that this simple information theo-

retic model gives excellent agreement with computer simula-
tion for the probabilities {pn} and for the free energy and the
pmf for hard spheres for spheres smaller than approximately
3.2 A in diameter. This is a remarkable result for several
reasons.

1. It shows how the lower order binomial moments given by
Eqs. 5 and 6 can be used to determinepo and thereby the
free energies of solvation and the pmfs. We saw from Eq.
4 that the information contained in these moments
should suffice for the prediction ofpo for small cavities,
but scaled particle theory did not allow us to proceed.
Information theory provides the bridge.

2. It implies that the only information required for the
calculation and understanding of the hydration of one
and two spheres are the first two binomial moments or
equivalently the bulk density and radial distribution
function of neat water. This is precisely the same infor-
mation required in the Pratt-Chandler semiempirical
theory. For small exclusion volumes, this is expected (see
above).

3. The same treatment also works, about as well, for the
torsion angle dependence of the potential of mean force
of n-butane where the methylene groups on n-butane are
treated as hard spheres. Thus, from scant knowledge
about neat water, one can determine the equilibrium
constant and the transition state rate constant for gauche
= trans isomerization. For cavities the size of n-butane,
one would expect that higher moments would be re-
quired, yet from the good agreement for the pmf this
appears not to be the case. Why? It would be useful to see
if the set of probabilities {pn} for n-butane are as
accurately given by Eq. 9 as for the small spheres.

4. Since higher binomial moments moments are determined
by three, four, and higher order correlation functions of
water, we learn that these higher correlations are not
important for the hydration of atomic-sized hydrophobic
spheres. This should be checked carefully on butane or
larger spheres. Stillinger's paper (24) and the papers by
Pratt and Pohorille (22, 23) would indicate that for large
spheres the hydrogen bond network is strained and one
must carefully account for the higher-order correlations.

Hummer et al. (1) discuss the interesting connection be-
tween the current theory and the earlier Pratt-Chandler
theory. As they point out, Chandler (25) has shown that the
Pratt-Chandler theory, as well as many of the standard
theories of dense fluids, follow from a Gaussian field theory
for density fluctuations. The near parabolic behavior of {lnp,}

in figure 1 of Hummer et al. (1) appears to be consistent with
a Gaussian model. One expects a Gaussian field theory to be
good for long wavelength fluctuations but not for small
wavelength fluctuations. If one uses the parabolic nature of ln
p, for small spherical regions as a measure of the accuracy of
the Gaussian field theory, one would conclude that this theory
is good for small wavelength fluctuations as well. This is a
remarkable observation. Why should it be so? It is worth
making more explicit tests based on simulations of the Gauss-
ian property of the density fields.

Chandler shows that the Gaussian field theory does not
account for interfacial phenomena, such as the dewetting of
large spheres. The relation of the Pratt-Chandler theory of
hydrophobicity and the present two moment information
theory to Gaussian field theories suggests that neither predicts
the kind of dewetting transition around large spheres noted by
Stillinger (24). Wallqvist and Berne (26) have also observed a
dramatic dewetting transition as two parallel oblate ellipsoids
are brought together. In fact, Hummer et al. (1) already detect
a deviation from parabolic behavior for spheres of diameter
d > 3.2 A. In real systems, there is a dewetting transition in
which solvent is excluded from a layer around the surface of
the excluded volume. Hummer and colleagues recognize this
and probably are thinking of ways of introducing this effect
into information theory. Clearly much remains to be done with
respect to this problem
The paper of Hummer et al. (1) is a very interesting and

important paper for it uncovers possible simplifications that
could be fundamental in treating the structure and thermo-
dynamics of the hydrophobic interaction. It shows how simu-
lations of spontaneous cavity formation in neat water can be
used to generate the solution thermodynamics of small hydro-
phobic hard sphere solutes. It shows that the only information
required for these predictions is the bulk density and oxygen-
oxygen radial distribution function of neat water. The big jump
here is the demonstration that information theory allows one
to compute these thermodynamic properties from only a few
binomial moments. It now becomes a simple matter to predict
important solution properties of hard sphere hydrophobic
solutes.
One attractive byproduct of this paper is that it may lead to

the invention of simple efficient methods for determining
hydration free energies and pmfs for realistic solute-solvent
force fields from computer simulation of neat liquid water,
experiments or integral equation theories of the structure of
water. For this to happen, it is necessary to show how the
results for small hard-sphere solutes can be corrected for
realistic soft force fields. In some cases simple corrections, like
those in the Pratt-Chandler (11) theory, will suffice. More
serious is the need to handle larger solute particles where there
is partial dewetting. It may then be necessary to include higher
binomial moments (or equivalently many-body correlation
functions) as well as building in the kinds of spatial correlations
that lead to dewetting.
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