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Abstract
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for
identifying group-related differences in volumetric imagery. In contrast to most morphometry
methods which assume one-to-one correspondence between all subjects, FBM models images as a
collage of distinct, localized image features which may not be present in all subjects. FBM thus
explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in
all subjects due to disease or anatomical variability. A probabilistic model describes features in
terms of their appearance, geometry, and relationship to sub-groups of a population, and is
automatically learned from a set of subject images and group labels. Features identified indicate
group-related anatomical structure that can potentially be used as disease biomarkers or as a basis
for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic,
salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC)
and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM
automatically identifies known structural differences between NC and AD subjects in a fully data-
driven fashion, and obtains an equal error classification rate of 0.78 on new subjects.

1 Introduction
Morphometry aims to automatically identify anatomical differences between groups of
subjects, e.g. diseased or healthy brains. The typical computational approach taken to
morphometry is a two step process. Subject images are first geometrically aligned or
registered within a common frame of reference or atlas, after which statistics are computed
based on group labels and measurements of interest. Morphometric approaches can be
contrasted according to the measurements upon which statistics are computed. Voxel-based
morphometry (VBM) involves analyzing intensities or tissue class labels [1, 2]. Deformation
or tensor-based morphometry (TBM) analyzes the deformation fields which align subjects
[4, 3, 5]. Object-based morphometry analyzes the variation of pre-defined structures such as
cortical sulci [6].

A fundamental assumption underlying most morphometry techniques is that inter-subject
registration is capable of achieving one-to-one correspondence between all subjects, and that
statistics can therefore be computed from measurements of the same anatomical tissues
across all subjects. Inter-subject registration remains a major challenge, however, due to the
fact that no two subjects are identical; the same anatomical structure may vary significantly
or exhibit distinct, multiple morphologies across a population, or may not be present in all
subjects. Coarse linear registration can be used to normalize images with respect to global
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orientation and scale differences, however it cannot achieve precise alignment of fine
anatomical structures. Deformable registration has the potential to refine the alignment of
fine anatomical structures, however it is difficult to guarantee that images are not being
over-aligned. While deformable registration may improve tissue overlap, in does not
necessarily improve the accuracy in aligning landmarks, such as cortical sulci [7].
Consequently, it may be unrealistic and potentially detrimental to assume global one-to-one
correspondence, as morphometric analysis may be confounding image measurements arising
from different underlying anatomical tissues [9–11].

Feature-based morphometry (FBM) is proposed specifically to avoid the assumption of one-
to-one inter-subject correspondence. FBM admits that correspondence may not exist
between all subjects and throughout the image, and instead attempts to identify local
patterns of anatomical structure for which correspondence between subsets of subjects is
statistically probable. Such local patterns are identified and represented as distinctive scale-
invariant features [12–15], i.e. generic image patterns that can be automatically extracted in
the image by a front-end salient feature detector. A probabilistic model quantifies feature
variability in terms of appearance, geometry, and occurrence statistics relative to subject
groups. Model parameters are estimated using a fully automatic, data-driven learning
algorithm to identify local patterns of anatomical structure and quantify their relationships to
subject groups. The local feature thus replaces the global atlas as the basis for morphometric
analysis. Scale-invariant features are widely used in the computer vision literature for image
matching, and have been extended to matching 3D volumetric medical imagery [14, 15].
FBM follows from a line of recent research modeling object appearance in photographic
imagery [16] and in 2D slices of the brain [17], and extends this research to address group
analysis, and to operate in full 3D volumetric imagery.

2 Feature-based Morphometry (FBM)
2.1 Local Invariant Image Features

Images contain a large amount of information, and it is useful to focus computational
resources on interesting or salient features, which can be automatically identified as maxima
of a saliency criterion evaluated throughout the image. Features associated with anatomical
structures have a characteristic scale or size which is independent of image resolution, and a
prudent approach is thus to identify features in a manner invariant to image scale [12, 13].
This can be done by evaluating saliency in an image scale-space I(x, σ) that represents the
image I at location x and scale σ. The Gaussian scale-space, defined by convolution of the
image with the Gaussian kernel, is arguably the most common in the literature [19, 20]:

(1)

where G(x, σ) is a Gaussian kernel of mean x and variance σ, and σ0 represents the scale of
the original image. The Gaussian scale-space has attractive properties including non-creation
and non-enhancement of local extrema, scale-invariance, and causality and arises as the
solution to the heat equation [20]. Derivative operators are commonly used to evaluate
saliency in scale-space [12, 13], and are motivated by models of image processing in
biological vision systems [8]. In this paper, geometrical regions gi = {xi, σi} corresponding
to local extrema of the difference-of-Gaussian (DOG) operator are used [12]:

(2)
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Each identified feature is a spherical region defined geometrically by a location xi and a
scale σi, and the image measurements within the region, denoted as ai.

2.2 Probabilistic Model
Let F = {f1,…, fN} represent a set of N local features extracted from a set of images, where
N is unknown. Let T represent a geometrical transform bringing features into coarse,
approximate alignment with an atlas, e.g. a similarity or affine transform to the Talairach
space [21]. Let C represent a discrete random variable of the group from which subjects are
sampled, e.g. diseased, healthy. The posterior probability of (T,C) given F can be expressed
as:

(3)

where the first equality results from Bayes rule, and the second from the assumption of
conditional feature independence given (C, T). Note that while inter-feature dependencies in
geometry and appearance are generally present, they can largely be accounted for by
conditioning on variables (C, T). p(fi|C, T) represents the probability of a feature fi given (C,
T). p(C, T) represents a joint prior distribution over (C, T). p(F) represents the evidence of
feature set F.

An individual feature is denoted as fi = {ai, αi, gi, γi}. ai represents feature appearance (i.e.
image measurements), αi is a binary random variable representing valid or invalid ai, gi =
{xi, σi} represents feature geometry in terms of image location xi and scale σi, and γi is a
binary random variable indicating the presence or absence of geometry gi in a subject image.
The focus of modeling is on the conditional feature probability p(fi|C, T):

(4)

where the 2nd equality follows from several reasonable conditional independence
assumptions between variables. p(ai|αi) is a density over feature appearance ai given feature
occurrence αi, p(αi|γi) is a Bernoulli distribution of feature occurrence αi given the
occurrence of a consistent geometry γi, p(gi|γi, T) is a density over feature geometry given
geometrical occurrence γi and global transform T, and p(γi|C) is a Bernoulli distribution over
geometry occurrence given group C.

2.3 Learning Algorithm
Learning focuses on identifying clusters of features which are similar in terms of their group
membership, geometry and appearance. Features in a cluster represent different observations
of the same underlying anatomical structure, and can be used to estimate the parameters of
distributions in Equation (4).

Data Preprocessing—Subjects are first aligned into a global reference frame, and T is
thus constant in Equation (3). At this point, subjects have been normalized according to
location, scale and orientation, and the remaining appearance and geometrical variability can
be quantified [22]. Image features are then detected independently in all subject images as in
Equation (2).

Clustering—For each feature fi, two different clusters or feature sets Gi and Ai are
identified, where fj ∈ Gi are similar to fi in terms of geometry, and fj ∈ Ai are similar to fi in
appearance. First, set Gi is identified based on a robust binary measure of geometry
similarity. Features fi and fj are said to be geometrically similar if their locations and scales
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differ by less than error thresholds ε x and εσ. In order to compute geometrical similarity in a
manner independent of feature scale, location difference is normalized by feature scale σi,
and scale difference is computed in the log domain. Gi is thus defined as:

(5)

Next, set Ai is identified using a robust measure of appearance similarity, where fi is said to
be similar to fj in appearance if the difference between their appearances is below a
threshold εai. Ai is thus defined as a function of εai:

(6)

where here ‖ ‖ is the Euclidean norm. While a single pair of geometrical thresholds (ε x, εσ)
is applicable to all features, εai is feature-specific and set to:

(7)

where Ci is the set of features having the same group label as fi, and εai is thus set to the
maximum threshold such that Ai is still more likely than not to contain geometrically similar
features from the same group Ci. At this point, Gi ∩ Ai is a set of samples of model feature fi,
and the informativeness of fi regarding a subject group Cj is quantified by the likelihood
ratio:

(8)

The likelihood ratio explicitly measures the degree of association between a feature and a
specific subject group and lies at the heart of FBM analysis. Features can be sorted
according to likelihood ratios to identify the anatomical structures most indicative of a
particular subject group, e.g. healthy or diseased. The likelihood ratio is also operative in
FBM classification:

(9)

where C* is the optimal Bayes classification of a new subject based on a set of features F in
the image, and can be used for computer-aided diagnosis.

3 Experiments
FBM is a general analysis technique, which is demonstrated and validated here in the
analysis of Alzheimer’s disease (AD), an important, incurable neurodegenerative disease
affecting millions worldwide, and the focus of intense computational research [23, 24, 18,
25]. Experiments use OASIS [18], a large, freely available data set including 98 normal
(NC) subjects and 100 probable AD subjects ranging clinically from very mild to moderate
dementia. All subjects are right-handed, with approximately equal age distributions for NC/
AD subjects ranging from 60+ years with means of 76/77 years. For each subject, 3 to 4 T1-
weighted scans are acquired, gain-field corrected and averaged in order to improve the
signal/noise ratio. Images are aligned within the Talairach reference frame via affine
transform T and the skull is masked out [25]. In our analysis, the DOG scale-space [12] is
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used to identify feature geometries (xi, σ i), appearances ai are obtained by cropping cubical
image regions of side length  centered on xi and then scale-normalizing to (11 × 11 ×
11)-voxel resolution. Features could be normalized according to a canonical orientation to
achieve rotation invariance [15], this is omitted here as subjects are already rotation-
normalized via T and further invariance reduces appearance distinctiveness. Approximately
800 features are extracted in each (176 × 208 × 176)-voxel brain volume.

Model learning is applied on a randomly-selected subset of 150 subjects (75 NC, 75 AD).
Approximately 12K model features are identified, these are sorted according to likelihood
ratio in Figure 1. While many occur infrequently (red curve, low p(fi|T)) and/or are
uninformative regarding group (center of graph), a significant number are strongly
indicative of either NC or AD subjects (extreme left or right of graph). Several strongly AD-
related features correspond to well-established indicators of AD in the brain. Others may
provide new information. For examples of AD-related features shown in Figure 1, feature
(a) corresponds to enlargement of the extracerebral space in the anterior Sylvian sulcus;
feature (b) corresponds to enlargement of the temporal horn of the lateral ventricle (and one
would assume a concomitant atrophy of the hippocampus and amygdala); feature (c)
corresponds to enlargement of the lateral ventricles. For NC-related features, features (1)
(parietal lobe white matter) and (2) (posterior cingulate gyrus) correspond to non-atrophied
parenchyma and feature (3) (lateral ventricle) to non-enlarged cerebrospinal fluid spaces.

FBM also serves as a basis for computer-aided diagnosis of new subjects. Classification of
the 48 subjects left out of learning results in an equal error classification rate (EER) of 0.78
4. Classification based on models learned from randomly-permuted group labels is
equivalent to random chance (EER = 0.50, stdev = 0.02), suggesting that the model trained
on genuine group labels is indeed identifying meaningful anatomical structure. A direct
comparison with classification rates in the literature is difficult due to the availability,
variation and preprocessing of data sets used. Rates as high as 0.93 are achievable using
support vector machines (SVMs) focused on regions of interest [24]. While representations
such as SVMs are useful for classification, they require additional interpretation to explain
the link between anatomical tissue and groups [5].

4 Discussion
This paper presents and validates feature-based morphometry (FBM), a new, fully data-
driven technique for identifying group differences in volumetric images. FBM utilizes a
probabilistic model to learn local anatomical patterns in the form of scale-invariant features
which reflect group differences. The primary difference between FBM and most
morphological analysis techniques in the literature is that FBM represents the image as a
collage of local features that need not occur in all subjects, and thereby offers a mechanism
to avoid confounding analysis of tissues which may not be present or easily localizable in all
subjects, due to disease or anatomical variability. FBM is validated clinically on a large set
images of NC and probable AD subjects, where anatomical features consistent with well-
known differences between NC and AD brains are automatically identified in a set of 150
training subjects. Due to space constraints only a few examples are shown here. FBM is
potentially useful for computer-aided diagnosis, and classification of 48 test subjects
achieves a classification ERR of 0.78. As validation makes use of a large, freely available
data set, reproducability and comparison with other techniques in the literature will be
greatly facilitated.

4The EER is a threshold-independent measure of classifier performance defined as the classification rate where misclassification error
rates are equal.
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FBM does not replace current morphometry techniques, but rather provides a new
complementary tool which is particularly useful when one-to-one correspondence is difficult
to achieve between all subjects of a population. The work here considers group differences
in terms of feature/group co-occurrence statistics, however most features do occur (albeit at
different frequencies) in multiple groups, and traditional morphometric analysis on an
individual feature basis is a logical next step in further characterizing group differences. In
terms of FBM theory, the model could be adapted to account for disease progression in
longitudinal studies by considering temporal groups, to help in understanding the
neuroanatomical basis for progression from mild cognitive impairment to AD, for instance.
A variety of different scale-invariant features types exist, based on image characteristics
such as spatial derivatives, image entropy and phase. These could be incorporated into FBM
to model complementary anatomical structures, thereby improving analysis and
classification. The combination of classification and permutation testing performed here
speaks to the statistical significance of the feature ensemble identified by FBM, and we are
investigating significance testing for individual features. FBM is general and can be used as
a tool to study a variety of neurological diseases, and we are currently investigating
Parkinson’s disease. Future experiments will involve a comparison of morphological
methods on the OASIS data set.
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Fig. 1.

The blue curve plots the likelihood ratio ln  of feature occurrence in AD vs. NC
subjects sorted in ascending order. Low values indicate features associated with NC subjects
(lower left) and high values indicate features associated with AD subjects (upper right). The
red curve plots feature occurrence probability p(fi|T). Note a large number of frequently-
occurring features bear little information regarding AD or NC (center). Examples of NC (1–
3) and AD (a–c) related features are shown.
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