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Abstract
It is believed that multiple genetic variants with small individual effects contribute to the risk of
alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association
studies that test for association of the phenotype with each single nucleotide polymorphism (SNP)
individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the
effects of pre-defined groups of genes have been proposed. Rather than testing for association
between the phenotype and individual SNPs, these analyses evaluate the global evidence of
association with a set of related genes enabling the identification of cellular or molecular pathways
or biological processes that play a role in development of the disease. It is hoped that by
aggregating the evidence of association for all available SNPs in a group of related genes, these
approaches will have enhanced power to detect genetic associations with complex traits. We
performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379
controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways
listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated
a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also
support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway,
which has previously been implicated in addictive disorders. These findings demonstrate the
utility of GSA in the study of complex disease, and suggest specific directions for further research
into the genetic architecture of alcohol dependence.
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Introduction
Alcohol dependence and related alcohol use disorders are known to be under considerable
genetic influence (Agrawal and Lynskey, 2008; Goldman et al., 2005); yet few specific
genetic risk factors have been discovered and confirmed (Ball, 2008). In recent years,
genome-wide association studies (GWAS) have emerged as a powerful approach to identify
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disease susceptibility genes (Kronenberg, 2008; Lettre and Rioux, 2008). In these studies,
the association of a phenotype with hundreds of thousands of single nucleotide
polymorphisms (SNPs) distributed throughout the genome is evaluated. This approach has
been applied to the study of many complex traits, including alcohol dependence (Bierut et
al., 2010; Treutlein et al., 2009). Despite the potential of GWAS to identify novel genetic
contributors to complex diseases, these studies tend to be greatly underpowered for detection
of disease-related SNPs with small or moderate effect sizes. Thus, GWAS have had limited
success in identifying genes that influence risk of alcohol dependence.

Phenotypic characteristics are believed to be controlled by networks of interacting
biochemical and physiological pathways influenced by the products of many genes. While
single genetic variants may only have a small influence on complex traits, the combined
effects of genes within a biochemical pathway have a greater potential to impact complex
phenotypes. Recent studies suggest that assessing the effects of genetic variants in the
context of pathways is critical to understanding their phenotypic significance (Srinivasan et
al., 2009; Wang et al., 2007). However, most GWAS rely on analyses of individual SNPs,
which ignore prior knowledge about gene function and role of genes within molecular
pathways. To overcome this limitation, gene set analysis (GSA) methods for genome-wide
SNP data have recently been introduced (Fridley and Biernacka, 2011; Holmans, 2010;
Wang et al., 2010). GSA incorporates prior biological knowledge into statistical analysis by
evaluating the overall evidence of association of a phenotype with all genotyped SNPs in a
pre-specified set of genes defined, for example, based on their role in a particular molecular
pathway. Such methods may enable the detection of subtle effects of multiple genes in the
same gene set that may be missed by assessing each SNP or gene individually. Moreover,
the incorporation of biological knowledge in GSA may aid researchers in the interpretation
of results and help focus further research efforts.

GSA, which has also been referred to as pathway analysis or functional gene group analysis,
has recently been applied to a number of neuropsychiatric phenotypes including cognitive
ability (Ruano et al., 2010) and bipolar disorder (Holmans et al., 2009; O'Dushlaine et al.,
2010). This paper describes gene-set analyses of genome-wide data from the Study of
Addiction: Genetics and Environment (SAGE) (Bierut et al., 2010), for all pathways listed
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://
www.genome.jp/kegg/). Recently developed methods were applied to perform these
pathway-based analyses (Biernacka et al., 2011). The goal of these analyses was to identify
sets of genes that contribute to individual differences in susceptibility to alcohol dependence
and thereby identify new candidates for ongoing studies.

Methods
Data

Genome-wide SNP and phenotypic data were downloaded from the database on Genotypes
and Phenotypes (dbGaP; study accession phs000092.v1.p1). These data were collected by
SAGE, which is part of the NIH-funded Gene Environment Association Studies initiative
(GENEVA). Description of the study design, subjects, and results of genome-wide
association analyses have been published (Bierut et al., 2010). Briefly, 1944 alcohol
dependent cases and 1965 controls were genotyped with the Illumina Human1Mv1_C
BeadChips. All subjects were phenotypically assessed using the Semi-Structured
Assessment for the Genetics of Alcoholism (SSAGA). This study of the association of gene
sets with alcoholism focused on the European American subset of subjects. Following the
exclusion of non-European American subjects, quality control filters for the European
American subject set distributed with the data were applied. The quality control included a
data-cleaning step recommended by the SAGE investigators that consisted of setting the
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genotypes in specific regions for several individuals to missing. These regions were
identified as anomalous genotype intensity patterns which may indicate aneuploidy or
problems with genotyping. The quality control filters also excluded samples with missing
call rate ≥ 2%, and SNPs with missing call rate ≥ 2%, minor allele frequency (MAF) < 1%,
or Hardy-Weinberg Equilibrium P-value < 10-4. After applying the quality control filters
established by the SAGE investigators, a further 209 SNPs were removed as they had minor
allele frequencies below 1% in the final subset of subjects, and 1257 SNPs were removed
because of evidence of departure from Hardy Weinberg Equilibrium (p<0.001). The final
data set consisted of 839,409 SNPs in 2544 subjects, including 1165 alcohol dependent
cases and 1379 controls.

Prior to performing the association analyses, we analyzed the data using EIGENSTRAT
(Price et al., 2006) to determine principal components (PCs) that capture any remaining
population stratification among the European American subjects. The Tracy-Widom test was
used to test for eigenvalues > 0, and determined that three PCs were needed to adjust for
population stratification in this subset of subjects; these PCs were used as covariates in the
gene set association analyses.

Definition of Gene-Sets
Lists of genes corresponding to all pathways in the KEGG database as of February 19, 2010
(Version 53.0) were generated. SNPs were then assigned to genes by including SNPs that
map within 5kb upstream or downstream of the first and last exon of the gene. This
algorithm led to assigning 127,047 SNPs to 200 gene sets representing pathways annotated
in the KEGG database. These pathways and their characteristics (number of genes and
number of SNPs) are listed in Supplemental Table S1. We note that five of the analyzed
gene sets were previously reported to play a role in alcohol and drug addiction (Li et al.,
2008) [KARG; http://karg.cbi.pku.edu.cn/]. These gene sets represent the “neuroactive
ligand-receptor interaction”, “long-term potentiation”, “GnRH signaling”, ”MAPK
signaling”, and “Gap junctions” pathways.

Statistical Analysis
We used two approaches for GSA, a one-step analysis method and a two-step method. In the
one-step approach all SNPs in a gene set are used in the analysis without consideration of
gene-level effects. In the two-step approach all genotyped SNPs in each gene are first used
to evaluate association with the gene, followed by aggregation of the gene-level tests to
assess evidence for association of the phenotype with the gene set (Biernacka et al., 2011;
Fridley and Biernacka, 2011).

It has been demonstrated that Fisher's method (Fisher, 1932) is a powerful approach for
combining SNP-specific p-values in the context of gene-set analyses (Chai et al., 2009).
Fisher's method is based on transforming a set of p-values, and then adding the transformed
p-values to obtain a test statistic. Rather than applying the -2log(p) transformation of
Fisher's method, other transformations of p-values can be applied. One way of combining p-
values is the Gamma method, which is also based on summing transformed p-values, but
uses an inverse Gamma transformation (Zaykin et al., 2007). For a particular shape

parameter ω, the test statistic is defined as  where G-1 is the inverse of a
Gamma(ω, 1) cumulative distribution function (Zaykin et al., 2007). It can be shown that
Fisher's method is a special case of Gamma method, with a shape parameter of ω = 1. We
have demonstrated that for SNP-based GSA, the Gamma method with a small shape
parameter, in the range of 0.1-0.2, can be more powerful than Fisher's method (Biernacka et
al., 2011). Therefore, for our one-step GSA, we used the Gamma method (GM) with shape

Biernacka et al. Page 3

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://karg.cbi.pku.edu.cn/


parameter 0.1 (GM0.1). However, the optimal shape parameter in a GM GSA may depend on
factors such as the number of SNPs and linkage disequilibrium (LD) structure within the
gene set, as well as the true underlying disease-causing model. Moreover, we have
previously shown that combination of p-values from univariate analyses using FM (Fisher,
1932), with permutation-based assessment of significance of association with the gene-set, is
a powerful approach for GSA of expression data (Fridley et al., 2010). Therefore, as a
sensitivity analysis, we also analyzed the data using the GM with a shape parameter of 1
(GM1), which is equivalent to the commonly used Fisher's method (FM). Results of these
secondary analyses are shown along with the results of the main analysis in Supplemental
Table S1.

For the one-step approach, association tests were first performed for each SNP individually
using logistic regression, with alcohol dependence as the response variable. For these
analyses, SNP genotypes were coded as the dosage of minor alleles, which assumes log-
additive allele effects. For each gene set, the gene set statistic was then calculated using the
GM with shape parameter 0.1 (GM0.1), and as a sensitivity analysis with a shape parameter
of 1 (GM1). Rather than using the asymptotic distribution of the gene set test statistic, which
assumes independence of SNP-specific p-values, permutations were used to assess
significance of the gene-set statistic. Because the permutation method that was applied
maintains the LD structure in the data, this method of calculating the gene-set p-value
correctly accounts for the observed LD between SNPs.

In the two-step approach, all genotyped SNPs in a gene were first used to evaluate the
phenotypic association with each gene, and the gene-level tests were then aggregated to
assess significance of association with the gene set. We first applied principal component
analysis (PCA) to the SNPs in each gene, and fit a logistic regression model with the
resulting principal components (PCs) that explained 80% of the variation in the SNP data for
each gene as the predictor variables. For each gene, this logistic regression model was used
to assess the global significance of gene association by comparing the model with the PCs
that explain 80% of the SNP variation in the gene with the model without the gene-specific
PCs, using a likelihood ratio test (Gauderman et al., 2007). We then applied the GM to all
the gene-level association p-values in a given gene set to calculate gene-set association
statistics. We denote the two-step approach consisting of PCA at the gene-level followed by
aggregation of gene-level p-values using GM as PC-GM. For the PC-GM approach we again
used the shape parameter of 0.1 (i.e. PC-GM0.1), but also performed a sensitivity analysis
with a shape parameter of 1 (PC-GM1). Permutations were again used to assess significance
of the gene-set tests using 1000 permutations.

All analyses were limited to a subset of subjects of European-American ancestry. However,
even within groups of same continental ancestry, residual population substructure can lead
to false positive SNP association (Campbell et al., 2005). Moreover, because the goal of
GSA is to aggregate individual SNP effects to detect the influence of a set of genes, even
small population stratification effects can have substantial effects on GSA results (Fridley
and Biernacka, 2011). We therefore used a PCA based approach (Price et al., 2006) to adjust
for residual population structure. Three PCs were included as covariates in all analyses to
adjust for effects of population stratification within the sample of European-American
subjects.

Results
Table 1 shows results for pathways with an uncorrected p<0.05 for at least one of the
primary analyses (GM0.1 or PC-GM0.1). Complete results for all KEGG pathways based on
analyses with all the methods are shown in Supplemental Table S1. None of the results are
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significant after a Bonferroni correction for the number of pathways investigated. The gene
set with strongest evidence for association using the two-step approach corresponds to the
“synthesis and degradation of ketone bodies” pathway (PC-GM0.1 p=0.003; PC-GM1
p=0.0009). This pathway is also marginally significant at the uncorrected 0.05 significance
level with the one-step analysis (GM0.1 p=0.051). QQ-plots of the results of the one-step
GM0.1 and two-step PC-GM0.1 analyses, as well as the one step GM1 and two-step PC-
GM0.1 sensitivity analyses, are shown in Supplemental Figure 1. The plot corresponding to
the PC-GM1 analysis emphasizes this pathway. Several other pathways are nominally
significant at the 0.05 significance level with both one-step and two-step analysis methods.
Notably, a gene set representing neuroactive ligand-receptor interactions, one of the
candidate pathways previously reported to play a role in addictive behavior (Li et al., 2008),
showed the strongest evidence of association with the one-step GM analyses (p=0.008 with
both GM0.1 and GM1).

For the top gene set (the neuroactive ligand receptor interaction pathway) yielding strongest
evidence of association based on the one-step analysis (p<0.01 with both GM0.1 and GM1),
individual SNPs that were significant at the 0.01 level, limited to the top 25 SNPs, are listed
in Table 2. Individually, none of these SNPs are significantly associated with alcohol
dependence after correction for multiple testing. However, these results give some indication
regarding which SNPs contributed to the overall evidence for association with the gene set.
In particular, many of the most strongly associated SNPs were in glutamate receptor genes,
including GRIK2 (rs1415484, rs6936552, and rs6908225) GRM7 (rs17046239), GRIK1
(rs2832476), and GRM5 (rs1903851 and rs10501681). Although not in the list of top 25
results, many other glutamate receptor SNPs in this gene set had p-values < 0.01, including
SNPs in GRIA4, GRIA3, GRIN2A, GRIN2C, and GRIK4.

For the gene set corresponding to the “synthesis and degradation of ketone bodies” pathway,
which yielded the strongest evidence of association based on the two-step analysis (p<0.01
for PC-GM0.1 and PC-GM1), genes that were nominally significant (p<0.05) based on the
PCA that makes up the first step of the two-step analysis are listed in Table 3. For this
pathway, three out of the nine genes in the gene set were associated with alcohol
dependence at the uncorrected 5% significance level. Of the genes in this gene set, variation
in BDH2 (3-hydroxybutyrate dehydrogenase type 2) was most strongly associated with
alcohol dependence (p=0.001).

Discussion
This paper presents the first comprehensive genome-wide gene set analysis of alcohol
dependence. We previously applied GSA to investigate the association of a candidate gene
set, representing the NMDA-dependent AMPA trafficking cascade pathway, with
alcoholism (Karpyak et al., 2011). Rather than limiting the analysis to candidate pathways,
the present study investigated the association of alcohol dependence with all pathways
currently represented in the KEGG database. Our results demonstrate a potential role of the
“synthesis and degradation of ketone bodies” pathway (p<0.001), and provided further
support for the potential involvement of the “neuroactive ligand receptor interaction”
pathway in susceptibility to alcohol dependence. Other pathways with nominal evidence of
association in our study may represent additional interesting signals. For example, we found
nominally significant evidence of association of alcohol dependence with the gene set
representing the nitrogen metabolism pathway. This is intriguing considering that this
pathway was shown to be involved in response to antidepressant treatment, in a recent study
that used a combined pharmacometabolomics - pharmacogenomics approach (Ji et al.).

Biernacka et al. Page 5

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our top gene set association signal implicated the “Synthesis and Degradation of Ketone
Bodies” pathway in alcohol dependence. Excessive alcohol consumption is known to
increase ketone bodies, especially beta-hydroxybutyrate, which causes ketoacidosis (Elliott
et al., 2010; Palmer, 1983). An increase in ketone bodies in the blood lowers the pH and
causes dehydration because of vomiting and diuresis. Interestingly, our results demonstrate
that variation in the BDH2 gene, responsible for beta-hydroxybutyrate formation, is
associated with alcohol dependence. Since accumulation of beta-hydroxybutyrate causes
aversive effects of alcohol consumption, it is likely that reduced BDH2 activity is related to
increased alcohol consumption. Instead, formation of acetone through acetoacetate
decarboxylase might be increased in alcohol dependent patients. Conversely, since alcohol
load in alcoholics showed increased beta-hydroxybutyrate and total ketone bodies levels
compared to nonalcoholic control subjects (Hirsch et al., 1998), increased beta-
hydroxybutyrate levels might be an indicator or marker of excessive alcohol consumption
and increased BDH2 activity might account for it, which will be unraveled by further
investigations.

Interestingly, one of the top gene sets identified using the one-step GSA is the “neuroactive
ligand-receptor interaction” gene set. This pathway has previously been implicated in
addictive behaviors and is a strong candidate based on biological knowledge (Li et al.,
2008). The other four pathways reported to be associated with drug and alcohol dependence
by the KARG [http://karg.cbi.pku.edu.cn/], were not significantly associated with alcohol
dependence in our analyses, except for the MAPK signaling pathway for which there was
nominal evidence of association based on one of the GSA methods (p=0.029 with GM1
analysis).

The KEGG neuroactive ligand receptor interaction gene set is a very large gene set,
consisting of more than 300 genes representing a variety of signaling molecules including
many types of neuroreceptors. Among those are classes of neuroreceptor genes previously
implicated in alcohol use disorders, such as dopamine, serotonin, gamma-aminobutyric acid
(GABA), and glutamate receptors (Kohnke, 2008). Thus, the association of this gene set
with alcohol dependence observed in our study is not surprising, and confirms the
effectiveness of GSA in identifying pathways that play a role in complex traits. However,
because this gene set is very broadly defined, it is probably over-inclusive in this context,
and the finding of association between this gene set and alcohol dependence does not
provide much novel information regarding specific neurobiology underlying addiction.
Furthermore, GSA of large, broadly-defined gene sets may limit opportunity for uncovering
positive associations as a result of inclusion of many non-informative SNPs in genes
unrelated to the trait of interest. These observations emphasize the importance of well-
defined pathways for successful application of GSA.

While pathway databases, such as KEGG, need to be expanded to include a broader range of
pathways, analysis of custom user-specified gene sets based on prior knowledge in a given
area (see e.g. (Karpyak et al., 2011)) is also an important strategy in GSA. Despite the
limitations introduced by analyzing a very broadly-defined pathway, the individual SNP
results for the neuroactive ligand receptor interaction pathway shown in Table 2 point
towards importance of variation in genes involved in glutamate neurotransmission for
alcohol dependence susceptibility. Although the statistical methods applied here have been
shown to be valid (have correct type 1 errors) and have good power compared to alternative
methods, new GSA methods are still being developed. Thus, there is still some uncertainty
as to which methods may be optimal for analyzing data with particular properties. In this
study we applied both a one-step and a two-step GSA approach. Our previous analyses of
simulated data demonstrated that generally the two-step approach is more powerful than the
one-step approach (Biernacka et al., 2011). However, the power of the methods depends on
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numerous factors including the size of the gene set and the true underlying disease model
(e.g. number of SNPs in the gene set associated with the phenotype, and their distribution
within the genes that belong to the gene set). Thus, in certain situations, one-step approaches
may be more powerful than two-step methods. Indeed, in the analyses presented here, the
one-step methods provided greater evidence for association with the neuroactive ligand
receptor interactions pathway than did the two-step methods. This may occur when there are
many weakly associated SNPs in a gene set, occurring in many of the genes in the gene set.
In such situations, perhaps the gene-level tests that contribute to the two-step analysis may
not have adequate power to detect association, while combining all of the individual SNP
effects across the gene set may detect the association. Further investigation of the situations
under which the different GSA methods have advantages is needed.

Limitations of the approach applied here include gaps in current knowledge about
biologically relevant pathways and the corresponding genes sets. In particular, pathways for
some types of biological processes are not as well documented in public databases as others.
In fact, many of the top SNPs reported by Bierut et al. (2010), including those in the
PKNOX2 gene that provided the top association signal in their GWAS, were not represented
in the KEGG pathways that were analyzed here. However, the HRH1 and GRM5 genes that
were also among the top association signals reported by Bierut et al., as well as the
candidate GABRA2 gene for which they reported nominally significant findings, are all part
of the neuroactive ligand receptor interactions pathway that we identified in our analyses.

Another limitation arises from the fact that some genes/pathways may not be as well
represented with the available genome-wide SNP arrays as other genes/pathways. Thus,
power to detect associations with different pathways is not expected to be uniform. Finally,
the optimal way of assigning SNPs to pathways is still not clear. We included all genotyped
SNPs within 5kb of the gene (i.e. defined from first to last exon). Although this is consistent
with what is usually done in GSA (Fridley and Biernacka, 2011), it is an arbitrary distance.
Determining which SNPs should be included in a gene set based on other criteria such as
eQTLs (SNPs that are associated with the expression level of a gene, either through cis or
trans effects), has been proposed (Zhong et al., 2010). However, the utility of this approach
has not been thoroughly investigated, and data on relevant expression (e.g. brain) eQTLs are
currently limited. Therefore at this point a simple distance-based SNP inclusion criterion
was used. However, future studies should consider other ways of defining gene sets. Future
research should also include investigation of gene sets defined using other pathway
databases (e.g. Gene Ontology or MetaCore), as well as application of novel methods, for
example approaches that take into account gene-gene interactions.

It is important to note that the GSA applied in this study does not attempt to identify
individual loci associated with the phenotype, and therefore does not identify specific SNPs
for functional study. Nevertheless, the approach identifies sets of genes representing relevant
pathways, enabling further more focused biomarker studies of complex traits.

In summary, analyses of individual SNPs from the SAGE data did not identify any genome-
wide significant results, and the top results did not replicate in two independent replication
samples included in the study of Bierut et al. (Bierut et al., 2010). Here, by using a novel
approach that looks at the collective evidence of association with a set of SNPs in related
genes, new leads for further investigation have been identified. This study demonstrates the
utility of GSA in the analysis of complex disease data, and suggests specific directions for
further research into the genetic architecture of alcohol dependence. Independent replication,
functional validation, and more in-depth analyses, such as investigation of gene-gene
interactions, are warranted for the top pathways, including “synthesis and degradation of
ketone bodies” and “neuroactive ligand receptor interactions”.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2

Top SNP-specific association test results for the “Neuroactive ligand-receptor interaction” pathway (KEGG
id: 4080), which was identified using the 1-step analysis. The top 25 SNPs with smallest p-values are shown.

SNP gene p

rs433303 HRH1 0.00012

rs2072100 TAC1 0.00021

rs1229434 TAC1 0.00028

rs1415484 GRIK2 0.00035

rs1848845 TAC1 0.00048

rs874306 GLP2R 0.00059

rs6936552 GRIK2 0.00068

rs17046239 GRM7 0.00072

rs2832476 GRIK1 0.00081

rs1903851 GRM5 0.00119

rs237899 OXTR 0.00123

rs443137 HRH1 0.00123

rs7756097 HCRTR2 0.00137

rs430353 HRH1 0.00139

rs9822871 HRH1 0.00140

rs17681708 GLP2R 0.00158

rs7916403 HTR7 0.00175

rs709024 ADRA1D 0.00188

rs10501681 GRM5 0.00194

rs17681684 GLP2R 0.00206

rs12736154 LEPR 0.00206

rs12345664 GABBR2 0.00208

rs17676067 GLP2R 0.00208

rs995213 GABBR2 0.00210

rs6908225 GRIK2 0.00239

The total number of analyzed SNPs in this pathway was 8682.

Gene name abbreviations: HRH1 = histamine receptor H1; TAC1 = tachykinin, precursor 1; GRIK2,1 = glutamate receptor, ionotropic, kainate 2,1;
GLP2R = glucagon-like peptide 2 receptor; GRM7,5 = glutamate receptor, metabotropic 7,5; OXTR = oxytocin receptor; HCRTR2 = hypocretin
(orexin) receptor 2; HTR7 = 5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled); ADRA1D = adrenergic, alpha-1D-, receptor;
LEPR = leptin receptor; GABBR2 = gamma-aminobutyric acid (GABA) B receptor, 2.
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Table 3

Top gene-level association results in the top pathway (Synthesis and degradation of ketone bodies; KEGG ID
72) selected based on 2-step analysis. Genes with p-value < 0.05 are listed.

gene Chromosome location P

BDH2 (3-hydroxybutyrate dehydrogenase, type 2) 4q24 0.001

OXCT1 (3-oxoacid CoA transferase 1) 5p13.1 0.021

ACAT1 (acetyl-CoA acetyltransferase 1) 11q22.3 0.040

The total number of genes in this gene set was 9.
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