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Abstract
We propose a framework for quantifying node-level community structures between groups using
anatomical brain networks derived from DTI-tractography. To construct communities, we
computed hierarchical binary trees by maximizing two metrics: the well-known modularity metric
(Q), and a novel metric that measures the difference between inter-community and intra-
community path lengths. Changes in community structures on the nodal level were assessed
between generated trees and a statistical framework was developed to detect local differences
between two groups of community structures. We applied this framework to a sample of 42
subjects with major depression and 47 healthy controls. Results showed that several nodes
(including the bilateral precuneus, which have been linked to self-awareness) within the default
mode network exhibited significant differences between groups. These findings are consistent
with those reported in previous literature, suggesting a higher degree of ruminative self-reflections
in depression.

1 Introduction
Modern imaging techniques have allowed us to construct anatomical (structural) and
functional networks of the human brain and a new term - the human “connectome” [1] has
been recently coined to describe their mathematical properties. A brain connectivity network
consists of nodes which represent gray matter regions and edges connecting nodes which
represent white matter fibers. Many tools and metrics have been adapted from the field of
graph-theory to help characterize and analyse the human connectome [1-2]. It has been
shown that brain networks are sparse (networks having the number of nodes in the order of
the number of edges) [3], thus allowing the investigation of their community structure
properties in which nodes may be grouped into different communities [4, 5] (in our context,
“community structure” is a property for sparse networks, which allows us to extract the
topological organization of a network and to partition it into a set of non-overlapping
communities, sometimes also referred to as modules or clusters).
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Studying the structural organization of the brain communities has lately shed light on
alterations related to aging [6, 7] as well as neuropsychiatric disorders such as schizophrenia
[8-12]. In this paper, we proposed a novel metric, with which we extracted community
structures in the form of top-down binary trees (also known as dendrograms). This is
followed by the computation of a node “consistency metric”, designed to quantify
differences between trees at each node. To our best knowledge, we are the first group to
propose a recipe for quantifying node-level community differences between two groups of
brain networks. Lastly, statistical analyses were conducted to detect significant community
alterations on the nodal level for group studies. We tested the proposed method and
compared the binary trees generated from the structural brain networks of depressed versus
normal control subjects. Significant changes were found on the nodal level in the
community structure in depression relative to controls.

2 Methods
2.1 Image acquisition

We scanned 47 healthy subjects (20 male/27 female; age: 59.74±14.8)) and 42 subjects with
major depression as defined by DSM-IV (18 male/24 female; age: 57.64±13.4). A Philips
3.0 T Achieva scanner supplied with 8-channel SENSE head-coil located at the University
of Illinois Medical Center Advanced Imaging Center was used to acquire the brain MRI
data. High resolution T1-weighted images were acquired with MPRAGE sequence
(FOV=240 mm; TR/TE=8.4/3.9 ms; flip angle 8°; voxel size 1.1×1.1×1.1mm). Diffusion
weighted (DW) images were acquired using SS-SE-EPI sequences (FOV = 240 mm;
resolution 0.83×0.83 mm; TR/TE=6994/71 ms; flip angle = 90°, 32 gradient directions, b=
700 s/mm2 and one minimally DW scan: b0 image). Parallel imaging was also used with a
SENSE factor of 2.5 to reduce scan time to ~ 4 min.

2.2 Brain Network Construction
Structural brain networks were generated using a pipeline which integrates multiple image
analysis techniques. First, DW images were eddy current corrected using the automatic
image registration (AIR) tool embedded in DtiStudio software (http://www.mristudio.org)
by registering all DW images to their corresponding b0 images with 12-parameter a ne
transformations. This was followed by the computation of diffusion tensors and
deterministic tractography using the DtiStudio program. T1-weighted images were used to
generate label maps using the Freesurfer software (http://surfer.nmr.mgh.harvard.edu). Brain
networks formed by the 68 cortical regions were generated using an in-house program in
Matlab by counting the number of fibers connecting each pair of nodes.

2.3 Hierarchical Trees Creation
Measuring community structure has been a scientifically important task in network science.
To this end, we note that nodes belonging to the same community should exhibit stronger
connections than those in different communities. A well-known metric for such task is the Q
modularity proposed in [13] and is mathematically defined as:

(1)

where Q is a function of a graph G, m is the total number of edges, Aij = 1 if an edge links
nodes i and j and 0 otherwise, δ(i, j) = 1 if nodes i and j are in the same community and 0
otherwise, and ki is the node i’s degree (its number of edges). Extracting the community
structure of a network is obtained by finding the set of non-overlapping modules that
maximizes Q. Here, we further propose an alternative maximization problem with respect to
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a novel metric. This new metric is defined as the difference between the mean inter- and the
mean intra-modular path lengths (interPL/intraPL). For two communities Ci and Cj the
interPL and intraPL are defined as:

(2)

where Ni denotes the number of nodes in a community Ci, dnm denotes the shortest path
length connecting nodes n and m. In the case of two modules, for example, the alternative
metric ΨPL is defined as:

(3)

Here, notice that  can be considered the weighted characteristic path length (a
measure of global network integration) defined on the sub-network formed by Ci. Thus,
maximizing ΨPL is equivalent to searching for a set of communities that exhibit stronger
sub-network integration. Since path length is based on the number of fibers, ΨPL may
provide a more anatomical basis for defining community structure.

There exist two main types of hierarchical clustering techniques: the agglomerative and the
divisive. The agglomerative method starts bottom-up. At the first level, every node is a
community by itself. In each subsequent step (level), two communities that are considered
closest (with respect to a similarity measure) are merged into one, until all nodes are in one
community. The divisive method follows the opposite or a top-down approach. It starts with
all nodes belonging to one single community, and at each step each community is further
split into several sub-communities (unlike the agglomerative method, the divisive clustering
usually uses a dis-similarity measure). It should be noted that one may choose to stop the
clustering process at a pre-specified level (stopping criteria can be a given number of
communities or the optimization of a quality function [14]). Here, to maximize Q or ΨPL, we
used a top-down hierarchical clustering approach, as it has been suggested that
agglomerative methods may fail to find correct communities in networks where the
community structures are known a priori [13]. At the first level, brain regions were
randomly assigned to one of two communities, and optimal assignment was determined by
maximizing Q or ΨPL using the well-known simulated-annealing algorithm [15]. The
process is repeated at each level until a 4-level dendrogram is reached (a total of 16
communities). One million random permutations were used at each optimization stage.

2.4 Community Structures Difference Assessment
In order to assess local differences between communities in different groups, we first
construct the mean binary tree for the control group (by maximizing Q or ΨPL, with respect
to the mean connectivity matrix for this group). All individual subjects’ trees will then be
compared to the mean control tree. To this end, a local metric is needed to quantify how two
trees differ. One candidate metric is via the consistency metric assessment method
introduced in [16], which yields a consistency vector V of length equal to the number of
nodes in the network (68 in our case). To compute V, we need to first construct a L×M
similarity matrix XR that compares any module in a test tree (i.e., the individual subject’s
tree in our framework) to any module in a reference tree (the mean tree for the control
group). Here L and M are the number of communities in the test and reference trees; in our
case L = M = 16. Mathematically, for any two communities Cp and Cq belonging to the test
tree and the reference tree respectively, the (p, q)th entry XR(p, q) in XR is calculated using
the following equation:
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(4)

where Npq denotes the number of common nodes between the two communities Cp and Cq,
and Np and Nq the number of nodes in community Cp and Cq. Values in XR range from 0 to
1, with 0 indicating no overlap between the two communities and 1 identical communities
(numerically, XR(p, q) thus represents the similarity between community Cp in the test tree
and community Cq in the reference tree). With the computation of XR, the consistency
vector V now can be constructed as follows. First, we identify the maximum entry in each
column of the XR matrix. For the qth column corresponding to community Cq in the
reference tree, if the maximum exists in the pth row corresponding to community Cp in the
test tree, we assign this value to the kth element of V, for all k ∈ {Cp ∩ Cq}. Although V
provides a node-level measurement of how “consistent” the test tree’s community structure
is with respect to that of the reference tree, it should be noted that with this definition, V may
yield zero values. We thus proposed a modified non-zero node-level consistency measure
(Vm) for each node k as follows:

(5)

where Nc denotes the number of common nodes between the two communities Cp and Cq,
that contain this node k in the test and reference trees respectively.

2.5 Statistical Analysis
To statistically test group differences in community structures at the nodal level, all
individual subjects’ trees (both depressed and control) are compared to the mean control
reference tree, thus yielding 47 V or Vm vectors in the healthy group, and 42 in the depressed
group. Group differences on local community structures can now be assessed using node-
wise 2-sample Mann-Whitney-Wilcoxon (MWW) tests for V (due to the existence of zero
values) or node-wise 2-sample T-tests for Vm followed by correcting for multiple
comparisons. Alternatively, a more powerful test can be constructed via a multivariate
distribution for each community in the 4th level binary tree of the mean normal group (16
total modules), by concatenating the V or Vm vectors of all nodes in this community, on
which 2-sample Hotelling’s T-squared tests can be conducted.

3 Results
3.1 Comparison of modularity measures

We first generated and compared the mean community structures of the normal controls in
this study, using both Q and ΨPL (figure 1). Note that in the first level of the binary tree
(partitioning the brain into two modules), the constructed mean tree using the Q function
exhibits an exact left/right separation while the tree generated using ΨPL shows an anterior/
posterior partition of the human brain (the left-right separation represents the second level
partitioning using the proposed metric; the mean community structure of the studied
depressed subjects is shown in right panel of figure 1). The second level partitioning using
ΨPL also generated more unified communities compared to the Q function.

3.2 Group difference
To detect community structure abnormalities in depression, we constructed the Hotelling T-
squared statistics as described in the method section for all 16 communities in the reference
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tree. Results showed a significantly lower consistency (p = 0.0079) in depression versus
control for the community containing the right precuneus, superior parietal gyrus, inferior
parietal gyrus, inferior temporal gyrus, and isthmus cingulate (figures 2 and 3). On a node
level, conducting 2-sample T-tests or the MWW-test on Vm or V confirmed such findings
(table 1). The right precuneus and superior parietal gyrus exhibited the lowest node-level
consistency (p < 0.01; uncorrected). Comparing the mean community structures between
two groups, we note that the right precuenus and right superior parietal gyrus, while
belonging to the same community in the healthy controls, are assigned to different
communities in the depressed group. Additionally, in depression the bilateral precuneus are
assigned to one community, suggesting a stronger structural integration between them
(figure 3).

4 Discussion and Conclusion
In this paper we presented a new approach to construct hierarchical community structures
from weighted structural brain networks. Our proposed metric took into account the path
lengths within and between communities, and we used simulated annealing to construct top-
down four-level binary trees. Moreover, we are the first to develop a statistical framework
that allows for the quantification of node-level community structural differences between
two groups of brain networks, via the consistency vector metric. This framework was
validated on a sample of depressed patients. Results revealed local community differences in
parts of the default mode network (especially the right precuneus), which has been
previously linked to self-awareness and shown to exhibit abnormalities in depression [17,
18].
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Fig. 1.
First two levels of modular or community structure via the Q modularity (left) and ΨPL

(right). Notice that at the first level, the constructed mean tree by maximizing Q exhibits a
left/right parcellation while the constructed mean tree using ΨPL exhibits an anterior/
posterior partitioning along the frontal-parietal junction.
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Fig. 2.
Hotelling’s T-Squared statistics are overlaid on the 16 communities of the reference tree,
showing regional group differences in the community structure between groups. The most
significant differences are in the right precuenus and superior parietal gyrus. This figure is
showing a left/right lateral view (top), an axial view (middle) and a left/right mid-line view
(at the bottom). The community containing the right precuneus and the right superior
parietal gyrus is highlighted in red.
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Fig. 3.
4-level binary trees showing mean community structures via the proposed metric ΨPL for the
healthy controls (left) and the depressed subjects (right). Notice that the right precuneus and
right superior parietal gyrus belong to the same community in the healthy controls but not in
the depressed group. Additionally, in the depressed group the right and left precuneus are
assigned to one single community (which also comprises bilateral isthmus cingulate).
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Table 1

List of nodes which showed significantly lower node-level consistency in depression relative to healthy
controls at p < 0.01 (uncorrected). The table shows mean and standard deviation values using both MWW (for
V) and 2-sample T-tests (for Vm), and their corresponding p values.

Healthy Depressed p-value

right-precuneus
MWW-test 0.2373 ± 0.1815 0.1281 ± 0.1311 0.0044

T-test 0.2645 ± 0.1501 0.1784 ± 0.0908 0.0019

right-superiorparietal
MWW-test 0.2088 ± 0.1773 0.1007 ± 0.1376 0.0032

T-test 0.2374 ± 0.1475 0.1524 ± 0.1106 0.0033
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