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Bubble-based microfluidic devices have been proven to be useful for many biological and chemical

studies. These bubble-based microdevices are particularly useful when operated at the trapped

bubbles’ resonance frequencies. In this work, we present an analytical expression that can be used

to predict the resonant frequency of a bubble trapped over an arbitrary shape. Also, the effect of

viscosity on the dispersion characteristics of trapped bubbles is determined. A good agreement

between experimental data and theoretical results is observed for resonant frequency of bubbles

trapped over different-sized rectangular-shaped structures, indicating that our expression can be

valuable in determining optimized operational parameters for many bubble-based microfluidic

devices. Furthermore, we provide a close estimate for the harmonics and a method to determine the

dispersion characteristics of a bubble trapped over circular shapes. Finally, we present a new

method to predict fluid properties in microfluidic devices and complement the explanation of

acoustic microstreaming. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827425]

I. INTRODUCTION

Oscillating bubbles have been proven to be useful in

controlling fluids and particles in many lab-on-a-chip appli-

cations.1 These bubble-based microfluidic systems were

most effective when excited at the bubbles’ resonance fre-

quencies.2,3 In their early-stage development, bubble-based

microsystems comprised unbounded spherical bubbles in

microchannels with random bubble sizes and locations. In

recent years, researchers have expanded the functionalities

of bubble-based microfluidic systems by trapping bubbles

over solid structures.4–10 These trapped-bubbles can have

prescribed sizes, locations, and shapes and thus offer supe-

rior performance. For example, microfluidic devices using

bubbles trapped across horseshoe-shaped structures (HSS)

have effectively demonstrated several distinct functionalities

(such as mixing, gradient generation, and enzymatic

reaction).7,9–13

Although microfluidic devices using surface-trapped

bubbles are effective, determining the bubbles’ resonant fre-

quencies remains a significant challenge. Experimentally,

these are identified by sweeping the frequency and visually

analyzing the bubbles’ amplitude for maximum oscillation.

This process can be time-consuming and prone to error.

Though theoretical analysis for spherical bubbles exists, it is

inapplicable for trapped-bubbles and hence do not guide the

device design.13–17

Although analysis of the trapped-bubble, i.e., liquid-gas

interface, has not been attempted, extensive analysis of

unbounded liquid-gas and liquid-liquid interfaces has been

performed.17–22 In the case of bounded interfaces, formula-

tion of a liquid-liquid interface has been developed.23–25

Attempts have also been made to analyze a cylindrical-

shaped liquid-gas interface trapped over rectangular

shapes.26,27 Here, we extend the above approaches to deter-

mine the dispersion characteristics of the oscillation of

trapped bubbles. We believe that with its advantages in accu-

racy and versatility, the theoretical analysis presented here

could serve as a powerful tool for designing and optimizing

many bubble-based microfluidic devices.

In this work, we theoretically investigate the resonance

frequencies of liquid-gas interface trapped over horseshoe-

shaped structures and compare with experimental observa-

tions. First, the capillary wave dispersion characteristics of

the liquid-gas interface are derived from velocity potentials.

Next, using Taylor-series expansion, the effect of viscosity

on dispersion relations is determined. An extension of our

theoretical approach for trapped-bubbles over arbitrary pla-

nar geometries is discussed. Later, the dispersion characteris-

tics of liquid-gas interface, of commonly used liquids, are

presented. Estimated resonant frequencies over rectangular

horseshoe-shaped structures are compared with experimental

data and explanations are provided. Following that, an

inverse method to determine the physical properties of fluids

is proposed. Finally, the microstreaming phenomenon is dis-

cussed based on the evaluated velocity potentials.

II. EXPERIMENTS

Polydimethylsiloxane (PDMS) microfluidic channels of

dimensions 240 lm � 155 lm � 1000 lm were prepared

using standard soft lithography and mold replica techniques.

Fig. 1 shows a typical arrangement of the horseshoe-shaped

structure in a microfluidic channel. Nine horseshoe-shaped

structures, each with different widths (b) varying from 30 to

110 lm, were prepared. The height (a) and length (h) of the

structures were fixed as 60 and 155 lm, respectively. When
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the channel is filled with fluid (e.g., de-ionised (DI) water),

the fluid passes by the structure and induces a single bubble

(liquid-gas interface) due to surface tension.6–9 It is observed

that with these dimensions of horseshoe structure an inter-

face can be developed even at high flow rates of DI water. It

is known that ambient gases diffuse in and out of the bubble

through the PDMS28,29 by a process known as rectified diffu-

sion.30,31 Since this microsystem is operated at low trans-

ducer voltages (8 Vpp), diffusion effects were not observed.

Furthermore, these experiments, at room temperature and

ambient pressure, were performed soon after the bubbles

were trapped. Hence, in this preliminary study, the diffusion

effects were not considered.

A piezoelectric transducer (Model No. 273-073,

RadioShack), driven by a function generator (Hewlett

Packard 8116A), was bonded next to the microfluidic device

on the same glass substrate using epoxy. Upon actuating the

piezoelectric transducer, the liquid-gas interface, here water-

air, is set into oscillation. These oscillations result in a strong

recirculating flow pattern in the liquid closer to the interface.

This phenomenon, known as acoustic streaming, is most effi-

cient when the interface is excited at its resonance frequency.

Identification of resonance of interface oscillation was made

by visual observation via a fast microscope, SA4 fastcam,

Photron. Experiments were performed with three sets of

horseshoe-shaped structures of all sizes. For each set of

experiments, nine horseshoe-shaped-structures, of the men-

tioned sizes, are used in micro-channels, and the correspond-

ing resonant frequencies are determined. The resonance

frequency of the interface was determined experimentally by

sweeping the excitation frequency from 5 kHz to 100 kHz, at

a driving voltage of 8 Vpp.

III. THEORY

For the purpose of analysis, the region outside the

horseshoe-shaped structures, in front of the interface S(x,y,t), is

referred as region 1 and the region inside the horseshoe struc-

tures as region 2 (Fig. 1). Region 1 is filled with a liquid and

region 2 is occupied by ambient air. Although region 1 could

be filled with several streams of liquid, in this first study, we

focus on the case of region 1 being completely filled with only

one liquid (e.g., water). At equilibrium, at the liquid-air inter-

face, the surface-tension forces balance the difference of pres-

sure from both regions. To avoid repetitive explanations and

use of the word “liquid-gas interface” or “water-air interface”

from now on, the word “interface” will refer to the “liquid-gas

interface” trapped across the horseshoe structure.

Broadly, the interface oscillation is guided by acoustic

force, gravity, and capillary waves.32 Bond number,19 the ratio

of buoyancy forces and surface tension forces, was found to be

of the order of 10�4 for the horseshoe-shaped structures

employed. Hence, we neglected the effect of gravity on fluid

motion. Based on experimental observations, the interface is

considered to be a near-flat surface in shape. If we only con-

sider acoustic waves while neglecting capillary waves, the

horseshoe structure can be considered as a rigid cuboid with

the interface as a flexible membrane.33–35 For such a case, the

resonant frequencies are calculated to be in the MHz range,36

while it is observed experimentally that resonant frequencies

are in kHz range. This confirms the dominance of capillary

force over acoustic force on the interface in the frequency

range that we employ (5–100 kHz). Thus, the behavior of this

bubble-based system is studied for only capillary wave forces.

We assume the liquid to be inviscid;21 therefore, the pressure

and velocity distribution in the system can be characterized by

velocity potentials.15,19–21 Let wðx; y; z; tÞ and uðx; y; z; tÞ
denote the velocity potentials18,19,33 of regions 1 and 2, respec-

tively; vz is the velocity of the interface in z direction; g is the

viscosity of the liquid in region 1; Sðx; y; tÞ is the interface

amplitude; r is surface tension of the interface; q1; q2 are the

density of fluids in regions 1 and 2, respectively; and a, b, and

h are the dimensions of horseshoe structure. For a small pertur-

bation in the interface shape, we analyze the system to deter-

mine the dispersion relation and resonant frequencies. Since

the interface oscillates in the z direction, the motion of the gas

in region 2 is primarily normal to the interface; i.e., the velocity

components of the gas normal to the walls of the horseshoe-

shaped structure in the x, y directions, vx and vy are given by

vxð0; y; zÞ ¼ vxða; y; zÞ ¼ vyðx; 0; zÞ ¼ vyðx; b; zÞ ¼ 0; (1)

vx ¼
@u
@x
¼ 0 8 x � ½0; a�; vy ¼

@u
@y
¼ 0 8 y � ½0; b�; (2)

where Eq. (2) is obtained from Eq. (1) using the definition of

velocity potential. Let Fðx; yÞ denotes the root-mean

squared value of F(x,y) over the space variables x, y. The

mean velocity of the interface at the open face of the horse-

shoe structure (z¼ 0) must be the same as that of the air ve-

locity in region 2, given by

@S

@t
¼ @u
@z

at z ¼ 0: (3)

Experimentally, it is observed that the interface is pinned at

the edges of the horseshoe structure’s open face leading to

the following boundary conditions for Sðx; y; tÞ :

FIG. 1. Schematic of a microchannel with a HSS in the center. Region 1,

external to the HSS, is filled by a liquid (e.g., water) and region 2, inside the

HSS, is occupied by air. The dimensions of the HSS (a, b, and h) and the am-

plitude of the water-air interface (S) are labeled in the figure. A piezoelectric

transducer is used for acoustic activation of the bubble trapped at the HSS.
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Sð0; y; tÞ ¼ Sða; y; tÞ ¼ Sðx; 0; tÞ ¼ Sðx; b; tÞ ¼ 0: (4)

Before the activation of the piezoelectric transducer, the

interface is observed to be nearly flat, so

Sðx; y; 0Þ ¼ 0: (5)

To be physically consistent, the velocity of the fluid away

from the interface must diminish to zero. Hence, an exponen-

tial decay in the velocity profile as shown in Eq. (6) is con-

sidered. To satisfy Eqs. (1)–(5) and the expected exponential

decay along the z-direction, the velocity potentials and inter-

face amplitude will have the following form:

umnðx; y; zÞ ¼
Qmnx

k2

ek2zcosðkxxÞcosðkyyÞeixt; (6)

Smnðx; y; tÞ ¼ �iQmnsinðkxxÞsinðkyyÞeixt; (7)

where k2 is the wavenumber in the z-direction in region

2, Qmn is the amplitude of interface oscillation, kx

¼ mp
a and ky ¼ np

b are the wavenumbers along x, y directions,

respectively, and m and n are the mode numbers along the

cross-section dimensions, x and y. For liquid motion in

region 1, described by the velocity potential w, wave-

numbers in directions parallel to interface, kx, ky, remain

unchanged for a shear-free interface. Equating the velocity

of the interface with velocity of fluid in region 1 at z¼ 0, the

boundary condition given by

@S

@t
¼ @w
@z

at z ¼ 0 (8)

is imposed. Also, the incompressibility condition for the liq-

uid yields

@2

@x2
þ @2

@y2
þ @2

@z2

 !
w ¼ 0; (9)

which shows that w satisfies the Laplace equation. On solv-

ing Eqs. (7)–(9), we obtain the velocity potential w

wmnðx; y; zÞ ¼ �
Qmnx

k1

e�k1zcosðkxxÞcosðkyyÞeixt: (10)

Here, k1 ¼ ½kx
2 þ ky

2�
1
2 denotes the wavenumber in region 1

in the z direction. The relation between the wavenumbers,

k1, k2, can be determined from the continuity condition in

the z direction37 across the interface given by

k1

k2

¼ Z2q1

Z1q2

; Z1 ¼ q1c1; Z2 ¼ q2c2; (11)

where Z1 and Z2 are the acoustic impedances and c1 and c2

are the speeds of sound for the fluids in regions 1 and 2,

respectively. For a two-dimensional near-flat interface, the

radius of curvature (R) can be approximated38

1

R
¼ r2S ¼ ðSmn;xx þ Smn;yyÞ: (12)

For the typical size of the horseshoe-shaped structures

employed here (60 lm � 70 lm � 100 lm), it is experimen-

tally observed that the amplitude of interface oscillation,

5–8 lm, is much smaller than the depth (h), 100 lm. In these

cases, the variations in pressure can be written in terms of

the average displacements or velocities similarly to the case

of a kettledrum.37 Hence, the pressure variations are quanti-

fied by their root mean-squared spatial average over the

interface area. For a small perturbation of the interface, the

variations in pressure across the interface are balanced by

the surface-tension forces18 as represented by

q2

@u
@t
�q1

@w
@t
�2g

@vz

@z

� �
¼ r

R

D E
¼rhSmn;xxþSmn;yyi: (13)

Here, vz ¼ @w
@z

D E
at z ¼ 0 denotes the velocity at the interface.

The first two terms in Eq. (13) denote the backpressure

induced by the fluids in regions 2 and 1, respectively, due to

the interface oscillations while the third term gives the effect

of viscosity. In order to determine the minor effects of viscos-

ity on interface behavior, we perform a perturbation analysis

of frequency similar to established methods.17,20,22,33,35

Hence, the temporal damping constant ðaÞ and undamped res-

onant frequency (x0Þ are related to the complex angular reso-

nant frequency ðxmnÞ by

xmn ¼ x0 � ia: (14)

Using Eqs. (6), (7), (10), and (13) in Eq. (14), the angular

resonant frequencies are given by

xmn ¼
ffiffiffiffiffi
r
qe

r
k1

3=2 þ i
2gk1

2

qe

; (15)

where k1 ¼ ke ¼ ½kx
2 þ ky

2�
1
2 is the effective wavenumber

and qe ¼ q1ðZ1þZ2Þ
Z1

is the effective density. Thus, the resonant

frequencies (fmn) of the interface are

fmn¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpZ1

q1ðZ1þZ2Þ

s
m2

a2
þn2

b2

� �3=4

þ i
gpZ1

q1ðZ1þZ2Þ
m2

a2
þn2

b2

� �
:

(16)

The spatial damping ðbÞ is related to the complex wave-

number form as follows:17,20,22,32,35

k1 ¼ k0 � ib: (17)

The effect of viscosity on the system is determined in terms

of the spatial and temporal damping constant ðaÞ. For the

wavenumber k1, using a Taylor series expansion with respect

to x and retaining only the first-order term, the relation

between spatial damping constant (bÞ and temporal damping

constant ðaÞ can be expressed as17,34

b ¼ a
@k0

@x0

¼ 2gx0
2

3r
¼ gk1

3

6qe

: (18)

Although experiments are conducted employing a rectangu-

lar horseshoe structure to obtain closed-form results, we

extend the theory to derive the resonance characteristics of

an interface trapped across a different, but simple,
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geometry�cylinder. Here, the interface is assumed to be

pinned over a circular-cylindrical horseshoe-shaped structure

of circular cross-section radius c. For a cylindrical coordinate

system, the velocity potentials for the gas inside the horse-

shoe structure, uc; the liquid outside the horseshoe structure,

wc;
39 and the interface amplitude, Sc are given as

ucvh
ðr; h; zÞ ¼ �i

Qvhx
kh

ekhzJvðkhrÞ½A1cosðvhÞ

þ A2sinðvhÞ�eixt; (19)

wcvh
ðr; h; zÞ ¼ i

Qvhx
kh

e�khzJvðkhrÞ½A1cosðvhÞ

þ A2sinðvhÞ�eixt; (20)

and

Scvh
ðr; h; tÞ ¼ QvhJvðkhrÞ½A1cosðvhÞ þ A2sinðvhÞ�eixt; (21)

respectively. For the case of an interface pinned to the

boundary, the boundary conditions are

Scvhðc; h; tÞ ¼ 0; JvðkhaÞ ¼ 0: (22)

Here, Jv denotes the Bessel function of order v, Qvh is the

amplitude of the interface, and kh, v are the wavenumbers in

the radial and the angular direction, respectively. For an ini-

tial small curvature of the interface, the radius of curvature

can be approximated as38

1

R
¼ r2Scvh

ðr; h; tÞ ¼ Scvh

c2ðv2 � r2Þ
r2

� v2

r

� �
: (23)

For a small perturbation of the interface, the variations in

pressure across the interface are balanced with surface ten-

sion forces as

q2

@uc

@t
� q1

@wc

@t
� 2g

@vz

@z
¼ r

R
¼ rScvh

c2ðv2 � r2Þ
r2

� v2

r

� �
:

(24)

Substituting Eqs. (19)–(23) in Eq. (24), the resonant frequen-

cies can be estimated numerically.

IV. RESULTS AND DISCUSSION

A. Dispersion

For the discussion and analysis presented in this sub-

section, the properties of the fluids employed for simulations

are shown in Table I. In separate simulations, water, acetone,

ethanol, and mercury are assumed to occupy region 1 of the

microchannel. Region 2 is always assumed to be occupied

by ambient air. The range of frequencies applied in bubble-

based microfluidic devices is 5–100 kHz. The corresponding

dispersion relation for the capillary waves is determined

using Eq. (15). The logarithmic dispersion relation and the

temporal attenuation coefficient for these fluids are shown in

Fig. 2. For the dispersion curves shown in Figs. 2(a) and

2(b), the properties of fluids (acetone and ethanol) were close

enough to display similar wave characteristics in the kHz

range.

B. Resonant frequencies and harmonics

For an interface bounded by water in region 1 and air in

region 2 over a rectangular horseshoe structure of cross-

sectional dimensions: 60 lm � 65 lm, the resonant frequen-

cies for different oscillation modes (harmonics) are estimated

using the real part of Eq. (16). A plot is shown in Fig. 3(a).

Different mode shapes are shown in Fig. 3(b) where the num-

bers indicate the mode number.

C. Comparison with experiments

Nine different sized horseshoe-shaped structures were

fabricated, where one cross-section dimension (a) was kept

constant at 60 lm and the other dimension (b) is varied from

30 to 110 lm. Experiments were performed following the

procedure mentioned in Sec. II. A comparison of the first res-

onant frequencies (f11) from theory and experiments for dif-

ferent cross section width (b) is shown in Fig. 4. Errors,

represented as lines in Fig. 4, are determined by performing

the experiments on three different sets of horseshoe-shaped

structures. For each set of experiments, a new set comprising

nine horseshoe-shaped-structures of the mentioned sizes is

used in micro-channels. A slight deviation is observed

between experimental results and theoretical predictions.

The reason for this can be explained as follows: As the as-

pect ratio (b/a) deviates from unity, the amplitude of the cap-

illary waves increases and the curvature becomes larger,

thus, violating the assumptions employed to calculate the ra-

dius of curvature.

D. Estimation of fluid properties: Surface tension and
viscosity

From the analytical expression for resonant frequencies,

the fluid properties, surface tension, and viscosity can be

determined from Eq. (16). In experiments, using a function

generator, the frequencies are swept from lowest (�5 kHz) to

highest (�100 kHz), and the amplitude of interface is deter-

mined by the high-speed camera. Experimentally, the fre-

quencies that cause a local maximum in amplitude are

considered as resonant frequencies. Based on similar analy-

sis performed elsewhere,22 the surface tension of the liquid

for different gases inside the horseshoe structure can be

determined using

TABLE I Relevant physical properties of the various fluids used in the

simulations.

Density

(kg/m3)

Bulk modulus

(GPa)

Surface

tension (N/m)

Viscosity in

(m N/s m2)

Air 1.18 � 10�3 0.00 … …

Water 1000.00 22.90 7.19 1.00

Acetone 791.00 0.92 23.70 0.31

Ethanol 789.50 0.90 22.27 1.07

Mercury 5430.00 28.50 487.00 1.53
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r ¼ 4q1ðZ1 þ Z2Þ
pZ1

fmn
2 m2

a2
þ n2

b2

� ��3=2

: (25)

For fluids with unknown viscosities, the microsystem can be

triggered at a known resonant frequency (of the interface)

and turned off. The decay in amplitude of oscillation of the

bubble, post trigger, can be measured and the viscosity can

be estimated using Eq. (18). A plot for the decay in ampli-

tude of the bubble is shown in Fig. 5.

E. Microstreaming

The microstreaming phenomenon, which enhances

mixing and facilitates generation of concentration gradients,

is also observed near the interface (Fig. 6(a)). Early works

have explained this phenomenon based on velocity potentials

and stream functions.40,41 More recently, a detailed analysis

has been done for microchannels using perturbation theory

accounting the effects of second-order velocity.42–45 Using

these theories40–45 for the velocity potentials determined in

our analysis, streaming velocities in the presence of a horse-

shoe structure-bound interface are determined. Fig. 6 demon-

strates the development of streamlines in the presence of an

acoustic field. Using the velocity potentials, given by Eqs.

(6) and (10), the streamlines near the interface in both

regions 1 and 2 are plotted in Fig. 6(b). Although streamlines

in the air medium (region 1) are not visible through the

microscope, these can be examined through simulations,

FIG. 4. Comparison of experimentally

determined resonant frequencies with

theory for different cross-section

dimension (b) of the horseshoe-shaped

structure. The fixed dimension (a) is

60 lm. In these experiments, region 1

is filled by water and region 2 by air.

FIG. 2. Simulated dispersion relations

for the liquid-air interface. The gas

considered in region 2 is air at 25 �C.

x is the angular frequency of the inter-

face oscillation, a is the temporal

damping constant of the wave, and

ke ¼ ½kx
2 þ ky

2�
1
2 is the effective

wavenumber.

FIG. 3. Simulated resonant frequencies

for various oscillation modes of the

rectangular-shaped interface. The ver-

tical axis indicates the resonant fre-

quencies for different mode numbers

of the rectangular water-air interface.

Y1, Y2, Y3, Y4, and Y5 denote the 1st,

2nd, 3rd, 4th, and 5th mode number of

the interface in y-direction.
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shown in Fig. 6(b). Fig. 6 indicates that our theory can qual-

itatively predict the flow patterns generated by an oscillat-

ing bubble trapped inside a horseshoe structure. The

discrepancies between the experiments and simulations can

be attributed to the fact that the horseshoe structure was

assumed to be present in an infinite medium. Also, the

width of the horseshoe structure boundaries was assumed to

be infinitesimally thin. Future research will aim to address

these issues and design more effective lab-on-a-chip sys-

tems by considering a time-domain three-dimensional

simulation.

V. SUMMARY

In conclusion, the resonant frequencies for bubbles

trapped in solid structures have been estimated theoretically.

The theoretical results match well with experimental data.

The dispersion relations for the trapped-bubbles have been

derived. We have shown that by estimating the resonant fre-

quencies from both experiments and theory, the physical

properties of fluids, such as surface tension and viscosity,

can be determined. We expect that the analysis presented

here will be valuable in designing and fabricating more

effective bubble-based microfluidic systems. Future work

will focus on developing theoretical models accounting for

higher curvatures of interface and the diffusion of air.

ACKNOWLEDGMENTS

This research was supported by National Institutes of

Health (Director’s New Innovator Award No.

1DP2OD007209-01), National Science Foundation, and the

Penn State Center for Nanoscale Science (MRSEC) under

Grant No. DMR-0820404. Components of this work were

conducted at the Penn State node of the NSF-funded

National Nanotechnology Infrastructure Network. The

authors thank Daniel Ahmed, Yuliang Xie, Yanhui Zhao,

and Joseph Rufo for their inputs.

1A. Hashmi, G. Yu, M. R. Collette, G. Heiman, and J. Xu, Lab Chip 12,

4216 (2012).
2P. Tho, R. Manasseh, and A. Ooi, J. Fluid Mech. 576, 191 (2007).
3P. Rogers and A. Neild, Lab Chip 11, 3710 (2011).
4A. Hashmi and G. Heiman, Microfluid. Nanofluid. 14, 591 (2013).
5R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, Lab

Chip 2, 151 (2002).
6M. I. Lapsley, D. Ahmed, C. Chindam, F. Guo, M. Lu, L. Wang, and T. J.

Huang, “Monitoring acoustic bubble oscillations with an optofluidic inter-

ferometer,” 16th International Conference on Miniaturized Systems for

Chemistry and Life Sciences, Oct. 2012, pages 1906–1908. Available at

http://www.rsc.org/images/loc/2012/pdf/W.7.164.pdf.
7D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, Lab Chip 9, 2738

(2009).
8A. R. Tovar, M. V. Patel, and A. P. Lee, Microfluid. Nanofluid. 10, 1269

(2011).
9D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, Microfluid. Nanofluid.

7, 727 (2009).
10D. Ahmed, C. Y. Chan, S.-C. S. Lin, H. S. Muddana, N. Nama, S. J.

Benkovic, and T. J. Huang, Lab Chip 13, 328 (2013).
11P. Glynne-Jones and M. Hill, Lab Chip 13, 1003 (2013).
12L. Capretto, W. Cheng, M. Hill, and X. Zhang, Top. Curr. Chem. 304, 27

(2011).
13Y. Xie, D. Ahmed, M. I. Lapsley, S.-C. S. Lin, A. A. Nawaz, L. Wang,

and T. J. Huang, Anal. Chem. 84, 7495 (2012).
14M. Strasberg, J. Acoust. Soc. Am. 25, 536 (1953).
15T. G. Leighton, The Acoustic Bubble (Academic Press, 1992).
16D. L. Miller and W. L. Nyborg, J. Acoust. Soc. Am. 73, 1537 (1983).
17J. C. Earnshaw and A. C. McLaughlin, Proc. R. Soc. Edinburgh, Sect. A:

Math. Phys. Sci. 433, 1889 (1991). Available at http://www.jstor.org/

stable/51923.
18L. D. Landau and E. M. Lifshitz, “Course of theoretical physics,” in Fluid

Mechanics (Pergamon, 1987).
19J. Lucassen, Trans. Faraday Soc. 64, 2221 (1968).
20E. H. L. Reynders and J. Lucassen, Adv. Colloid Interface Sci. 2, 347

(1970).
21L. Debnath, Nonlinear Water Waves (Academic Press, 1994).
22F. Behroozi, J. Smith, and W. Even. Am. J. Phys. 78, 1165 (2010).
23T. B. Benjamin and J. C. Scott. J. Fluid Mech. 92, 241 (1979).
24T. B. Benjamin and J. G. Eagle, IMA J. Appl. Math. 35, 91 (1985).
25H. Bruus, Theoretical Microfluidics (Oxford University Press, 2008).

FIG. 6. Streamlines illustrated in the presence of an acoustic field. (a)

Experimentally observed acoustic streaming around the air-water interface.

(b) Simulated streamlines based on derived velocity potentials. Lines shown

represent streamlines at natural frequency (f11) near an air-water interface

bound over the horseshoe structure of dimensions a and b: 65 and 70 lm,

respectively. Box is shown only to correlate the experimental and simulated

streamlines in water (region 2).

FIG. 5. The simulated decay in bubble

oscillation amplitude for a viscous me-

dium at resonance frequency is shown

in red. This simulated result is exam-

ined for the horseshoe structure

designed in experiments described in

sub-section (e). The blue line indicates

the decrement in amplitude of bubble

oscillation.

194503-6 Chindam et al. J. Appl. Phys. 114, 194503 (2013)

http://dx.doi.org/10.1039/c2lc40424a
http://dx.doi.org/10.1017/S0022112006004393
http://dx.doi.org/10.1039/c1lc20459a
http://dx.doi.org/10.1007/s10404-012-1077-5
http://dx.doi.org/10.1039/b201952c
http://dx.doi.org/10.1039/b201952c
http://www.rsc.org/images/loc/2012/pdf/W.7.164.pdf
http://dx.doi.org/10.1039/b903687c
http://dx.doi.org/10.1007/s10404-010-0758-1
http://dx.doi.org/10.1007/s10404-009-0444-3
http://dx.doi.org/10.1039/c2lc40923b
http://dx.doi.org/10.1039/c3lc41369a
http://dx.doi.org/10.1007/128_2011_150
http://dx.doi.org/10.1021/ac301590y
http://dx.doi.org/10.1121/1.1907076
http://dx.doi.org/10.1121/1.389415
http://www.jstor.org/stable/51923
http://www.jstor.org/stable/51923
http://dx.doi.org/10.1039/tf9686402221
http://dx.doi.org/10.1016/0001-8686(70)80001-X
http://dx.doi.org/10.1119/1.3467887
http://dx.doi.org/10.1017/S0022112079000616
http://dx.doi.org/10.1093/imamat/35.1.91


26C. Wang, B. Rallabandi, and S. Hilgenfeldt, Phys. Fluids 25, 022002

(2013).
27J. Xu and D. Attinger. Phys. Fluids 19, 108107 (2007).
28C. Lu, Y. Sun, S. J. Harley, and E. A. Glascoe, in Proceedings of TOUGH

Symposium, Lawrence Berkeley National Laboratory, Berkeley,

California, September 17–19, 2012.
29T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau.

J. Polym. Sci., Part B: Polym. Phys. 38, 415 (2000).
30D.-Y. Hsieh and M. S. Plesset, J. Acoust. Soc. Am. 33, 206 (1961).
31A. Eller and H. G. Flynn, J. Acoust. Soc. Am. 37, 493 (1965).
32F. Behroozi, Eur. J. Phys. 25, 115 (2004).
33F. Behroozi and A. Perkins, Am. J. Phys. 74, 957 (2006).
34V. Kolevzon, G. Gerbeth, and G. Pozdniakov, Phys. Rev. E 55, 3134 (1999).
35K. Y. Lee, T. Chou, D. S. Chung, and E Mazur, J. Phys. Chem. 97, 12876

(1993).

36P. Behroozi, K. Cordray, W. Griffin, and F. Behroozi, Am. J. Phys. 75,

407 (2007).
37L. E. Kinsler, A. R. Fray, A. B. Coppens, and J. V. Sanders, Fundamentals

of Acoustics (John Wiley and Sons, 2000).
38U. Seifert, Adv. Phys. 46, 13 (1997).
39See general solutions to Laplacian equation in cylindrical coordinates.

http://planetmath.org/laplaceequationincylindricalcoordinates works – last

accessed on July 1, 2013.
40J. Lighthill, J. Sound Vib. 61, 391 (1978).
41A. Y. Rednikov and S. S. Sadhal, J. Fluid Mech. 667, 426 (2011).
42H. Bruus, Lab Chip 12, 20 (2012).
43S. S. Sadhal, Lab Chip 12, 2292 (2012).
44K. D. Frampton, K. Minor, and S. Martin, Appl. Acoust. 65, 1121 (2004).
45K. D. Frampton, S. E. Martin, and K. Minor, Appl. Acoust. 64, 681

(2003).

194503-7 Chindam et al. J. Appl. Phys. 114, 194503 (2013)

http://dx.doi.org/10.1063/1.4790803
http://dx.doi.org/10.1063/1.2790968
http://dx.doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
http://dx.doi.org/10.1121/1.1908621
http://dx.doi.org/10.1121/1.1909357
http://dx.doi.org/10.1088/0143-0807/25/1/014
http://dx.doi.org/10.1119/1.2215617
http://dx.doi.org/10.1103/PhysRevE.55.3134
http://dx.doi.org/10.1021/j100151a039
http://dx.doi.org/10.1119/1.2710482
http://dx.doi.org/10.1080/00018739700101488
http://planetmath.org/laplaceequationincylindricalcoordinates
http://dx.doi.org/10.1016/0022-460X(78)90388-7
http://dx.doi.org/10.1017/S0022112010004532
http://dx.doi.org/10.1039/c1lc20770a
http://dx.doi.org/10.1039/c2lc40202e
http://dx.doi.org/10.1016/j.apacoust.2004.03.005
http://dx.doi.org/10.1016/S0003-682X(03)00005-7

	s1
	s2
	n1
	s3
	d1
	d2
	d3
	d4
	f1
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	s4
	s4A
	s4B
	s4C
	s4D
	d25
	t1
	s4E
	f4
	f2a
	f2b
	f2
	f3a
	f3b
	f3
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	f6a
	f6b
	f6
	f5
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45

