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The emerging complexity of large macromolecules has led to challenges in their full scale theoreti-
cal description and computer simulation. Multiscale multiphysics and multidomain models have been
introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and
achieving computational efficiency. A total energy functional is constructed to put energies for polar
and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics
on an equal footing. The variational principle is utilized to derive coupled governing equations for
the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-
Boltzmann equation which describes continuum electrostatics with atomic charges. The present work
introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CE-
WAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result,
the dynamics complexity of a macromolecular system is separated from its static complexity so
that the more time-consuming dynamics is handled with continuum elasticity theory, while the less
time-consuming static analysis is pursued with atomic approaches. We propose a simple method,
flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail.
The construction of FRI relies on the fundamental assumption that protein functions, such as flexi-
bility, rigidity, and energy, are entirely determined by the structure of the protein and its environment,
although the structure is in turn determined by all the interactions. As such, the FRI measures the
topological connectivity of protein atoms or residues and characterizes the geometric compactness
of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian
and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI’s
computational complexity is of O(N2) at most, where N is the number of atoms or residues, in con-
trast to O(N3) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise
to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free
FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algo-
rithm is developed to construct continuous atomic flexibility functions for visualization and use with
CEWAR. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830404]

I. INTRODUCTION

Proteins have a diverse range of structures and func-
tions. The understanding of protein structure, function, and
dynamics has grown rapidly in the past few decades. The
conventional dogma of sequence-structure-function2 has been
seriously challenged by the discovery that many intrinsi-
cally disordered proteins can also be functional.18, 41, 50, 65 The
study of disordered proteins is of essential importance due
to their connections to sporadic neurodegenerative diseases,
such as mad cow disease, Alzheimer’s disease, and Parkin-
son’s disease.18, 59 Disordered proteins are traditionally as-
sumed to be highly flexible. However, a frequently neglected
fact is that well-folded proteins are flexible as well. Folded
proteins experience everlasting intrinsic motions due to pos-
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sible Brownian dynamics, rapid local motions of amino acid
side chains, and spontaneous collective fluctuations. There-
fore, flexibility, i.e., the ability to deform from the current
conformation under external forces, is an intrinsic property
of all proteins.

One of the major challenges in the biological sciences
is the prediction of protein functions from protein structures.
One key to protein function prediction is the protein flexibil-
ity which strongly correlates with enzymatic activity in pro-
teins, such as allosteric transition, ligand binding and catal-
ysis, as well as the stiffness and rigidity which is crucial to
structural proteins. For instance, in enzymatic processes, pro-
tein flexibility enhances protein-protein interactions, which in
turn reduce the activation energy barrier. Additionally, pro-
tein flexibility and motion amplify the probability of barrier
crossing in enzymatic reactions. Therefore, the investigation
of protein flexibility at a variety of energy spectra and time
scales is vital to the understanding and prediction of protein
functions. Currently, the most important technique for protein
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flexibility analysis is X-ray crystallography. Among the al-
most 100 000 structures in the protein data bank (PDB), more
than 80% are collected by X-ray crystallography. The Debye-
Waller factor, or B-factor, can be directly computed from X-
ray diffraction or other diffraction data. Although atomic B-
factors are directly associated with atomic flexibility, they can
be influenced by the variations in atomic diffractive cross sec-
tions and chemical stability during the diffraction data collec-
tion. Therefore, only the B-factors for specific types of atoms,
say Cα , can be directly interpreted as their relative flexibility
without corrections. Another important method for access-
ing protein flexibility is nuclear magnetic resonance (NMR)
which often provides structural flexibility information under
physiological conditions. NMR spectroscopy allows the char-
acterization of protein flexibility in diverse spatial dimen-
sions and a large range of time scales. About 6% of struc-
tures in the PDB are determined by electron microscopy (EM)
which does not directly offer the flexibility information at
present.

In addition to experimental technologies, theoretical ap-
proaches play essential roles in biomolecular flexibility anal-
ysis and prediction. For example, molecular dynamics (MD)
simulations have dramatically expanded our understanding of
the conformational landscapes of proteins, particularly con-
formations that are not directly accessible via other tech-
niques, i.e., protofibrils, amyloid-like fibrils, amyloids, intrin-
sically disordered proteins, and partially disordered proteins.
However, the dynamics of large proteins typically occurs at
time scales that are intractable to MD simulations. Alternative
approaches have also been developed in the past few decades,
including normal mode analysis (NMA),8, 25, 36, 55 elastic net-
work model (ENM),58 Gaussian network model (GNM),5, 6, 22

and anisotropic network model (ANM).4 In fact, these meth-
ods can be regarded as time-independent molecular mechan-
ics (MM) and are connected to MD methods via the time-
harmonic approximation.44 Protein flexibility and B-factors
can be approximated respectively from the first few eigen-
vectors and eigenvalues of the connection matrix. Such low-
energy eigenvalues reflect the long-time behavior of the pro-
tein dynamics beyond the reach of MD simulations.6, 8, 36, 55, 58

These approaches have been improved in many aspects in-
cluding crystal periodicity corrections28, 34, 35, 54 and density-
cluster rotational-translational blocking.20 These methods are
relatively inexpensive particularly in their coarse-grained set-
tings. Their computational complexity is typically dominated
by that of the diagonalization of the Hamiltonian matrix, i.e.,
O(Nk), where N is the matrix dimension and k ≈ 3. These
approaches give rise to quantitative predictions of biomolec-
ular flexibility and their applications are discussed in many
review papers.19, 38, 53, 68 However, for the structures of exces-
sively large protein complexes which are typically obtained
via cryo-EM, more efficient methods are required to analyze
their flexibility. Although often called elastic models or elas-
ticity analysis in the literature, the aforementioned methods
are still microscopic in origin, and are fundamentally differ-
ent from the stress and strain analysis of a truly continuum
elasticity theory.

Recently, knowledge based methods, such as neural
networks,47 support vector regression,69 and two-stage sup-

port vector regression,43 have also been developed for flexibil-
ity analysis. These approaches typically utilize large protein
data sets as input training data. Computational accuracy, relia-
bility, and complexity of these methods depend on the training
data set. Jacobs et al.31 have utilized techniques from graph
theory to analyze the bond networks in proteins. Their ap-
proach employs both geometric and energetic criteria to iden-
tify the flexible and rigid regions.

Another class of approaches for biomolecular flexibil-
ity analysis utilizes phenomenological theories and/or con-
tinuum mechanics. Linear and nonlinear elasticity models
have been proposed for excessively large biomolecules, such
as membranes, molecular motors, microtubules, and protein
complexes.32, 51 One of phenomenological approaches is the
Willmore flow energy functional66 which is in terms of the
square of the difference between two principle curvatures.
This model intends to minimize the deviation of a mem-
brane surface from the local sphericity. As a generalization
of the Willmore energy functional, Canham10 and indepen-
dently, Helfrich,27 proposed an elasticity model for cellular
membranes. The free energy functional of membrane bending
consists of the Gaussian curvature of the membrane surface
and the square of the difference between the mean curvature
and the spontaneous curvature of the membrane. The mini-
mization of the Helfrich energy functional leads to the equi-
librium shape of the membrane.42 According to the Gauss-
Bonnet theorem, the Gaussian curvature in the free energy
functional will contribute to an unphysical jump in the free
energy whenever there is a topology change in the membrane
morphology. Computationally, phase field models can be used
to simulate membrane curvature formation and evolution.21

In the past decade, membrane curvature has been a popu-
lar research topic partially due to the fact that except for the
curvature, there is very little other quantitative information
associated with membranes and membrane protein/DNA in-
teractions. Indeed, protein membrane interaction39 and mem-
brane curvature sensing have received much attention.3, 26, 45

So far, both theoretical modeling and numerical simulation in
the field have been mostly phenomenological and qualitative,9

partially due to the lack of more quantitative experimental
data. Another class of models directly utilizes continuum elas-
ticity for biomolecular flexibility analysis. Recently, Zhou
et al.73 have proposed an elasticity model which allows the
electrostatic force of biomolecules to influence membrane
stress.

The other class of theoretical methods for flexibility anal-
ysis has been developed via multiscale formulations. These
methods combine elastic mechanics and molecular mechan-
ics to significantly reduce the number of degrees of free-
dom of large biomolecular systems.9 For example, the clas-
sical theory of elasticity for DNA loops is combined with
the MD description of protein for protein-DNA interaction
complexes.60 Recently, the continuum elastic modeling of the
Canham-Helfrich type of energy functional has been coupled
with MD simulations to investigate the complex elastic be-
havior of Hepatitis B virus capsids.49 Multiscale based flex-
ibility analysis has a wide range of technical variability. In
the best scenario, multiscale methods can take the advan-
tage of each scale to achieve excellent modeling accuracy and
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computational efficiency. However, multiscale methods are
typically technically demanding and computationally com-
plex. A major issue in the field is how to go beyond the phe-
nomenological domain and make these approaches quantita-
tive and predictive. Consistency analysis and validation with
experimental data are indispensable procedures. There is a
need to further develop and validate innovative approaches
for the flexibility analysis of biomolecular systems.

Recently, we have introduced a new class of multiscale
models, differential geometry based multiscale approaches,
for biological and chemical systems.62–64 The essential idea
is to use the differential geometry theory of surfaces and the
geometric measure theory as a natural means to separate the
solvent domain from the macromolecular domains. A num-
ber of physical phenomena, including polar and nonpolar sol-
vation, molecular dynamics, quantum mechanics, fluid dy-
namics, electrokinetics, electrohydrodynamics, electrophore-
sis, and elastic dynamics are considered in our multiscale
models via a total energy functional and a variational strategy.
By using the Euler-Lagrange variation, the self-consistently
coupled Laplace-Beltrami equation and Poisson-Boltzmann
equation is obtained for solvation analysis. For charge and
mass transport, additional generalized Poisson-Nernst-Planck
equations and/or Navier-Stokes equations are incorporated.
Multiscale (implicit solvent) MM is utilized to allow local
conformational changes and elastic dynamics is considered
for excessively large chemical and biological systems. Step by
step, our differential geometry based multiscale models have
been carefully validated in the past few years.11, 12, 14–17, 64 The
first series of validations was done for multiscale solvation
models.14–17, 29, 57, 72 The Eulerian formulation,14 Lagrangian
formulation,15 and quantum formulation are constructed16

for the solvation analysis of hundreds of small and large
molecules, including nonpolar ones.17 The quantum formu-
lation is able to considerably improve model accuracy. The
robustness of our differential geometry based solvation ap-
proaches comes from a significant reduction in the number
of free parameters that users must “fit” or adjust in applica-
tions to real-world systems.57, 70 In fact, our differential ge-
ometry based nonpolar model offers some of the best pre-
dictions of nonpolar solvation energies for a large number of
compounds.17

Another series of validations was done on charge trans-
port in realistic ion channels.64, 71 Continuum descriptions
are applied to the solvent domain while channel proteins are
treated in molecular detail. In our energy functional, nonpolar
energy, polar (electrostatic) energy, chemical potential, and
possibly fluid energy are considered on an equal footing. Non-
electrostatic van der Waals (VDW) interactions among all the
ions, and between ions and proteins, including size (steric) ef-
fects are accounted for in our treatment.64 In this multiscale
paradigm, the non-equilibrium multiscale transport theory re-
duces to the multiscale solvation model at equilibrium. Very
good agreements between our model predictions and experi-
mental measurements have been attained.64

The other series of validations of our multiscale models
was on the proton transport through membrane proteins.11, 12

Proton transport plays an important role in the molecular
mechanism of biological energy transduction, sensory sys-

tems, and reproduction of influenza A viruses.13 Due to the
small mass and size of protons, proton permeation across
membrane proteins involves significant quantum effects.40, 46

However, the quantum mechanical treatment of all individ-
ual protons can be computationally expensive. A new den-
sity functional theory based on the Boltzmann statistics rather
than the Fermi-Dirac statistics has been developed to de-
scribe proton dynamics quantum mechanically while implic-
itly treating numerous solvent molecules as a dielectric con-
tinuum. To account for the gating effect, membrane pro-
teins are described in atomistic detail. Densities of all other
ions in the solvent are approximated by using the Boltzmann
distributions, which were introduced in our earlier work71

and have been independently confirmed by using Monte
Carlo simulations.33 Excellent predictions of experimental
current-voltage curves have been observed.11, 12 Currently,
the Poisson-Boltzmann model, or the Poisson model when
there is no salt, has been proved to be a successful contin-
uum model for biomolecular electrostatics at the quantitative
level.1, 7, 24, 52 One of main reasons for its success is the con-
tinuum modeling which avoids the time consuming molecu-
lar dynamics description. While another reason for its success
is the atomic detailed static charge description—the atomic
point charges or charge distributions. In contrast, elasticity
models are qualitative and phenomenological at moment. It
is believed that elasticity analysis would play a much more
important role in quantitative modeling and computation of
biomolecular flexibility had atomic rigidity information been
appropriately incorporated.

The objective of the present work is to develop differ-
ential geometry based multiscale, multiphysics, and multido-
main models for biomolecular flexibility analysis. A major
focus is to develop the theoretical model of continuum elas-
ticity with atomic rigidity (CEWAR). Indeed, in our previous
formulations, flexibility, rigidity, and elasticity have not been
analyzed in detail, partially because of the fact that it is of-
ten more important and highly necessary to treat the macro-
molecular domain with atomistic descriptions. However, this
situation has changed since the introduction of a multidomain
formalism,63 which allows a biomolecular complex to be di-
vided into multiple domains and simultaneously treated by
multiple physics descriptions. As a result, it is advantageous
to include elastic dynamics in certain domains. In our elastic
treatment of biomolecular complexes, proteins are assumed
to have atomic rigidity or shear modulus. Therefore, a ro-
bust method for the extraction of protein atomic flexibility
and rigidity information is required. Due to dynamical nature
of the CEWAR, the atomic flexibility and rigidity informa-
tion needs to be extracted in a most efficient manner for both
equilibrium and non-equilibrium structures. The present work
presents one of the most efficient methods, called flexibility-
rigidity index (FRI), for protein B-factor prediction and flex-
ibility analysis. The basic assumption underlying the FRI is
that protein functions are entirely determined by the structure
of the protein complex. The FRI provides an accurate measure
of geometric compactness and topological connectivity of a
protein structure at each atom or residue. Physically, the FRI
reflects the local interaction strength. As such, it gives rise to
accurate prediction of protein B-factors. The proposed FRI
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method does not require a stringently minimized structure,
harmonic assumption, interaction potential, or matrix decom-
position, nor does it involve any training procedure as that
used in the knowledge based approaches. Its computational
complexity is at most of order O(N2).

The rest of this paper is organized as follows. A
multiscale, multiphysics, and multidomain model that in-
volves elastic dynamics, electrostatic interactions, molecu-
lar mechanics, and chemical potential effects is presented in
Sec. II to facilitate the discussion on flexibility and rigid-
ity. Equations for the elastic dynamics, elastostatics, and
elastic vibration of macromolecular complexes are intro-
duced. In particular, we show how the microscopic anal-
ysis of flexibility and rigidity is utilized in the macro-
scopic analysis of elasticity. A new model for protein flex-
ibility evaluation is introduced in Sec. III. We first define
a diagonal-free correlation matrix to analyze the topologi-
cal connectivity between protein atoms. Additionally, atomic
flexibility and rigidity indices of each protein atom are de-
duced from the correlation matrix. Molecular rigidity in-
dex and averaged molecular rigidity index are proposed.
The protein B-factors are directly associated with atomic
flexibility indices which give rise to a practical method
for B-factor prediction. Finally, a volumetric atomic rigid-
ity function is constructed from the atomic rigidity index.
A similar definition is also proposed for the flexibility. In
Sec. IV, extensive numerical tests are carried out to vali-
date the proposed method for protein flexibility analysis and
B-factor prediction. Careful comparison with experimental
data justifies our new approach. The proposed theory and
formulation also offer new approaches for the visualization
of biomolecular rigidity and flexibility. This paper ends with
concluding remarks.

II. ELASTICITY IN
MULTISCALE-MULTIPHYSICS-MULTIDOMAIN
MODELING

We consider a multiscale, multiphysics, and multidomain
model for biomolecular complexes in solvent where one do-
main is described by the continuum mechanics of elasticity.
Some parts of the biomolecular system are described by us-
ing the molecular mechanics. The solvent consists of vari-
ous charged species and water. Fluid mechanics is used to
describe possible fluid motion of the solvent. Electrostatic
interactions are considered in the whole computational do-
main. We first provide a simplified description of the action
functional, followed by the derivation of governing equations.
Special attention is given to elastic analysis.

A. The action functionals

1. Elastic energies

Experimental measurements indicate that protein, DNA,
and other biomolecular systems exhibit elasticity, i.e., they are
able to deform under prescribed external forces and restore to
their original states when the external forces are no longer ap-
plied. The amount of deformation under a given external force

is determined by internal forces that oppose the deformation.
The resistance to the internal force or the stiffness is mea-
sured by various elastic moduli, such as Young’s modulus,
the bulk modulus, and the shear modulus in elasticity theory.
For a protein or biomolecule, the internal force or resistance
is not uniform and is position dependent. Certain parts of the
protein are highly flexible while other parts are highly rigid,
as indicated by the variation in protein B-factors.

To analyze the elasticity of arbitrarily shaped
biomolecules, we consider the displacement w of a point r to
its new position r̄ in R3

w = r̄ − r. (1)

The difference between the squares of infinitesimal changes
is

d r̄2 − dr2 = 2σij dwidwj , (2)

where the Einstein summation notation is used to simplify
tensorial quantities and σ ij is the strain tensor

σij = 1

2

[(
∂wi

∂rj

+ ∂wj

∂ri

)
+ ∂wk

∂ri

∂wk

∂rj

]
. (3)

The strain tensor describes the change of a point between be-
fore and after the elastic deformation. For relatively small de-
formations, one omits the term that is nonlinear in w and ob-
tains a linear strain tensor

σij = 1

2

[
∂wi

∂rj

+ ∂wj

∂ri

]
. (4)

Obviously, the linear strain has computational advantages.
We denote the elastic potential energy density in the Ein-

stein notation as

1

2

[
λEσ 2

ii + μE(σij )2
]
, (5)

where λE is the lame parameter, describing the compress-
ibility of the elastic macromolecule, and μE is the shear
modulus, or rigidity, describing the stiffness of the elas-
tic macromolecule under external force. In the present
work, an atomistic description of μE = μE(r) will be
provided.

The kinetic energy density of the elastic system is given
by ρE

2 ẇ2, where ρE is the mass density of the elastic macro-
molecule and ẇ = dw

dt
denotes the velocity of the displace-

ment. In general, the difference between the kinetic en-
ergy density and potential energy density gives rise to the
Lagrangian, a functional for variational derivation of govern-
ing equations.

2. Action functional of a multiscale multiphysics
and multidomain model

Let us label the continuum solvent, molecular mechanics,
and elasticity descriptions, respectively, by S, M, and E so that
SI (I = S, M, and E) are the characteristic functions of the
solvent, molecular, and elastic domains. Similarly, pI, γ I, εI,
and 	I are, respectively, pressures, surface tensions, dielectric
constants, and charge densities associated with I = S, M, and
E. The total action functional of our multiscale multiphysics
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and multidomain model is given by Ref. 63:

GMD−FD−ED
total

=
∫∫∫ {

γM |∇SM | + γE|∇SE| + pMSM + pESE + SSU
S

+ SM

[
−εM

2
|∇
|2 + 
 	M

]
+ SE

[
−εE

2
|∇
|2 + 
 	E

]

+ SS

[
−εS

2
|∇
|2 + 


∑
α

ραqα

]

+ SS

∑
α

[
kBTραln

ρα

ρα0
− kBT (ρα − ρα0) − μα0ρα

]

− SS

[
ρ

v2

2
− pS + μf

8

∫ t
(

∂vi

∂rj

+ ∂vj

∂ri

)2

dt ′
]

− SM

∑
j

[
ρj

ż2
j

2
− UM (z)

]

− SE

[
ρE

2
ẇ2 − 1

2

(
λEσ 2

ii + μE(σij )2)]}
drdzdt, (6)

where US includes all the non-electrostatic (or nonpolar) in-
teractions involving the solvent,63 
 is the electrostatic po-
tential, and ρα , ρα0, qα , and μα0 are, respectively, the density,
bulk density, charge, and relative reference chemical poten-
tial of αth component of the solvent. Here, ρ = ∑

αρα is
the total solvent mass density, v is the flow stream velocity,
and μf is the viscosity of the fluid. The Einstein notation is
used in the fluid potential energy. Here, ρ j = mjδ(zj − xj) is
the mass density of the jth atom in a molecular dynamics de-
scription, with mj and xj being the mass and the macroscopic

position of the jth atom, respectively. Here, UM(z) and ρj
ż2
j

2
are, respectively, the potential and kinetic energy densities of
the jth atom with żj = dzj

dt
. We use the short-hand notations

dz = dz1dz2 . . . dzNa
and z = (z1, z2, . . . , zNa

) ∈ R3Na with
Na the total number of atoms in the domain of molecular dy-
namics description. We assume that the potential interactions
UM (z) include all bonding and non-bonding components
as used in implicit MD calculations.23, 37 The integration is
over the macroscopic variable r, microscopic variable z, and
time t.

Physically, in Eq. (6), the first is the nonpolar solva-
tion free energy, followed by the electrostatic free energy in
the second row, the chemical potential related energy in the
third row, the Lagrangian of the fluid dynamics in the fourth
row, the Lagrangian of the molecular dynamics in the fifth
row, and finally the Lagrangian of the elastic dynamics in the
last row.

B. Governing equations

It has become a standard procedure to derive governing
equations by a total variation.62, 63 We briefly discuss these
equations below.

1. Generalized Laplace-Beltrami equation

Using the Euler-Lagrange variation, we derive two gen-
eralized Laplace-Beltrami equations, respectively, for char-
acteristic functions of molecular mechanics domain and the
elastic domain

∂SI

∂t
= |∇SI |

[
∇ ·

(
γI

∇SI

|∇SI |
)

+ VI

]
, I = M,E, (7)

where driven terms VM and VE are, respectively, given by

VM =−pM + US + εM

2
|∇
|2 −
 	M − εS

2
|∇
|2 +


∑
α

ραqα

+
∑

α

[
kBT

(
ραln

ρα

ρα0
− ρα + ρα0

)
− μα0ρα

]

−
[
ρ

v2

2
− pS + μf

8

∫ t
(

∂vi

∂rj

+ ∂vj

∂ri

)2

dt ′
]

+
∑

j

[
ρj

ż2
j

2
− UM (z)

]
(8)

and

VE =−pE + US + εE

2
|∇
|2 −
 	E − εS

2
|∇
|2 +


∑
α

ραqα

+
∑

α

[
kBT

(
ραln

ρα

ρα0
− ρα + ρα0

)
− μα0ρα

]

−
[
ρ

v2

2
− pS + μf

8

∫ t
(

∂vi

∂rj

+ ∂vj

∂ri

)2

dt ′
]

+
[

ρE

2
ẇ2 − 1

2

(
λEσ 2

ii + μE(σij )2
)]

. (9)

Surface of the solvent is determined via relation SS = 1
− SM − SE.

2. Generalized Poisson equation

The electrostatic potential (
) is determined by the gen-
eralized Poisson equation

−∇ · (ε(S)∇
) = SM	M + SE	E + SS

∑
α

ραqα, (10)

where ε(S) = SSεS + SMεM + SEεE is the generalized permit-
tivity function.

3. Generalized Nernst-Planck equation

The derivation of the generalized Nernst-Planck involves
the variation with respect to solvent species ρα and the gener-
alized Fick’s law62–64

∂ρα

∂t
+ v · ∇ρα = ∇ · Dα

[
∇ρα + ρα

kBT
∇

(
qα
 + US

α − v2

2

)]

+
∑

j

ν̄αj J
j , (11)

where ν̄αj J
j is the density production of α species per unit

volume in the jth chemical reaction.62 Equation (11) describes
generalized mass conservation law in which the rate of change
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of each mass density is balanced by convection, diffusion, and
reactions.

4. Generalized Navier-Stokes equation

The total variation of functional (6) gives rise to the gen-
eralized Navier-Stokes equation

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇pS + 1

SS

∇ · SST + FE, (12)

where flow stress tensor T can be expressed as

T = μf

2

(
∂vi

∂rj

+ ∂vj

∂ri

)
= μf

2
[∇v + (∇v)T ], (13)

where symbol T denotes the transpose. The force FE has the
form

FE = 1

1 − SM − SE

(
−SM∇pM − SE∇pE − SS

∑
α

ρα∇US
α

+ 	M∇(SM
) + 	E∇(SE
)

)
. (14)

In the inner solvent domain (i.e., SM = SE = 0), Eq. (14) re-
duces to the standard Navier-Stokes equation for incompress-
ible flows except for an extra force term −∑

α ρα∇US
α which

is due to solvent-solvent interactions. In fact, away from the
flow boundary, −∑

α ρα∇US
α becomes negligible too.

5. Generalized Newton equation

As discussed in our earlier work,62 the variation with re-
spect to δzj leads to Newton’s equation for the molecular me-
chanics

ρj z̈j = fj , j = 1, 2, . . . , Na, (15)

where the force term is given by

fj = fjSSI + fjRF + fjPI, (16)

fjSSI = − SS

SM

∇jU
S, (17)

fjRF = 1

SM

(	M∇j (SM
) + 	E∇j (SE
)), (18)

fjPI = −∇jU
M (z). (19)

Here, fjSSI, fjRF, and fjPI are, respectively, solvent-solute interac-
tion force, reaction field (RF) force, and potential interaction
force due to atomic interactions.

6. Elastic dynamics

Note that in the present work, the rigidity μE = μE(r)
is continuous function with atomic rigidity information. Con-
sidering such a position dependence, the governing equation

for the elastic dynamics of the macromolecule can also be de-
rived by variation

ρEẅ = 1

SE

[∇SE(λE + μE)∇ · w + ∇ · SEμE∇w] + fE,

(20)

where fE is the total force

fE = fEFSI + fERF + fEHG, (21)

where

fEFSI = − SS

SE

∑
α

ρα∇wUS
α , (22)

fERF = − 1

SE


(SM∇w	M + SE∇w	E), (23)

fEHG = −SE

[
(∇ · w)2 ∇wλ + 1

4
(∇w + (∇w)T )2∇wμ

]
.

(24)

Here, fEFSI is the fluid-structure interaction (FSI) force and fERF
is the RF force which is due to the charge distributions of
biomolecules in the molecular dynamics domain and the elas-
tic domain. Term fEHG is the heterogeneous (HG) force due
to the inhomogeneity of the biomolecules. If we assume that
λ is independent of position (∇wλ = 0), or the biomolecule
is incompressible (∇ · w = 0), we can drop the first part
of the HG force. Additionally, in the elastic domain, one
has SE = 1.

To simplify Eq. (20), we make use of the stress tensor of
the elastic molecule62

TE
ij = λEσkkδij + 2μEσij . (25)

Obviously, the stress tensor is symmetric with respect to la-
bels i and j. By means of the stress tensor, the elastic dynamics
Eq. (20) is

ρEẅ = 1

SE

∇ · SET
E + fE. (26)

Clearly, Eq. (26) is a generalization of the classical elastic dy-
namics. It is essentially the Newton’s equation of motion for
elastic molecules and is parallel to the Newton’s equation for
atomistic molecular dynamics. The product of mass and ac-
celeration (ρEẅ) is balanced by the internal friction ( 1

SE
∇ ·

SETE), external forces (fEFSI − 1
SE


SM∇w	M ), and internal

forces (−
∇w	E , (∇ · w)2∇wλ, and 1
4 (∇w + (∇w)T )2∇wμ).

The dependent variable in Eq. (26) is a vector in R3, while the
spatial dimension of molecular dynamics is 3Na.

The elastostatic state is given by

1

SE

∇ · SET
E + fE = 0. (27)

Here, Eq. (27) describes the shape of elastic biomolecule at
the balance of internal friction and external force. It is mean-
ingful for the equilibrium state but may also be used for a
non-equilibrium conformation.
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Assume that the elastic dynamics of biomolecules admits
a time-harmonic solution, i.e., its time dependence is propor-
tional to eiωt, we have the following eigenvalue equation:

1

SE

∇ · SET
E + fE = −ρEω2w. (28)

Therefore, the diagonalization of the operator 1
SE

∇ · SETE

+ fE in Eq. (28) for biomolecules produces eigenvalues and
eigenvectors. The latter can be used to analyze and visualize
the vibration of macromolecules. The low order vibrational
modes reflect protein collective motions.

In the present multiscale, multiphysics, and multidomain
theory, the elastic dynamics (26) is coupled to the generalized
Laplace-Beltrami equation (7), Poisson equation (10), Nernst-
Planck equation (11), Navier-Stokes equation (12), and New-
ton’s equations (15). There are many ways to simplify this
coupled system. For example, one can omit the molecular dy-
namics by assuming a static conformation in the MD domain,
neglect fluid dynamics when there is no flow velocity and dis-
regard the Nernst-Planck equation when there is no ion per-
meation. In fact, one can also utilize sharp interface and di-
electric approximation to skip the Laplace-Beltrami equation.
However, more detailed discussion along this line is beyond
the scope of the present work and will be carried out in our
future work.

III. FLEXIBILITY AND RIGIDITY

In this section, we present a microscopic theory for
molecular rigidity and flexibility in light of CEWAR. We pro-
pose a FRI method for protein flexibility analysis and B-factor
prediction. The FRI is a structure, or geometry, based method,
and does not involve the interaction Hamiltonian used in en-
ergy based approaches.

A. Rigidity

The behavior of the stress tensor (25) determines the dy-
namics and elastostatics of the biomolecular elasticity. Cur-
rently, elastic moduli λE and μE are taken to be constants in
most theoretical modeling and computational experiments.51

The lame parameter λE is typically relatively small for
biomolecules because of the incompressibility of macro-
molecules under physiological condition. The shear modulus
μE, i.e., rigidity, should vary from position to position so that
the continuum elasticity with atomic rigidity can play an im-
portant role in the elastic analysis of excessively large macro-
molecules.

Consider a macromolecule of N particles (or atoms) with
a conformation vector (r1, r2, . . . , rj , . . . , rN ) ∈ R3N , where
rj ∈ R3 is the position of jth particle or atom. Let us denote
‖ri − rj‖ the Euclidean distance between particles ri and rj.
We assume that the correlation between particles ri and rj has
the form

Cij = 
(‖ri − rj‖; ηij ), (29)

where ηij are characteristic distances between particles and

(‖ri − rj‖; ηij) is a correlation kernel, also called an unnor-
malized density estimator.61

In general, the correlation kernel is a real-valued, smooth,
and monotonically decreasing function. It has properties


(‖ri − ri‖; ηii) = 1, (30)


(‖ri − rj‖; ηij ) = 0 as ‖ri − rj‖ → ∞. (31)

Many decaying radial basis functions can be used for correla-
tion kernels. Typical examples include generalized exponen-
tial function


(‖ri − rj‖; ηij ) = e−(‖ri−rj ‖/ηij )κ

, κ > 0 (32)

and generalized Lorentz function61


(‖ri − rj‖; ηij ) =
(

ηij

ηij + ‖ri − rj‖
)υ

, υ > 0. (33)

Certainly, many other alternative choices, such as delta se-
quence kernels of the positive type discussed in an earlier
reference61 can be employed as well. For example, one can
use the product of exponential and Lorentz functions(

ηij

ηij + ‖ri − rj‖
)υ

e−(‖ri−rj ‖/ηij )κ

.

We shall not exploit all alternatives at present because our
goal is to establish a theoretical framework. The basic idea is
that the correlation between any two particles should decay
according to their distance.

We construct a N × N symmetric correlation map
C = {Cij}. The correlation map contains topological connec-
tivity between atoms and thus, is also called connectivity. The
behavior of the correlation map C is explored in Sec. IV.

For the shear modulus in the continuum elasticity analy-
sis, we need a continuous function defined in the elastic do-
main (�E = {r|SE(r) 	= 0}). To this end, we define the corre-
lation from an arbitrary point r to the jth particle

Cj (r) = 
(‖r − rj‖; ηij ), (34)

where r is in the proximity of ith particle. We define an atomic
rigidity function μ(r) as

μ(r) =
N∑

j=1

wj (r)
(‖r − rj‖; ηij ), r ∈ �E, (35)

where wj (r) are particle-type related weights. The atomic
rigidity function μ(r) measures the local rigidity or local stiff-
ness at point r.

The average rigidity (or averaged rigidity index function)
can be calculated by

μ̄ = 1∫
SEdr

∫
SEμ(r)dr. (36)

Therefore, parameter wj in Eq. (35) can be determined by a
comparison of μ̄ with its experimental value, the shear mod-
ulus, for a given macromolecule. This procedure can help the
parametrization of wj in Eq. (35), though wj should also re-
flect the difference in different types of atoms in a macro-
molecule.

It is important to have a discrete representation of rigidity
on a set of atoms or particles. To this end, we define an atomic
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rigidity index as

μi =
N∑

j=1

wij
(‖ri − rj‖; ηij ), (37)

where wij = wj (ri). It is convenient to further define the
molecular rigidity index as a summation of all the atomic ones

μMRI =
N∑

i=1

μi. (38)

Obviously, the molecular rigidity index of a given macro-
molecule is a direct measure of its total interaction strength
in a general sense.

For the purpose of comparison among different
molecules, we further define an averaged molecular rigidity
index

μ̄MRI = 1

N

N∑
i=1

μi. (39)

Similar to the Wiener index, both the molecular rigidity in-
dex and the averaged molecular rigidity index must strongly
correlate with many physical properties, such as molecular
thermal stability, density (compactness), boiling points of iso-
mers, the ratio of surface area over volume, surface tension,
bulk modulus, etc. However, a thorough investigation of these
aspects is beyond the scope of the present work and is left for
future work.

B. Flexibility

For polyatomic molecules, we should have μi > 0.
Therefore, we can define an atomic flexibility index as

fi = 1

μi

, ∀i = 1, 2, . . . , N. (40)

Atomic flexibility indices {fi} of a macromolecule must be
proportional to its B-factor {Bi}

Bt
i = afi + b, ∀i = 1, 2, . . . , N, (41)

where {Bt
i } are theoretically predicted B-factors. Here, con-

stants a and b do not depend on index i and can be deter-
mined by a simple linear regression. The procedure outlined
above is perhaps the simplest one for B-factor prediction. Un-
like ENM, GNM, ANM, and many other methods, the pro-
posed approach by-passes the matrix diagonalization (or de-
composition) procedure in conventional B-factor prediction
and flexibility analysis. It is well known that the computa-
tional complexity of matrix diagonalization is asymptotically
close to O(N3), while that of a two-parameter linear regres-
sion given in Eq. (41) is asymptotically of O(N ). The con-
struction of the correlation map C can be made linear in com-
plexity with appropriate spatial index techniques, although the
construction of a spatial database may be of O(N lnN ) in com-
plexity. Nevertheless, our FRI based B-factor prediction gives
rise to a dramatic reduction in the computational complexity
compared with conventional approaches. We expect that the
proposed method will outperform other methods in compu-

tational efficiency and be potentially useful for the flexibility
analysis of excessively large macromolecules.

Let us define a molecular flexibility index as a sum of
atomic indices

fMFI =
∑

i

1

μi

∀i = 1, 2, . . . , N, (42)

and an averaged molecular flexibility index

f̄MFI = 1

N

∑
i

1

μi

∀i = 1, 2, . . . , N. (43)

Similar to the Wiener index, the molecular flexibility index or
the averaged molecular flexibility index reflects the atomic
geometric irrelevance and topological disconnectivity in a
molecule, and must strongly correlate with energy and disor-
derliness. These aspects will be explored in our future work.

Finally, atomic flexibility functions can be defined in two
ways. For example, one simply defines

F (r) = 1∑N
j=1 wj (r)
(‖r − rj‖; ηij )

, r ∈ �E. (44)

It is reasonable to assume that the atomic rigidity function
is non-singular in the domain �E. On the other hand, it is
convenient to define the atomic flexibility function by using a
set of B-factors {Bj}

FB(r) =
∑

j

Bj�(‖r − rj‖), r ∈ �E, (45)

where �(‖r − rj‖) is a general interpolation kernel. The
B-factors can be obtained either from experimental data or
from theoretical predictions. When there are different types of
atoms, the experimental B-factors should be corrected accord-
ing to diffraction cross sections before they are interpreted as
atomic flexibility. Such a correction can be by-passed when
only the same type of atoms, i.e., Cα , is involved.

IV. NUMERICAL EXPERIMENTS

In this section, we validate the concepts, demonstrate the
usefulness, and explore the efficiency of the proposed theory
and algorithm for flexibility and rigidity analysis. We first
analyze the correlation map, which reveals the topological
connectivity among atoms in a macromolecule. The predic-
tion of B-factor based on the proposed atomic flexibility in-
dex is demonstrated. Finally, we illustrate the use of atomic
rigidity function and atomic flexibility function in protein
visualization.

In the present experiments, we employ a coarse-grained
representation with amino acid residues and consider only Cα

atoms. We can set weights wij = 1 and assign a common
value to characteristic length parameter ηij = η in Eq. (37)

Cij = 
(‖ri − rj‖; η). (46)

We consider only the generalized exponential kernel


(‖ri − rj‖; η) = e−(‖ri−rj ‖/η)κ

, κ > 0 (47)
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and the generalized Lorentz kernel in the present numerical
experiment


(‖ri − rj‖; η) =
(

η

η + ‖ri − rj‖
)υ

. (48)

By appropriate selection of power υ, κ , and η, we actually
end up with a parameter-free atomic flexibility index

fi = 1∑N
j 
(‖ri − rj‖; η)

, ∀i = 1, 2, . . . , N. (49)

In general, Eqs. (46)–(48) are used for computing cor-
relation maps and their combination with Eqs. (40) and (41)
provides the FRI scheme for B-factor predictions.

To quantitatively assess the performance of the proposed
FRI method for the B-factor prediction, we consider the cor-
relation coefficient

Cc = �N
i=1

(
Be

i − B̄e
) (

Bt
i − B̄t

)
[
�N

i=1

(
Be

i − B̄e
)2

�N
i=1

(
Bt

i − B̄t
)2

]1/2 , (50)

where {Bt
i , i = 1, 2, . . . , N} are a set of predicted B-factors

by using the proposed method and {Be
i , i = 1, 2, . . . , N} are

a set of experimental B-factors downloaded from the Protein
Data Bank (PDB). Here, B̄t and B̄e are the statistical averages
of theoretical and experimental B-factors, respectively.

A. Correlation map

Similar to the cross correlations of the GNM and other
methods, FRI correlation maps computed using Eq. (46) qual-
itatively reflect the three-dimensional structure of a protein.
As a consequence, distinct secondary structures such as α he-
lices and β-sheets exhibit characteristic patterns. After some
studying of the patterns, it is possible to approximate a pro-
tein’s secondary and tertiary structures from the patterns of
the correlation map alone. However, unlike the cross correla-
tions of the GNM, the FRI correlation maps are able to fur-
ther offer quantitative structural information. In fact, since the
kernel used to generate the map is known, the distances be-
tween all atoms can be calculated and the three-dimensional
structure can be reconstructed from the correlation map.
Figure 1 displays four examples of correlation maps next to
their corresponding three-dimensional structure. The scale-
bars of the correlation maps include distance values to em-
phasize the preservation of the 3D structural information.

As stated previously, each secondary structure exhibits a
distinct pattern in our correlation maps. The pattern for an α

helix is shown in the first row of Fig. 1. The α helix creates
a band of high correlation extending about 4 amino acids in
either direction from the diagonal. The correlation has a local
maximum at the third neighbor residue, due to the structure
of the α helix (3.6 amino acid residues per turn). Therefore,
the peak at the third residue serves as another signature of
an α helix in the FRI correlation map. An increase in cor-
relation between two such neighboring atoms compared to
other neighboring pairs indicates the interaction of the α he-
lix and another component. For example, in the third row of
Fig. 1, the correlation strength between 29th Cα and 32th Cα is
higher, due to interaction of 29th Cα with the third and fourth

FIG. 1. Correlation maps (left column) and secondary structure representa-
tions (right column) for proteins 1C26, 1BK2, 1PGA, and 1NH9, from top
to bottom. Correlation maps are generated using Eq. (48) with υ = 2.5 and
η = 1.0 Å. Secondary structure visualizations are generated with VMD.30

Colors represent distance and correlation values for each pair of atoms. Red
represents nearby atoms with high correlation values and blue represents dis-
tant atoms with low correlation values. The residue numbers for each Cα

are listed along the x- and y-axes. The protein are displayed in VMD’s “new
cartoon” representation and colored by secondary structure determined by
STRIDE. The color scheme for secondary structure is: Purple – α helix, blue
– 3(10) helix, yellow – β-sheet, cyan – turn, white – coil. The correlation
map of an α helix gives rise to a widened diagonal pattern (see the first row).
In contrast, the correlation map of paired beta sheets has two patterns. One is
a line that is perpendicular to the diagonal with distances around 5-10 Å for
a pair of anti-parallel beta sheets (see the first and second beta sheets in the
third row). The other is a line that is parallel to the diagonal with distances
around 5-10 Å for a pair of parallel beta sheets (see the first and fourth beta
sheets in the third row).

beta sheets. This is an example of how this type of correlation
kernels reflects tertiary structure information.

Other folds such as β-sheets are also easily identified by
distinct patterns. One can easily distinguish parallel β-sheets
from anti-parallel β-sheets by their patterns with this method.
The second row of Fig. 1 is a good example of the pattern
generated by anti-parallel β-sheets. Anti-parallel β-sheets ap-
pear as lines that are perpendicular to the diagonal of the map
and the intersection of the two lines of high correlation are
the turns between each β strand. Parallel β-sheets appear as
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lines parallel to the diagonal. In the third row of Fig. 1, an
anti-parallel β-sheet is formed by the first and last ten amino
acids resulting in a line in the top left and bottom right of the
correlation matrix.

The last two rows of Fig. 1 both display complex pat-
terns which reflect not only secondary structure information
but also the three-dimensional arrangement of the secondary
structure features. Clearly, from the last correlation map, the
first β-sheet interacts strongly with the first α helix and the
second β-sheet in a parallel manner. It also interacts to a
lesser degree with the second α helix and with the last β-
sheet in an anti-parallel manner. These patterns and the sta-
bilizing forces from the interactions they represent are lost if
one uses a contact or Kirchoff matrix based method instead
of a monotonically decreasing radial basis function based
correlation map.

B. FRI based B-factor prediction

To further validate our FRI method, we compare the B-
factor predictions with the experimental B-factors from pro-
tein X-ray crystallography experiments as shown in Eq. (50).
A set of 263 proteins was collected from the PDB with pref-
erence for high resolution (1.5 Å) protein-only structures that
lack structural co-factors. The impact of co-factors on protein
stability requires an all atom model and is a topic that will
be explored in our future work. The set of 263 proteins was
converted to a Cα only format and when atoms have multiple
coordinates with occupancy <1.0 the highest occupancy coor-
dinate was kept and all others were discarded. This is a poten-
tial source of error in the B-factor predictions. However, some
proteins with multiple coordinates for atoms were among the
highest scoring which suggests that the impact in most cases
is small.

The correlation coefficients of B-factor prediction are
displayed in Fig. 2 for both exponential (expo) and Lorentz
kernels. Each protein was tested with both the exponential
and Lorentz correlation kernels across a range of parameter
values of κ and η for the exponential kernel and υ and η for
the Lorentz kernel. Correlation coefficient scores for B-factor
predictions below 0.5 account for just 19 out of 263 proteins
for the Lorentz kernel based FRI and 14 out of 263 for the ex-
ponential kernel based FRI and are not shown in Fig. 2. The

reasons for these low scores are the subject of future research
and are likely related to the influence of crystal packing ef-
fects, structural ligands and side-chain effects that are not ap-
proximated well by the Cα course grained model. The accu-
racy of B-factor prediction is also dependent upon the quality
of the experimental data. If multiple coordinates are reported
for an atom along with multiple B-factors, then we do not
have high confidence in the B-factor and thus the prediction
will appear to be less accurate.

A comparison of the experimental vs predicted B-factors
for two proteins, 1DF4 and 2Y7L, is shown in Fig. 3 to
demonstrate the accuracy of our FRI method. These two pro-
teins were in the top five highest correlation coefficients for B-
factor predictions using the exponential (2Y7L: 0.928, 1DF4:
0.909) and Lorentz (2Y7L: 0.928, 1DF4: 0.917) kernels. It
can be seen from the correlation scores and Figs. 2 and 3
that both correlation kernels give similar results, especially
for these highly accurate predictions.

B-factor prediction was calculated for each protein at
a range of parameter values in each kernel. The Lorentz
kernel requires parameters, υ and η, while the exponential
kernel requires κ and η. The aim is to find values for these
parameters that are suitable for most or all proteins so that the
method may be made parameter free. The parameters which
result in the highest correlation coefficient for each protein
are displayed in Figs. 4 and 6 for the Lorentz and exponential
kernels, respectively.

The optimal value for υ in the Lorentz kernel is found
to be near 2.5 for most proteins in the test set. The op-
timal value for η is typically the highest or lowest tested.
The results of the parameter search for υ and η are shown
in Fig. 4. This result is a close match to the findings of
Yang et al.67 and their parameter free ENM (pfENM) model.
In the pfENM, spring constants are scaled by an inverse
power. Yang et al.67 tested powers 1-10 and found second
and third inverse power relationships were the most accu-
rate for B-factor predictions.67 In our study, we also test non-
integer powers over the range 0.5-10.0 and come to a sim-
ilar conclusion. The optimal value for υ is plotted against
the optimal value for η and colored by the size of protein in
Fig. 5. There is no clear pattern based on protein size ex-
cept that some smaller proteins (under 100 atoms) prefer very
high values of υ which may be due to a lack of long range
interactions.

FIG. 2. Correlation coefficients for experimental vs predicted B-factors using the Lorentz kernel (left) and exponential (right) kernel. The test set consists of
263 Cα only PDB files. Scores below 0.5 are not shown. For the Lorentz kernel, υ values range from 0.5 to 10.0 at an interval of 0.5 and η values range from
1.0 Å to 40.0 Å at an interval of 1.0 Å. For the exponential kernel, κ values range from 0.5 to 10.0 at an interval of 0.5 and η values range from 0.5 Å to 20.0 Å
at an interval of 0.5 Å.
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FIG. 3. Experimental B-factors (black) vs predicted B-factors (red) using the Lorentz (top) and exponential (bottom) correlation kernels. The structures used
for comparison are 1DF4 (left) and 2Y7L (right). For these comparisons, the optimal parameters were used for υ, κ , and η based on the parameter searches for
each correlation kernel. For the Lorentz kernel, υ = 1.5 and η = 2.0 Å are the parameters used for 1DF4 and υ = 1.5 and η = 19 Å are used for 2Y7L. For the
exponential kernel, κ = 0.5 and η = 1.0 Å are employed for 1DF4 and κ = 0.5 and η = 2.5 Å for 2Y7L.

For the exponential kernel, the optimal κ value for most
proteins is between 0.5 and 1 while the optimal η values are
more spread out with the majority of proteins having optimal
η values from 0.5 Å to 8 Å. This ambiguity in the optimal pa-
rameter value makes the choice of parameters for a parameter
free version difficult, however, the testing of the parameter
free exponential kernel method shows that it performs as well
as the parameter free Lorentz kernel methods. The optimal
values for κ and η for all proteins in the test set are shown in
Fig. 6. Optimal values for κ are 0.5 or 1.0 in most cases with
a significant peak at κ = 10 which is the highest value tested.
Optimal values for η are more varied and there is no clear
choice for a parameter free version. There is a large peak at
the highest η value tested (η = 20 Å) as there was for κ , how-
ever, these two peaks do not correspond to the same set of
proteins. This point is illustrated in Fig. 7 which compares κ

and η values. Figure 7 also shows that there is no relationship
between number of atoms or correlation coefficient and the
parameters κ and η. To further inform our choice of parame-
ters for the parameter free exponential method, we look at the
patterns of correlation scores for every κ and η value com-

bination in Fig. 8. The parameter maps show that for most
proteins the choice of κ is most important and that when κ

≤ 1 there are many choices for η that result in very similar
correlation coefficients.

To test parameter free versions of the FRI method, we
chose υ = 2.5 and η = 1.0 Å for the Lorentz kernel and
κ = 1.5 and η = 5.0 Å for the exponential kernel. These
choices were made based on the parameter searches and lim-
ited tests of various parameter values. In Fig. 9, we compare
the exponential and Lorentz kernel performance based on cor-
relation coefficients from B-factor prediction. The correlation
coefficients were highest overall when using the exponential
kernel with optimized parameters. The average correlation co-
efficient of B-factor prediction using the exponential kernel is
0.681 using optimal parameters and 0.627 using the parameter
free version. The average correlation coefficient of B-factor
prediction using the Lorentz kernel is 0.668 using optimal pa-
rameters and 0.627 using the parameter free version. The dif-
ference between the exponential and Lorentz kernels is small
when using optimized parameters with an average deviation
of just 0.0182. The parameter free versions of the kernels also

FIG. 4. Optimal υ parameter value for 263 proteins using the Lorentz correlation kernel. B-factor prediction was calculated for υ values ranging from 0.5 to
10 at an interval of 0.5 and η values ranging from 1.0 Å to 40.0 Å at an interval of 1.0 Å.
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FIG. 5. Phase diagram for Lorentz kernel optimal parameter values υ and η

colored by the size of structure and with shapes corresponding to correlation
coefficient. Diamond − 0.5, downward triangle − 0.6, upward triangle − 0.7,
square − 0.8 , circle − 0.9. υ values range from 0.5 to 10.0 at an interval of
0.5 and η values range from 1.0 Å to 40 Å at an interval of 1.0 Å.

produce very similar correlation coefficients with an average
deviation of 0.0365.

The parameter free Lorentz and exponential kernels ap-
pear to have similar performance and these results do not in-
dicate a clear advantage in using either kernel. In Fig. 10, we
compare the correlation coefficients from the parameter free
and optimized versions of the method for both correlation ker-
nels. In each case, the optimized method outperforms the pa-
rameter free method no matter which kernel is used. Again
this suggests that neither kernel has an advantage over the
other for this method. The maximal average deviation among
these methods is 0.0549, meaning that the parameter free ex-
ponential kernel captures 94% of the best results generated by
optimized Lorentz kernel for this set of proteins. Similarly, the
parameter free exponential kernel captures 94% of the best re-
sults from the optimized exponential kernel. It is worthwhile
to note that the parameter free Lorentz kernel (υ = 2.5 and η

= 1.0 Å) is able to capture 95% of the best results generated
by either the optimized exponential or Lorentz kernel for this
set of proteins. Therefore, it appears that the both parameter
free kernels are very robust for practical applications.

C. Rigidity and flexibility visualization

From the above analysis, the rigidity and flexibility in-
dices can be obtained at coordinates of Cα atoms in the pro-

FIG. 7. Phase diagram for exponential kernel optimal parameter values κ and
η colored by the size of structure and with shapes corresponding to correla-
tion coefficient. Diamond − 0.5, downward triangle − 0.6, upward triangle −
0.7, square − 0.8, circle − 0.9. κ values range from 0.5 to 10.0 at an interval
of 0.5 and η values range from 0.5 Å to 20 Å at an interval of 0.5 Å.

tein. Such values can be utilized directly for visualization.
For the purpose of visualization, it is sufficient to plot ei-
ther rigidity or flexibility. A large value of the flexibility in-
dex can be represented by a large atomic radius in the visu-
alization while a small flexibility index corresponds a small
atomic radius. Therefore, we scale atomic van der Waals radii
by their flexibility indices as shown in Fig. 11 for 1QD9.
Clearly, Cαs located near molecular boundary are more
flexible.

Additionally, the flexibility index can be visualized to-
gether with electrostatic potential. Specifically, the flexibility
is represented by the atomic size while the electrostatics is il-
lustrated by color as shown in the right chart of Fig. 11. There
is a correlation between flexibility and partial charge at the
protein outer surface—charged residues are more rigid. From
these figures we see the image of a typical soluble protein
with flexible, partially charged residues on the solvent-solute
boundary and a less flexible, rigid core. It is well-known that
the partially charged flexible outer protein surface is responsi-
ble for many protein functions in enzymes, cell signaling, and
ligand binding. Interestingly, this soluble protein has a highly
charged core made up of many negatively charged residues
interacting with a network of water molecules. This results in
a negatively charged, rigid core which is represented by small,
red VDW spheres.

Furthermore, in order to study the elastic dynamics,
elastostatics, and collective motion of a macromolecule, the

FIG. 6. Optimal parameters for 263 structures using the exponential correlation kernel. Here, κ values range from 0.5 to 10.0 at an interval of 0.5. η values
range from 0.5 Å to 20.0 Å at an interval of 0.5 Å.
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FIG. 8. Complete results of optimal parameter searches using the exponen-
tial correlation kernel for structures 1DF4 (top left), 2Y7L (top right), 2Y9F
(bottom left), and 3LAA (bottom right). Structures 1DF4 and 2Y7L (top) rep-
resent the high scoring structures, those with scores near 0.9. Structures 2Y7L
and 3LAA (bottom) show the typical pattern for correlation scores based on
parameter values for the majority of proteins. κ values range from 0.5 to 20.0
at an interval of 0.5 and η values range from 0.5 Å to 20 Å at an interval of
0.5 Å.

continuous atomic rigidity and flexibility functions are re-
quired in our multiscale multiphysics multiphysics and mul-
tidomain models. The spatially scattered information at each
Cα coordinate needs to be interpolated into continuous atomic
rigidity and flexibility functions. In this work, we employ
the modified Shepard’s method to interpolate rigidity and
flexibility values at Cα coordinates to build their continuous
functions.48, 56 The essence of Shepard’s method is to blend
local interpolants with locally supported weight functions.
For example, the atomic flexibility function can be expressed
as

F (r) =
N∑

i=1

Wi(r)Qi(r), (51)

FIG. 9. Comparison of correlation coefficients calculated using optimal pa-
rameters for both Lorentz and exponential correlation kernels. Average de-
viation = 0.0182 (left) and 0.0365 (right). For the Lorentz kernel optimal
parameter search, υ values range from 0.5 to 10.0 at an interval of 0.5 and η

values range from 1.0 Å to 40.0 Å at an interval of 1.0 Å. For the exponential
kernel parameter search, κ values range from 0.5 to 10.0 at an interval of 0.5
and η values range from 0.5 Å to 20.0 Å at an interval of 0.5 Å. The param-
eter free Lorentz kernel uses υ = 2.5 and η = 1.0 Å and the parameter free
exponential kernel uses κ = 1.5 and η = 5.0 Å.

FIG. 10. Comparison of correlation coefficients calculated using optimal pa-
rameters and parameter free versions of the FRI. The optimized correlation
coefficients are the highest scoring from a parameter search. For the Lorentz
kernel optimal parameter search, υ values range from 0.5 to 10.0 at an in-
terval of 0.5 and η values range from 1.0 Å to 40.0 Å at an interval of 1.0
Å. For the exponential kernel parameter search, κ values range from 0.5
to 10.0 at an interval of 0.5 and η values range from 0.5 Å to 20.0 Å at
an interval of 0.5 Å. The parameter free Lorentz kernel uses υ = 2.5 and
η = 1.0 Å and the parameter free exponential kernel uses κ = 1.5 and η

= 5.0 Å. The line y = x is shown for reference. Points on the line indicate
little or no difference between optimized parameters and the parameter free
results. Average deviations are 0.0410, 0.0549, 0.0463, and 0.0540 (from left
to right and from top to bottom).

where the locally supported weight function is defined as

Wi(r) = pi(‖ r − ri ‖; Ri)∑N
i=1 pi(‖ r − ri ‖; Ri)

, (52)

pi(‖ r − ri ‖; Ri) =
{(

Ri−‖r−ri‖
Ri‖r−ri‖

)2
, ‖ r − ri ‖< Ri,

0, ‖ r − ri ‖≥ Ri.

(53)

FIG. 11. Cα atoms of 1QD9 in VDW representation scaled by predicted B-
factor (both images) and colored with electrostatics (right). Larger VDW radii
represent more flexible atoms such as those near the surface of this soluble
protein. Smaller VDW radii represent more rigid atoms such as those in the
core of the protein. On the right, atoms are colored by electrostatics revealing
two charged domains. First, the flexible outer amino acids have some areas of
positive charge that interact with the bulk solvent. Second, a highly negatively
charged portion of the protein core is highlighted in red. These charges are
stabilized by internal water molecules.
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FIG. 12. The molecular surface of Protein 1QD9 colored by B-factor (left)
and continuous FRI representation (right). The flexibility index is calculated
using the Lorentz method with υ = 2.5 and η = 1.0 Å. Images generated
by VMD using BWR color bar and scale 10-50 for B-factors and 0.75–0.90
for the flexibility index. In both images, blue regions indicate low flexibility
and red regions indicate high flexibility. On the left, B-factor is an atomistic
representation of flexibility. On the right, FRI is used to predict flexibility
and the continuum representation is mapped to the protein surface. The con-
tinuum prediction matches the experimental flexibility pattern closely except
for near the core of the protein which contains some structural water not in-
cluded in our model.

Here, Ri > 0 is a constant radius with ith Cα as its center. Its
value varies with i so as to include different numbers of points
into its influence domain when it is necessary.56

Our input data are a set atomic flexibility indices {fi} or
the predicted B-factors {Bt

i } located at Cαs. We denote r = (x,
y, z), r ∈ SE a general position inside the elastic domain of a
macromolecule, and the local interpolant is a nodal function
defined as

Qi(r) = ai1x
2 + ai2y

2 + ai3z
2 + ai4xy + ai5xz + ai6yz

+ ai7x + ai8y + ai9z + ai10, (54)

where aij are coefficients and Qi(r) is a quadratic polynomial
function which interpolates the predicted B-factors at neigh-
boring set of Cα locations, namely,

Qi(rj ) = Bt
j δij , (55)

where δij is the Kronecker delta function. For a given ith
Cα , Eq. (55) is repeatedly employed on all Cαs within the
given sphere of radius Ri and results in a number of algebraic
equations. The algebraic equations are solved by using the
weighted least square method, which determines coefficients
aij. For sufficiently large data, we can choose 32 surround-
ing atomic flexibility indices to fit coefficients.56 Note that
the atomic rigidity function (μ(r)) can be constructed in the
same manner by replacing Bt

j with μj.
In Fig. 12, we compare an atomistic and a continuous

representation for flexibility of protein 1QD9. The molecular
surface on the left is colored by X-ray B-factors, while the
molecular surface on the right is colored by the interpolated
flexibility values. Overall, the interpolated values mimic the
B-factor pattern closely. However, the predicted flexibility at
the inner ring of the structure is higher than that given by X-
ray B-factors due to the fact water molecules fill part of the
inner core in the full structure. The B-factor color map is dis-
continuous. In contrast, the flexibility map generated with the
FRI method has the advantage of being continuous both on
the surface and in the interior of the protein. The atomic rigid-

ity function and atomic flexibility function constructed in the
present work will be utilized to study macromolecular elas-
tic dynamics, elastostatics, and elastic vibration in our future
work.

V. CONCLUSION

This work puts forward a multiscale, multiphysics, and
multidomain model for the theoretical description and com-
puter simulation of large macromolecular complexes. The
multidomain setting enables the simultaneous multiscale and
multiphysical treatment of biomolecular systems. In a special
example, we consider a few physical descriptions, including
nonpolar solvation, electrostatic interaction, multiple charged
species, fluid flow, molecular mechanics, and elasticity. Of
these descriptions, molecular mechanics is the only one de-
fined at a microscopic level, while the rest are described us-
ing macroscopic theories. The interfaces between various do-
mains are characterized by Laplace-Beltrami flows. The to-
tal energy functional is utilized to assemble various physical
descriptions on an equal footing. The Euler-Lagrange vari-
ation is utilized to derive coupled governing equations for
various physical descriptions. Apart from Laplace-Beltrami
equations for interfaces, the Poisson-Boltzmann equation, the
Navier-Stokes equation, Nernst-Planck equations, the elastic
equation, and Newton’s equations are obtained, respectively,
for electrostatics, fluid flow, ion densities, elastic dynamics,
and molecular mechanics in the model. A distinguishing fea-
ture of the present theory is that the elasticity theory is made
non-uniform. Unlike the usual continuum elasticity analy-
sis which utilizes a uniform shear modulus or rigidity, the
present work introduces non-uniform shear modulus based
on flexibility and rigidity analysis of macromolecules. This
approach, called CEWAR, incorporates microscopic rigidity
information in continuum elasticity analysis. The essential
idea is to decouple the dynamics complexity of macromolec-
ular system from its static complexity, such that the time-
consuming molecular dynamics of the macromolecular sys-
tem is replaced with a continuum elastic dynamics, while the
relatively low-cost static analysis is computed with atomic
rigidity.

We propose a FRI to estimate the static property of
macromolecules. We utilize monotonically decreasing func-
tions, including delta sequence of positive type,61 to measure
the geometric compactness of a protein and quantify the topo-
logical connectivity of atoms or residues in the protein. Phys-
ically, the FRI characterizes the total interaction strength at
each atom or residue, and thus reflects the atomic rigidity
and flexibility. Additionally, we define the total rigidity of a
molecule by a summation of atomic rigidities. Furthermore,
the spatial varying shear modulus is obtained by an interpo-
lation using atomic rigidities. A practical validation of the
proposed FRI is the prediction of B-factors, or temperature
factors of proteins, measured by X-ray crystallography. We
employ a set of 263 proteins to examine the validity, explore
the reliability, and demonstrate the robustness of the proposed
FRI method for B-factor prediction. We analyze the perfor-
mance of two classes of correlation kernels, i.e., the exponen-
tial type and the Lorentz type, for the B-factor prediction. The
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exponential type of correlation kernel involves two parame-
ters, exponential order and characteristic length. The Lorentz
type of correlation kernel also involves two parameters, power
order and characteristic length. By searching the parameter
space for optimal predictions, parameter-free correlation ker-
nels are obtained. It is found that the parameter-free correla-
tion kernel of the Lorentz type is able to retain about 95%
accuracy compared to the optimized results.

A basic assumption of the present FRI theory is that the
geometry or structure of a given protein together with its spe-
cific environment, namely, solvent, assembly, or crystal lat-
tice, completely determines the biological function and prop-
erties including flexibility, rigidity, and energy. As such, the
present approach bypasses the construction of the Hamilto-
nian and interaction potentials. A possible drawback of the
present method is that the full geometric and topological in-
formation of a protein complex is usually not available, which
contributes to modeling errors.

The generalization of the present work is underway on
a few fronts. First, a comparison of the present FRI and two
other state of the art approaches, namely, the GNM and the
coarse-grained normal mode analysis (cgNMA) will be car-
ried out for B-factor prediction. Unlike GNM and cgNMA,
the FRI does not require matrix diagonalization or decompo-
sition. Its computational complexity is at most O(N2). The
performances of FRI, GNM, and cgNMA in terms of accu-
racy, reliability, and computational efficiency will be exam-
ined with a large number of proteins. Additionally, the per-
formance of the present FRI will be improved by the consid-
eration of co-factors, crystal periodicity, and X-ray diffrac-
tion cross-section. Moreover, the collective motions of pro-
teins will be studied by solving the eigenvalue problem of the
elasticity equation with atomic rigidity. Furthermore, the in-
teraction between elastic domains and other domains will be
studied by using the elastostatic equation. Finally, elastic dy-
namics will be simulated using the theory developed in the
present work.
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