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Abstract

Although the interaction between cells and poly(ethylene glycol) (PEG) hydrogels is well
documented, there lacks a thorough investigation into the adsorption of blood proteins on these
surfaces which dictates the observed cellular and in vivo host response. Thus, a clear
understanding of how surface-bound proteins mediate the unique biological property of PEG
hydrogels is fundamentally important. The information obtained will also provide insights into
future biomaterial design. In this study, several mass-spectrometry-based proteomic tools coupled
with complementary immunoassays were employed to survey the complex surface-bound serum
proteome. The adsorption of vitronectin, thrombin, fibrinogen and complement component C3
was significantly lower on PEG hydrogels than on tissue culture polystyrene (TCPS). Although
PEG hydrogels mediated lower C3 adsorption than TCPS, the extent of C3 activation between the
two surfaces was comparable. Adherent monocyte density was also significantly lower on PEG
hydrogels as compared to TCPS. Taken together, these results support the critical role of the
complement C3 in mediating monocyte adhesion on biomaterials. Thus we conclude that the
biocompatibility of PEG hydrogels both in vitro and in vivo can be partly contributed to their
limited C3 interaction and monocyte activity.
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1. Introduction

It is well appreciated that serum proteins adsorbed on blood-contacting biomaterials play a
key role in mediating cell adhesion, activation and thrombosis, thus determining the
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outcome of host response to materials. The adsorption of serum proteins (e.g., albumin,
complement components, vitronectin and fibrinogen) on various biomaterials has been
extensively studied [1-5] and the driving force is governed by many factors such as material
composition, hydrophobicity, electrostatics, protein structure and the competitive adsorption
amongst proteins [1, 6]. The complexity of the adsorbed serum proteome on biomaterials
requires a quick and reliable approach to identify these proteins. Compared to traditional
analytical methods such as gel electrophoresis, ellipsometry and Fourier transform infrared
spectroscopy (FT-IR), matrix-assisted laser desorption/ionization (MALDI) provides a
powerful tool in identifying various adsorbed proteins without the a priori knowledge of the
protein identity that is necessary in immunoassays. Surface-MALDI [7, 8] and surface-
enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS)
[9] have been applied in studies of protein adsorption on ocular lens and desorbed fluid from
dialysis membrane, respectively. However, the possible contamination from laser-
deteriorated substrates or the knowledge of to-be-detected proteins may restrict their
application; thus, a modified method is yet to be developed.

Poly(ethylene glycol) (PEG) is widely accepted for its “non-fouling’ and low protein
adsorption properties. PEG has been employed in surface coating and structurally modifying
materials to enhance the biocompatibility [10-12]. However, detailed analyses of adsorbed
and absorbed serum proteins on PEG hydrogels are absent in the literature. Understanding
the adsorbed serum proteome on PEG hydrogels will provide significant insights into the
blood—material interaction, which is crucial in the development of biocompatible materials.
In this study, the proteome of human serum proteins adsorbed onto PEG hydrogels and
tissue-culture polystyrene (TCPS) was studied by MALDI-TOF/TOF. Different methods
were employed to elute adsorbed proteins from the substrate and the MALDI results were
compared. The adsorption of vitronectin, thrombin, fibrinogen and complement component
C3 was further quantified by enzyme-linked immunosorbent assay (ELISA) as a
complementary method since these proteins have been shown repeatedly in mediating
blood—-material thrombosis and cell adhesion to biomaterials [13, 14]. The effect of C3
adsorption and activation on human primary monocyte adhesion was further assessed.

2. Materials and Methods

2.1. PEG-Diacrylate Synthesis and PEG Hydrogel Preparation

PEG-acrylate was prepared by dissolving solid PEG-diol (3400 Da, Sigma) in dried
tetrohydrofuran to obtain a 20% (w/v) solution. Acryloyl chloride (ACI, Sigma) and
triethylamine (TEA, Sigma) were added into the PEG solution at a 1:4:6 ratio of
PEG:ACI:TEA. The solution was stirred for 3 h followed by filtration twice with a filter
paper (Grade 2, Whatman). The filtrate was then precipitated in cold hexane, stirred and
filtered to obtain PEG-diacrylate. PEG-diacrylate was dried in a vacuum oven overnight.
The purity of product was determined to be >97% as assessed with high performance liquid
chromatography. The PEG hydrogels were prepared by dissolving 10 wt% PEG-diacrylate
(575 (Sigma) or 3400 Da) and the photoinitiator (0.1 wt% 2,2-dimethoxy-2-phenyl-
acetophenone (DMPA, Aldrich) or 0.4 wt% Irgacure 2959 (Ciba), respectively) in H,O in
12- or 48-well plates. The solution was cured with UV (CF 1000, Clearstone Technologies;
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or UVP B 100 AP, respectively). PEG hydrogels were washed five times with phosphate-
buffered saline (PBS, pH 7.4) to remove unreacted PEG-diacrylate, Irgacure 2959 and
DMPA before equilibration in PBS at 37°C for 24 h. PEG hydrogels were washed twice
with PBS again before incubation with serum-containing medium for protein adsorption
analysis.

2.2. Fractionation of Human Serum with PEG 4000

To determine the adsorption of human serum proteins on PEG hydrogels, human blood was
collected from healthy donors and submerged in a water bath at 37°C for 3 h to allow for
complete coagulation. The tubes were then centrifuged at 2850 x g (Marathon 3200R, Fisher
Scientific) for 10 min at room temperature to obtain serum. Albumin is the major component
of human serum and its extremely high abundance significantly lowers the efficacy of
detecting other serum proteins by mass spectrometry. Thus, it is critical to remove albumin
before utilizing the serum to elucidate the adsorption of low abundance proteins. The
fractionation of human serum with PEG (4000 Da, Fluka) was reported previously [15, 16].
Briefly, human serum was fractioned in ice bath by slowly adding in 10% (w/v) PEG 4000
and stirring at 4°C for 60 min, followed by centrifugation at 800 x g for 30 min. The
proteins precipitated were air-dried (fraction 1). Then, more 10% (w/v) PEG 4000 was added
to supernatant, stirred and centrifuged to obtain the 10-20% PEG fraction (fraction I1). The
supernatant, which contained most of the albumin molecules, was removed as fraction I11.
Fractions I and Il were combined for adsorption study. The distribution of selected proteins
in each fraction has been reported previously (Table 1) [16]. In this study, the distribution of
albumin, fibrinogen, thrombin, complement component C3 and vitronectin in each fraction
was further confirmed with ELISA and the results were compared to those reported
previously [16] (Table 2). The removal of albumin had no effect on the relative
concentration of total proteins adsorbed on both PEG hydrogels (3400 Da) and TCPS, as
determined by Fourier transform infrared (FT-IR) spectroscopy (Bruker Equinox 55/S) and
bicinchoninic acid (BCA, Pierce) test, respectively. BCA result showed the ratio of proteins
adsorbed on TCPS with 10% fractionated serum to that with 10% whole serum was 1.02:1.
In the FT-IR study of the relative protein adsorption on PEG hydrogels, the integrated peak
area of carbonyl group in amide was normalized to the peak area of carbon—oxygen bond
(C-0) of the same sample, and the ratios were 0.65 and 0.61 for fractionated and whole
serum, respectively. These indicate no significant difference in adsorbed total protein levels
between sera with or without albumin removal on both PEG hydrogels and TCPS.

2.3. Serum Protein Adsorption and Mass Spectrometry

Chemicals were purchased from Sigma-Aldrich, unless otherwise stated. Whole serum and
fractionated human serum were diluted to 10% (v/v) in Dulbecco's modified eagle medium
(DMEM, Gibco) and incubated in 12-well TCPS plates coated with or without PEG
hydrogels (3400 Da) at 37°C for 2, 24 or 48 h. At each time point, DMEM solution was
removed and the samples were washed twice with PBS. PEG hydrogels were then placed
into new wells before additional washing to avoid interference from proteins adsorbed onto
TCPS. Samples were then subjected to different sample preparation methods for mass
spectrometry. Serum proteins adsorbed/absorbed to PEG hydrogels and TCPS were eluted
with sodium dodecyl sulfate (SDS, Amresco®) or 30% (w/v) acetic acid and directly dried
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with a SpeedVac concentrator (Savant SVC 100H, Phoenix Equipment). SDS in protein
solution was removed by chloroform/methanol/water extraction (1:4:3, v/v) as described
previously [17]. Briefly, 200 pl protein sample was mixed with 800 ul methanol, followed
by the addition of 200 ul chloroform and 600 pl water. The solution was vortexed and
centrifuged at 14000 x g for 5 min to precipitate proteins which were then washed by adding
600 pul methanol and the pellet was obtained by centrifugation at 14000 x g for 10 min. The
pellet was briefly dried at 37°C to evaporate excessive solvents. All protein samples treated
with SDS and acetic acid were denatured with 6 M urea, 4 mM o,.-dithiothreitol (DTT) and
50 mM Trizma® hydrochloride. Denatured proteins were diluted by 50 mM ammonium
bicarbonate and digested by trypsin (Promega) at 37°C overnight. Protein digestion was
stopped by adding 10% (wi/v) trifluoroacetic acid (TFA) until pH dropped to 3. Peptides
were dried by SpeedVac and reconstituted with 0.1% (v/v) TFA before desalting with Cg
Ziptips (Millipore). Desalted peptides were eluted onto a Opti-TOF™ 384-well plate
(Applied Biosystems) with 0.5 ml acetonitrile/0.1% TFA (50:50, v/v), followed by pipetting
0.5 ul a-cyano-4-hydroxycinnamic acid dissolved in acetonitrile/0.1% TFA (50:50, v/v).

Digested peptides were analyzed by MALDI-TOF/TOF (4800 Proteomics Analyzer,
Applied Biosystems) in positive ion mode and the sequence data were obtained from the
MS/MS result of the top 15 intensity y ions for each spot. Peptide sequences were then
subjected to Mascot (Matrix Science, MA) via GPS Explorer™ software (Applied
Biosystems) against National Centers for Biotechnology Information (NCBInr) database
[18]. Following search parameters were used: taxonomy was restricted to Homo sapiens;
enzyme was trypsin with 2 missed cleavage sites; variable modifications were deamidated
(NQ) and oxidation (M); peptide tolerance was +1.0 Da; MS/MS tolerance was 0.1 Da and
peptide charge was 1 + monoisotopic. The Mascotion score equals =10 x logyo(P) where P
is the probability the observed event is random. Therefore, a high Mascot score correlates to
a low probability of a random event. Like most MS-based proteomic searches, a Mascot ion
score above 66 was considered the threshold for significant database match in this study.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA) to Quantify Adsorbed Proteins

The concentrations of vitronectin, fibrinogen and thrombin on PEG hydrogels (3400 Da)
were determined with ELISA, since their adsorption was identified via MALDI and these
proteins mediate leukocyte adhesion and thrombosis formation. DMEM (0.5 ml) with 10%
whole human serum was added to 48-well plates with or without PEG hydrogels and
incubated at 37°C for 0.5, 1, 2, 12, 24 and 48 h for the quantification of vitronectin,
thrombin and fibrinogen. TCPS incubated with DMEM plus 10% whole human serum
served as a positive control. PEG hydrogels and TCPS with serum-free DMEM served as
negative controls. As a key player in both classic and alternative complement pathways,
complement component C3 adsorbed/absorbed on PEG hydrogels (575 and 3400 Da) and
TCPS was quantified with RPMI 1640 supplemented by 10% pooled human sera (PHS,
Sigma) or 10% human C3-inactivated serum (Sigma). PEG hydrogels and TCPS with RPMI
1640 in the absence of serum were used as negative controls. At each time point, the media
was removed and samples were washed twice with PBS. PEG hydrogels were then
transferred to new wells to avoid the interference from proteins adsorbed onto the culture
plate. Surfaces of PEG hydrogel and TCPS were then blocked with 5% skim milk in
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washing solution (PBS containing 0.05% Tween-20) for 2 h, followed by washing 5 times
with washing solution. Primary antibodies including rabbit anti-human vitronectin (1:7000,
Abcam), HRP-conjugated goat anti-human fibrinogen (1:40000, Abcam), HRP-conjugated
sheep anti-human thrombin (1:1000, USBiological) and HRP-conjugated goat anti-human
C3(1:12000, MP Biochemical) were diluted in blocking solution and incubated with
substrates for 1.5 h. HRP-conjugated goat anti-rabbit 1gG (Millipore) was diluted to 1:20000
in blocking solution and incubated with substrates for 1.5 h to detect vitronectin. The 1-
Step™ ultra TMB-ELISA (Pierce) was then added and the absorbance was measured at 450
nm with a microplate reader (Elx 800, BioTek). Standard curves were created for vitronectin
(y = -5.8812x2 + 6.6934x + 0.0347, RZ = 0.9948), fibrinogen (y = —0.2501x2 + 1.7243x, R2
=0.9967), thrombin (y = 0.3466x2 + 0.3653x, RZ = 0.9962) and C3 (y = 5.6352x + 0.0235,
R2 = 0.9935) with known concentrations of vitronectin (R&D Systems), fibrinogen
(Innovative Research), thrombin (R&D Systems) and C3 (Calbiochem) adsorbed to TCPS,
where x is adsorbed/absorbed protein (ug/cm?2) and y is the absorbance value. The protein
concentration on the surface was then calculated by comparing absorbance value with
standard curve.

2.5. C3 Activation and Human Blood-Derived Monocyte Adhesion

PEG hydrogels (575 and 3400 Da) were prepared as described above and cold sterilized
with 70% ethanol for 30 min [19]. Hydrogels were then washed extensively and equilibrated
with PBS overnight before seeding the cells. Monocyte isolation was performed according
to established protocol [19]. Briefly, 60 ml human blood was drawn from healthy donors
and diluted by mixing with PBSE (PBS-EDTA) and Ficoll-Paque™ PLUS (GE Healthcare).
Monocytes with lymphocytes and platelets were then separated from plasma, granulocytes
and erythrocytes. A series of washing and centrifugation steps were performed to purify
monocytes from lymphocytes and platelets. Cells were seeded into 48-well TCPS plate (0.5
ml, 10° cells/ml per well) with RPMI 1640 supplemented by 10% pooled sera or 10% C3-
inactivated serum and incubated at 37°C. At 2, 24, 96 and 168 h, culture media were
collected and cells were washed with RPMI 1640 twice before adding in fresh media.
Adherent cells were imaged with a camera attached to inverted microscope (Nikon Eclipse
TE 300) and the cell number on each image (sampling area 0.154 mm?/image) was counted.
Three images were employed for each substrate at each time point. The C3a concentrations
in culture supernatants were analyzed with an ELISA kit (OptEIA™, BD Biosciences).
Culture medium without cells was incubated with PEG hydrogels (575 and 3400 Da) and
TCPS as controls. The C3a concentration in culture medium was determined and employed
as the baseline value. The experiment was repeated three times independently.

2.6. Statistical Analysis

In MALDI results, only proteins with a Mascot score above threshold (>66) are shown
(significance threshold P < 0.05). Proteins are listed from high to low scores and the same
type of proteins are grouped and shown as number of hits. For albumin and fibrinogen, only
the accession numbers of proteins with top scores are given. All ELISA data and cell
adhesion data were shown as mean = SD of samples in three independent experiments and
were analyzed by analysis of variance (ANOVA) followed by the Tukey test using
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SigmaStat® (version 2.03), where values of P < 0.05 were considered statistically
significant.

3. Results and Discussion

3.1. Identification of Adsorbed Serum Proteins by MALDI

As the most abundant serum protein, albumin binds and transports a broad range of ligands
(e.g., ions, drugs and proteins), maintains the osmotic pressure and serves as an antioxidant
[20, 21]. However, the high concentration of albumin often overwhelms the detection of low
abundance serum proteins via various analytical methods. To minimize the interference
from albumin, whole human serum was separated into three fractions by precipitating
proteins with gradient solid PEG 4000. Fractions | and Il were combined in this study, since
most serum albumin was retained in fraction I11 (Tables 1 and 2). As indicated by our BCA
and FT-IR results, the total amount of proteins adsorbed onto either TCPS or PEG hydrogels
was comparable between those treated with whole or fractionated serum. MALDI and
database search elucidated different spectra of adsorbed proteins between PEG hydrogels
and TCPS (Table 3). Compared to samples treated with whole serum, the number of hits for
albumin was lower for TCPS incubated with fractionated serum. Consequently, vitronectin,
fibrinogen and thrombin were demonstrated with top scores on TCPS incubated with
fractionated serum. In contrast, a low number of hits for these proteins was observed for
TCPS treated with whole serum, which was likely due to the presence of albumin. However,
a more significant number of hits for albumin was observed with PEG hydrogels in
fractionated serum (Table 3). Furthermore, no vitronectin or thrombin was detected on PEG
hydrogels in either fractionated or whole serum, suggesting the adsorption of vitronectin and
thrombin was inhibited by PEG hydrogels. PEG was observed to decrease the vitronectin
adsorption to PEG-terephthalate and poly(butylene terephthalate) co-polymers [22]. The
modification to polydimethylsiloxane with allyl-PEG-methoxy also reduced the generation
of thrombin and the adsorption of fibrinogen [23]. Thus, the observation of vitronectin and
thrombin adsorption to PEG hydrogels complements the current void in the literature. In
addition, ap-macroglobulin and a4-acid glycoprotein 1 were detected on PEG hydrogels, but
not on TCPS. The lectin pathway has been previously demonstrated in the immune response
to PEG [24]. In this study, the presence of serum amyloid P component on PEG hydrogels
(Table 3) suggests the interaction between serum and PEG hydrogels may also be mediated
by the classic complement pathway [25] in addition to the well-established alternative
pathway. The heat shock protein 60, Nck-2 and cytosolic phosphoprotein were only
associated to substrates incubated with whole serum suggesting these proteins remained in
fraction I11.

Compared to direct preparation of MALDI samples on testing material, the elution and
purification of adsorbed proteins from solid surface could avoid the possible deterioration of
the substrate material and the subsequent interference to ensure the accuracy of mass
spectrometry. In this study, SDS and acetic acid were chosen to elute adsorbed proteins
since SDS is widely accepted in desorbing proteins from solid substrates [26—28] and acetic
acid has been used in eluting proteins from dialysis membranes [9]. The employment of
SDS significantly reduced the amount of urea used to directly denature proteins on a
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substrate and waived the removal procedure of urea by liquid chromatography. Our results
showed that acetic acid selectively detached fibrinogen and fibrin from PEG hydrogels at 2
h and no significant hit of other major proteins was obtained (Table 4). In contrast, 0.2%
SDS detached a broad range of proteins from PEG hydrogels, including albumin, fibrinogen,
immunoglobulin, a,-macroglobulin, etc. SDS is anionic and binds to proteins thus results in
protein denaturation by disrupting the protein tertiary structure. Acetic acid tends to break
the salt bridges of proteins by reducing pH and destructs protein tertiary structures [29] and,
thus, has limited effect on protein unfolding. In this study, only fibrinogen was desorbed by
acetic acid, indicating the relatively weak adsorption of fibrinogen on PEG hydrogels
compared to other serum proteins (e.g., albumin, immunoglobulin and a,-macroglobulin).
The adsorption of fibrinogen on PEG-modified hydrogels was reported to be irreversible
compared to albumin and immunoglobulin G when eluted with 0.5% SDS [30]. This current
study, however, showed that fibrinogen was eluted by both acetic acid and 0.2% SDS from
PEG hydrogels and TCPS, suggesting the reversibility of fibrinogen is likely dependent on
the substrate property.

The increase of SDS concentration from 0.2% to 1% dramatically enhanced the elution of
immunoglobulin from TCPS and also resulted in detectable vitronectin precursors.
However, there was still no thrombin eluted (Table 5). Vitronectin, thrombin and fibrinogen
were detected when these proteins on TCPS were denatured directly by urea/DTT. This
indicates the adsorption of these proteins to TCPS may be governed partly by their
molecular weight and the VVroman effect [31] since the adsorption of vitronectin and
thrombin of relatively low molecular mass (approx. 75 and 37 kDa, respectively) was
stronger than fibrinogen (approx. 340 kDa). In contrast, no vitronectin and thrombin
adsorbed on PEG hydrogels was detected by MALDI when samples were denatured directly
by urea/DTT, indicating the inhibitory effect of PEG hydrogels on these proteins.

3.2. Quantification of Selected Adsorbed Serum Proteins by ELISA

The surface concentrations of adsorbed vitronectin, fibrinogen and thrombin were quantified
using ELISA as a complementary method to MALDI because these proteins have been well
documented in the host-biomaterial interaction [13]. Furthermore, the absence of
complement components in MALDI results was unexpected since complement factors such
as C3 have been found to be critical in various blood—material interaction studies [14, 19,
32]. Thus the adsorption of C3 on PEG hydrogels (575 and 3400 Da) and TCPS was also
quantified by ELISA. Results showed the amounts of vitronectin, thrombin and fibrinogen
on PEG hydrogels (3400 Da) were significantly less than on TCPS from 0.5 to 48 h (Fig. 1).
The concentrations of these proteins on TCPS were relatively constant as compared to PEG
hydrogels from 0.5 to 48 h. In the presence of other high abundance proteins, the low
concentrations of vitronectin and thrombin on PEG hydrogels were likely below the
detection threshold of MALDI. This was consistent to the previous mass spectrometry result
that vitronectin and thrombin were only observed on TCPS, but not on PEG hydrogels. The
adsorption of C3 from pooled human sera to TCPS was generally constant over time and
PEG hydrogels significantly reduced the adsorption of C3 from pooled human sera (Fig.
2A). The low adsorption of C3 on PEG hydrogels was likely due to the absence of hydroxyl
and amine groups on surface which are known to enhance the binding to carbonyl group in
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C3[13]. Generally there was no significant difference in the adsorbed/absorbed C3
concentration amongst PEG hydrogels and TCPS incubated with C3-inactivated serum (Fig.
2B). Similar to vitronectin and fibrinogen on PEG hydrogels, the reason that no C3 was
detected on both PEG hydrogels and TCPS by MALDI was probably because of the low
amount of C3 adsorbed/absorbed to these substrates compared to other proteins. The
concentrations of fibrinogen (3000-5000 pg/ml) and C3 (1300 pg/ml) are markedly higher
than vitronectin (about 260-290 pg/ml) and thrombin (about 100 pug/ml) in human serum/
plasma [33-37]. However, the amounts of adsorbed fibrinogen and C3 on TCPS were lower
than vitronectin and thrombin (Figs 1 and 2A), indicating the relatively low affinity of
fibrinogen and C3 to TCPS compared with vitronectin and thrombin, which is in agreement
to the MALDI results. Unlike the PEG brush configuration which inhibits protein
conformation thus hinders protein adsorption [38], the lack of hydroxyl and amine groups in
the long hydrophobic chain of PEG hydrogels is likely to contribute to the decrease of C3
adsorption.

3.3. The Activation of C3 and Monocyte Adhesion on PEG Hydrogels and TCPS

Complement component C3 plays a pivotal role in both classic and alternative complement
pathways. C3a is generated in the cleavage of C3 to form C3b; thus, it is an indicator of
complement C3 activation. As an anaphylatoxin, C3a has a broad proinflammatory impact
on cells such as cytokine expression and chemotaxis [39-43]. Moreover, C3a is also
important in regulating both the coagulation and the complement cascades [44]. Given the
significance of C3, the activation of C3 by PEG to generate C3a is surprisingly lacking in
the literature. Thus, C3a concentration in the culture supernatant with and without cells were
further determined in this study. Furthermore, C3 has been found adsorbed to different
surfaces in blood plasma— material interaction [45-48]. C3 was also reported to mediate
leukocyte adhesion to different surfaces [19, 45] by binding to albumin and immunoglobulin
G, but not fibrinogen [45, 47]. However, the role of adsorbed C3 in mediating monocyte
adhesion on PEG hydrogels is absent in literature.

To further determine the generation of C3a and the bioactivity of adsorbed C3 in mediating
monocyte adhesion to PEG hydrogels, human primary monocytes were isolated and seeded
onto PEG hydrogels (575 and 3400 Da) and TCPS with pooled or C3-inactivated human
sera. Results showed that both PEG hydrogels and TCPS significantly enhanced the C3a
concentration in the supernatant when compared with the baseline C3a concentration in the
culture medium (Fig. 3). The presence of monocytes generally had no significant impact on
the C3a concentration, indicating the C3a concentration in supernatant is dependent mainly
on substrates. C3a concentration was similar between PEG hydrogels and TCPS. This
suggests that the C3a formation is less dependent on the surfaces tested. Although PEG
hydrogels mediated lower C3 adsorption than TCPS (Fig. 2), the extent of C3 activation
between the two surfaces was comparable.

The adherent monocyte densities on PEG hydrogels were significantly higher with pooled
sera than with C3-inactivated serum from 24 to 168 h (Fig. 4, P < 0.05). Similarly, the
adherent cell density on TCPS was significantly higher at 24 and 96 h in the presence of
pooled sera (P < 0.01) than with C3-inactivated serum. These indicate the significant effect
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of C3 on mediating monocyte adhesion to both PEG hydrogels and TCPS. Furthermore, the
number of cells adhered to PEG hydrogels was significantly lower than that on TCPS with
pooled sera from 2 to 96 h (P < 0.01), which could be partially contributed to the low
adsorption of C3 on the hydrogels, although the C3a concentration of both TCPS and PEG
hydrogels was comparable. The low concentration of other adsorbed proteins (e.g.,
fibrinogen, vitronectin and thrombin) on PEG hydrogels also contributed to the lower
density of adherent cells since fibrinogen and vitronectin can both mediate cell adhesion and
thrombin cleaves C3 to generate C3b which could also promote monocyte attachment. The
morphology of adherent monocytes on PEG hydrogels and TCPS was similar at 24 h, but
the density of cells on PEG hydrogels was markedly lower than on TCPS with pooled sera

(Fig. 5).

4. Conclusion

The adsorption of blood proteins on solid surfaces significantly impacts the subsequent cell-
material interaction and, thus, largely determines the host response to biomaterials. In this
study, the complex proteome of serum proteins adsorbed onto PEG hydrogels and TCPS
was probed by MALDI coupled with complementary immunoassays. When compared with
TCPS, PEG hydrogels showed a significantly lower adsorption of vitronectin, thrombin,
fibrinogen and complement component C3, although the soluble C3a concentration of TCPS
and PEG hydrogels were comparable. Adherent monocyte density was also significantly
lower on PEG hydrogels as compared to TCPS, while the inactivation of C3 resulted in a
lower adherent monocyte density on both TCPS and PEG hydrogels. Therefore, we
conclude that the biocompatibility of PEG hydrogels both in vitro and in vivo can be partly
contributed to their limited C3 interaction and monocyte activity.
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Figure 1.

Human serum vitronectin (A), thrombin (B) and fibrinogen (C) adsorbed/absorbed onto
PEG hydrogel (3400 Da, 00) and TCPS ( E) from DMEM supplemented with whole human
serum at 0.5, 1, 2, 12, 24 and 48 h. All data presented as average £ SD (n = 3).
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Figure 2.
Human complement component C3 adsorbed/absorbed on PEG hydrogels (575 (00) and

3400 Da (E)) and TCPS (&) from RPMI 1640 supplemented with pooled human sera (A)
or C3-inactivated serum (B) at 0.5, 1, 2, 12, 24 and 48 h. All data presented as average + SD
(n = 3). 8 Significantly different compared to PEG hydrogels (575 and 3400 Da), P <

0.05; ¥significantly different compared to C3-inactivated serum, P < 0.05; *significantly
different compared to PEG hydrogel (575 Da), P < 0.05. ND, below detection limit.
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Figure 3.
Soluble C3a concentration in culture supernatant with PEG hydrogels (575 () and 3400 Da

(@)) and TCPS (&). Human primary monocytes were seeded on these substrates in RPMI
1640 supplemented with 10% pooled human sera. Culture supernatants with and without
cells were collected at 2, 24, 96 and 168 h. The C3a concentrations in supernatants were
analyzed by ELISA. The dashed line represents the C3a concentration in 10% pooled human
sera without incubation with any substrate. All data presented as average + SD (n = 3). §
Significantly different compared to the same substrate without cells, P < 0.05; *significantly
different compared to TCPS, P < 0.05; #significantly different compared to pooled human
sera, P < 0.05.
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Adherent monocyte density on PEG hydrogels (575 (00) and 3400 Da ( &) and TCPS (&)
with RPMI 1640 supplemented with C3-inactivated (C37) or pooled human sera (PHS) at 2,
24, 96 and 168 h. Cell seeding density was 0.5 ml at 5 x 10 cells/ml. All data presented as
average = SD (n = 3). §Significantly different compared to PEG hydrogels (575 and 3400
Da), P < 0.05; *significantly different compared to C3-inactivated serum, P <

0.05; #significantly different compared to PEG hydrogel (575 Da), P < 0.05.
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Figure 5.
Adherent monocyte morphology on PEG hydrogels (575 and 3400 Da) and TCPS in RPMI

1640 supplemented with 10% pooled human sera (PHS) or C3-inactivated serum at 24 h.
Adherent cells were washed with RPMI and imaged with a camera attached to inverted
microscope at a magnification x20. Scale bar = 50 um.
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Table 1
Distribution of plasma proteins in PEG fractions [16]

Plasma protein Protein distribution (%)

Fraction | (0-10% PEG)  Fraction Il (10-20% PEG) Fraction I11 (20% PEG)
Albumin 6 4 86
Antithrombin 111 - 23 7
a;-Acid glycoprotein - - 100
ap-Antitrypsin 4 5 88
a,-Macroglobulin 35 65 -
C3 component 93 7 -
Ceruloplasmin 14 23 73
C1 inactivator - - 1000
Fibrinogen 88 - -
Haptoglobulin 2 40 56
19G 88 15 1
Plasminogen 69 19 -
Prothrombin 25 50 25
Transferrin 6 22 58
a-Lipoprotein 15 25 50
[Lipoprotein 100 - -
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Table 2
Distribution of human serum proteins in PEG fractions as determined by ELISA

Serum protein

Protein distribution (%)

Fraction | (0-10% PEG) Fraction Il (10-20% PEG) Fraction Ill (20% PEG)

Albumin
Thrombin
Fibrinogen
Complement C3

Vitronectin

13.4+3.7 16.5+4.6 70.1+4.2
43.1+6.1 51.2+10.4 58+5.0
98.3+£9.0 1.3+03 0.4+0.3
99.7+15 0.3+0.0 0.1+0.0
31.1+£0.7 38.0+£0.7 30.9+0.5
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