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Background: Breast tumors have been described by molecular subtypes characterized by pervasively different gene expression profiles. 
The subtypes are associated with different clinical parameters and origin of precursor cells. However, the biological pathways and 
chromosomal aberrations that differ between the subgroups are less well characterized. The molecular subtypes are associated with dif-
ferent risk of metastatic recurrence of the disease. Nevertheless, the performance of these overall patterns to predict outcome is far from 
optimal, suggesting that biological mechanisms that extend beyond the subgroups impact metastasis.
Results: We have scrutinized publicly available gene expression datasets and identified molecular subtypes in 1,394 breast tumors with 
outcome data. By analysis of chromosomal regions and pathways using “Gene set enrichment analysis” followed by a meta-analysis, 
we identified comprehensive mechanistic differences between the subgroups. Furthermore, the same approach was used to investigate 
mechanisms related to metastasis within the subgroups. A striking finding is that the molecular subtypes account for the majority of bio-
logical mechanisms associated with metastasis. However, some mechanisms, aside from the subtypes, were identified in a training set of 
1,239 tumors and confirmed by survival analysis in two independent validation datasets from the same type of platform and consisting 
of very comparable node-negative patients that did not receive adjuvant medical therapy. The results show that high expression of 5q14 
genes and low levels of TNFR2 pathway genes were associated with poor survival in basal-like cancers. Furthermore, low expression 
of 5q33 genes and interleukin-12 pathway genes were associated with poor outcome exclusively in ERBB2-like tumors.
Conclusion: The identified regions, genes, and pathways may be potential drug targets in future individualized treatment strategies.
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Background
Breast cancer is the most common cancer among 
women. The local disease is not lethal, but its spread to 
distant organs is fatal. The risk of metastasis is evalu-
ated by clinical and pathological criteria, but the per-
formance of these methods is far from optimal. Gene 
expression profiling of tumors has been used for the 
supervised classification of cancer outcomes in several 
studies with promising results for the improvement 
of risk prediction.1–4 Despite these promising clinical 
results, limited insights into its biological mechanisms 
has been obtained from the large amount of gene 
expression data available. A very different approach 
was used in early studies of global gene expression of 
breast cancer, where unsupervised hierarchical clus-
tering was used to identify 4–5 molecular subtypes.5–8 
These subtypes arise from at least two cell types: basal 
cells and luminal epithelial cells. Luminal tumors are 
mainly estrogen receptor (ER)-positive and cluster in 
two distinct groups (termed luminal A and luminal B) 
that appear to result in good and poor prognosis, 
respectively. Basal-like tumors are ER-negative and 
are characterized by poor prognosis. A distinct group 
that mainly consists of ER-negative tumors is char-
acterized by the amplification of ERBB2. Finally, a 
normal-like profile constitutes good prognosis. These 
subtypes are biologically very meaningful, but their 
prediction of metastasis is not optimal.

In recent studies, unsupervised and supervised 
methods have been used to differentiate the molecu-
lar subtypes of breast cancer into further subgroups 
with different outcomes. The discriminating genes 
have subsequently been related to biological func-
tion (for example, immune response among ER-
negative tumors).9,10 These studies have identified 
very broad mechanisms, but they have not pointed 
at specific biochemical pathways. A very different 
strategy would be to analyze predefined gene sets 
representing biological mechanisms, such as the 
pathways for their association to metastasis. We 
have previously used this strategy for the analysis 
of the overall pathways involved in the metastasis 
of breast cancer.11 Furthermore, we have applied 
this approach to gene sets representing genomic 
regions to identify somatic mutations at the deoxy-
ribonucleic acid (DNA)-level that are involved in 
metastasis.12 However, the analysis of pathways and 
genomic aberrations has not been applied to analyze 

the various metastatic mechanisms found within the 
different subtypes of breast cancer.

We hypothesize that several somatic genomic 
aberrations and biological pathways characterize the 
molecular subtypes in breast cancer. Despite the asso-
ciation of the subtypes to metastasis, we expect that 
mechanisms within a given subtype may be involved 
in the higher risk of metastasis for a fraction of the 
tumors. Furthermore, we anticipate that deregula-
tion of the pathways is reflected in gene expression 
patterns of primary tumor biopsies. We also assume 
that somatic copy number mutations involving chro-
mosomal regions will be reflected in the overall level 
of gene expression in these regions. Our aim is to 
elucidate these metastatic mechanisms within the 
molecular subtypes and, secondly, to determine the 
mechanisms that differ between the subgroups.

We have used predefined gene sets representing 
canonical pathways and chromosomal regions to iden-
tify metastatic mechanisms within molecular subtypes. 
This has been accomplished by a global approach; 
gene set enrichment analysis (GSEA) examining the 
entire list of genes ranked according to association to 
metastasis within each molecular subtype. In a single 
dataset, this analysis will generally not result in signifi-
cant findings. However, by performing a meta-analysis 
of several datasets, we have increased the power to 
identify somatic mutations among the chromosomal 
regions and pathways involved in the metastasis of 
fractions of breast tumors within a specific subtype.

Results
Molecular subtypes of 1,439 tumors
Global gene expression data were collected from 
1,586 breast tumors with clinical follow up (Table 1). 
Molecular subtypes were identified by a single 
sample prediction approach using nearest centroid 
classification.8 Single-sample predictions resulted in 
1,394 samples with assigned subtypes. Survival anal-
ysis confirmed the prognostic impact of the subtypes, 
with luminal A and normal-like tumors having sig-
nificantly better prognosis than luminal B, ERBB2, 
and basal-like tumors (Fig. 1).

Genomic aberrations and pathways 
associated to molecular subtypes
To identify the biological characteristics of the 
molecular subtypes, we divided the 1,394  samples 
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Table 1. Datasets and patients included in the study.

Data set Country Platform #genes Outcome #pt with  
follow up

#sub typed  
samples

Amsterdam1 The Nederlands Agilent 24451 Distant metastasis 295 287
Rotterdam2 The Nederlands 133A 22283 Distant metastasis 286 277
Stockholm32 Sweden 133A+B 44982 Death from BC 159 152
Uppsala33 Sweden 133A+B 44982 Death from BC 236 229
Bild34 US 95av2 12625 Metastasis 158 153
Hu8 3 Agilent 22K Relapse 105 105
Training total 1239 1203
Mainz9 Germany 133A 22283 Distant metastasis 200 191
TRANSBIG-S3 UK 133A 22283 Distant metastasis 147 0
Test total 347 191
Total 1586 1394
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Figure 1. Kaplan–Meyer plot of the five molecular subtypes in seven datasets, including 1,394 tumor samples. Molecular subtypes were determined by 
the single-sample prediction method reported by Hu et al.8 Hazard ratios were calculated by fitting a Cox model to the data for comparing each group to 
basal-like tumors. The P-value was calculated using the log-rank test.

subtyped with a single sample prediction, to a train-
ing set of 1,203 tumors corresponding to six entire 
datasets and a test set of 191 tumors contained in two 
datasets (Table 1). We applied GSEA analysis to one 
subtype at a time compared to all other tumors. This 
analysis was performed with gene sets representing 
chromosomal region and with pathway gene sets. 

A meta-analysis was performed to identify gene sets 
that were concordantly differentially regulated in the 
training datasets. For chromosomal regions, a large 
number of somatic mutations were indicated by the 
analysis (Table 2). The differential expression of sev-
eral consecutive regions indicated that larger regions 
are lost or gained. Validation in the test set resulted in 
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Table 2. Differentially expressed chromosomal regions.

Basal Erbb2 Lum A Lum B Normal
Up-regulated
1P34, 1P32, 1P22 
2P24, 2P21, 2P16 
3Q21, 3Q25, 3Q27, 3Q29 
6P21, 6Q23 
7P15, 7Q32 
10P15 
11Q22 
12P13, 12P12 
16Q13, 16Q24 
21Q22 
XQ26, XQ28

2P11, 2Q37 
6Q21 
9Q34 
12Q12 
16Q13 
17Q11, 17Q12,  
17Q21, 17Q23 
22Q11, 22Q13

1P33, 1P31, 1Q41 
3P22, 3P21, 3P14 
5Q11, 5Q13 
8P22, 8P21 
14Q24 
10Q23, 10Q25 
17P11

4P16 
6P22 
8P11, 8Q22, 8Q24 
12Q13, 12Q24 
16P13, 16P12, 16P11 
17Q21, 17Q22, 17Q23,  
17Q24, 17Q25 
20P11, 20Q11, 20Q12,  
20Q13

2Q32 
3P22 
5Q13, 5Q32 
7P15 
8P23, 8P21  
9Q21 
11Q23 
15Q11 
XQ13 
XQ22

Down-regulated
3P22, 3P21, 3P14 
4P16 
5Q11, 5Q13, 5Q14, 5Q31 
9Q32 
10Q23, 10Q25 
12Q12, 12Q13, 12Q22 
14Q21, 14Q23, 14Q24,  
14Q32 
15Q22 
16P13, 16P12 
17P11, 17Q21, 17Q24

1P21 
3P24 
8P22, 8P21 
9P24 
17P11 
18Q12, 18Q21

2P25, 2P12 
3Q27 
6P21 
8Q22, 8Q24 
10P15 
16Q13, 16Q22, 16Q24 
17Q11, 17Q23, 17Q25 
20P13, 20Q11, 20Q13 
22Q11, 22Q13 
XQ28

1P31, 1P22 
2Q32 
4P15, 4Q21 
5P13 
6P25, 6Q21, 6Q22, 6Q23 
7P15, 7Q31 
9P24, 9Q21 
11Q22, 11Q23, 11Q24

1Q23, 1Q41, 1Q42 
2P12 
6P22 
8P12, 8Q22, 8Q24 
10Q21 
17Q25 
20Q13

Note: Gene sets in bold were also significant in test data set (Mainz).

34% of regions being significant (highlighted in bold 
in Table 2).

Pathway analysis using predefined canonical path-
ways also indicated large differences between the 
subgroups (Table  3). Of these pathways, 43% were 
also identified by GSEA analysis in the independent 
Mainz dataset (highlighted in bold in Table 3).

Chromosomal regions and pathways 
involved in metastasis within subgroups
The above analyses indicate that molecular subtypes 
significantly account for the metastasis of breast can-
cer, and that the subtypes are associated with very 
different biological pathways and somatic mutations. 
To identify the metastatic mechanisms that extend 
beyond the molecular subtypes, we performed path-
way and chromosomal aberration analyses within each 
subtype, comparing tumors from patients that experi-
enced metastasis to tumors from patients that did not 
experience metastasis within the follow-up period. The 
data were again split into a training set including six 
datasets, and the two most recently published datasets 
(Mainz and TRANSBIG-S) were kept for validation 
purposes. The training set was composed of datasets 

with different clinical characteristics and treatment 
statuses of the patients and performed with different 
microarray platforms.  In contrast, the test sets (Mainz 
and TRANSBIG-S) contained data from node-nega-
tive patients not receiving adjuvant medical treatment; 
all analyses were performed with Affymetrix HG133A 
chips. The GSEA meta-analysis in the training set 
resulted in the identification of nine significant regions 
and pathways (Table S1). Using GSEA for the valida-
tion of these regions and pathways in the Mainz data-
set did not result in any significant gene sets, probably 
due to the limited sample size when comparing tumors 
with poor and good outcomes within subtypes (data 
not shown).

In order to validate the identified regions and path-
ways with a different method, we investigated whether 
the overall expression level in each gene set could 
be used as a prognostic marker in survival analysis. 
This would also allow us to compare the expression 
of regions or pathways between single tumors from 
all datasets. Furthermore, utilizing survival informa-
tion might help to improve the power of the valida-
tion, and combining datasets would also increase 
the power. Datasets were preprocessed and combined 
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using only genes measured on all chips. The expres-
sion level of all genes in each region or pathway 
identified previously was implemented in the region 
scores. This method is different from the GSEA meta-
analysis described earlier because only genes repre-
sented on all platforms were included in the analysis. 
In 280 basal-like tumors from the training sets, this 
different approach supported a high level of expres-
sion of 5q14 (Fig. 2A) and a low level of expression 
of tumor necrosis factor receptor (TNFR)2 (Fig. 2E) 
as predictors of poor outcomes. For ERBB2 tumors, 
the low expression of 5q33 (borderline significant; 
Fig. 3A) and interleukin (IL)-12 (Fig. 3E) were asso-
ciated with poor outcomes, which was in agreement 
with the GSEA meta-analysis. The remaining five 
pathways and regions identified by the GSEA meta-
analysis were not significant in the survival analysis 
(Table S1).

For the validation of metastatic gene sets in inde-
pendent datasets, two test sets were used. The Mainz 
data set, where 41 basal-like tumors were identified by 
single-sample prediction, was used for the validation 
of the metastatic mechanisms of basal-like tumors. 
However, only 20 ERBB2 tumors were identified 
by single-sample prediction in the Mainz dataset. To 
increase the sample size of ERBB2-positive tumors, 
the TRANSBIG-S dataset was included. The identifi-
cation of molecular subtypes failed in this dataset, but 
ERBB2 status was determined from ERBB2 expres-
sion in both datasets. The very unbalanced distribu-
tion of ERBB2 and the coregulation of GRB7 located 
closely to ERBB2 supported this method for the clas-
sification of ERBB2 amplification (Fig. S1).

For basal-like tumors, the disadvantage of high 
5q14 expression was validated by the survival analy-
sis in the test set (Fig.  2C). To investigate whether 
this prognostic effect of 5q14 aberration was spe-
cific for basal-like tumors, the prognostic perfor-
mance was also examined in the remaining tumors 
not belonging to this subgroup. This demonstrated no 
prognostic impact of 5q14 aberrations in the training 
set (Fig. 2B) but, surprisingly, a borderline significant 
opposite effect was found in the test set (Fig. 2D).

The prognostic impact of the TNFR2 pathway iden-
tified in the GSEA meta-analysis and in the survival 
analysis in the training set (Fig.  2E) was also sup-
ported by a survival analysis in the test set (Fig. 2G). 
However, this pathway was also significant in 

nonbasal-like tumors in the training set, but with 
smaller separation of the groups (ie, lower hazard 
ratios [Fig. 2F], and the pathway was only borderline 
significant among the nonbasal-like tumors in the test 
set [Fig. 2H]; in addition, a lower hazard ratio was 
observed among nonbasal-like tumors when com-
pared to the basal-like tumors).

For ERBB2 tumors, the low expression of 5q33 
(Fig.  3C) and IL-12 (Fig.  3G) was also associated 
with poor outcomes in the test set. Interestingly, these 
mechanisms were specific for tumors with high levels 
of expression of ERBB2 (Fig. 3B, D, F, and H).

To identify single metastasis candidate genes in the 
two 5q regions, we compared the expression of metas-
tasizing and non-metastasizing tumors at single gene 
level. For 5q14, one gene, HAPLN1, was strongly and 
differentially regulated (Fig. S2), suggesting that this 
is a plausibly causal metastasis gene. No single gene 
was strongly and differentially expressed at 5q33 
(data not shown).

Discussion
We have conducted a meta-analysis of the tumor gene 
expression data and identified chromosomal regions 
and pathways that were strongly associated with the 
molecular subtypes of breast cancer. Furthermore, 
some mechanisms were found to be associated with 
metastasis within the different subgroups. Our results 
demonstrate that these mechanisms are reflected 
in the overall gene expression of the chromosomal 
region and the pathway gene sets, which is in agree-
ment with our hypotheses.

A major finding is the large number of chromosomal 
regions and pathways associated with the molecular 
subtypes that were found. This is in agreement with 
the supposedly different cellular origins of basal-
like and luminal-like tumors. The universal nature 
of the subtypes is supported by several studies9,10 
that have used different unsupervised methods to 
identify the subtypes of breast tumors that resemble 
the subgroups reported by Sørlie et  al.6 ER status, 
ERBB2 status, and proliferation level are believed to 
be major characteristics of the molecular subtypes. 
Our results support the crucial impact of the follow-
ing mechanisms: 17q amplification in ERBB2-like 
tumors (Table 2); estrogen signaling in luminal can-
cers (CARM_ER and ESTROGEN_SIGNALING; 
Table  3); and elevated cell cycle in basal-like and 
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Abbreviation: TNFR, tumor necrosis factor receptor.
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luminal B tumors. By comparing metastasizing and 
nonmetastasizing tumors, without stratifying for sub-
types, we have previously identified the chromosomal 
regions and pathways involved in the metastasis of 
breast cancer.11,12 The identified gene sets strongly 
overlap with the gene sets that were differentially 
expressed between molecular subtypes, indicating 
that the molecular subtypes account for a major-
ity of the metastasis-associated mechanisms. This is 
strongly supported by the very few metastasis-linked 
mechanisms we have identified within the molecu-
lar subgroups (two regions and two pathways), even 
though the cut-off for the false discovery rate (FDR) 
was 0.05 for intra-subgroup analysis and 0.01 for the 
between-subgroup analysis. However, the consider-
ably smaller sample size in the within-group analysis 
may bias this conclusion.

Our within-subgroups analysis identified somatic 
mutations, which were located at different loci on 5q, 
and which had opposite prognostic effects: high lev-
els of expression of 5q14 were associated with poor 
outcomes in basal-like cancer, whereas lower levels 
of expression of 5q33 were associated with poor out-
comes among patients with ERBB2-amplified breast 
tumors. The dual role of 5q aberrations is supported 
by a few previous publications that used compara-
tive genome hybridization; Friedrich et al13 reported 
higher frequency of 5q23 losses among cases with 
distant metastasis and Karlsson et  al14 showed that 
poorer outcomes were associated with 5q31∼qter gain 
for cases with ER-negative tumors. Callaghan et al15 
reported a higher frequency of allelic imbalance at 
5q21  in patients with lymph node metastasis, indi-
rectly supporting the prognostic significance of this 
region. However, these studies included few patients 
and did not subdivide tumors according to basal/
ERBB2  status, hampering the conclusion for these 
aberrations that, according to our results, are specific 
for basal-like and ERBB2 tumors, respectively.

Our method identifies regions by measuring the 
differential expression of genes, but it does not (in 
principle) determine whether the DNA copy number 
increases in one outcome group or decreases in the 
opposite group. However, low expression of 5q14 
and its surrounding region characterize basal-like 
tumors according to our analysis, which compared 
molecular subtypes (Table 2). This is also supported 
by Adélaïde et  al,16 who used array comparative 

genomic hybridization (aCGH) and reported 5q loss 
to be frequent in basal-like tumors. This indicates that 
the loss of 5q14 is common in basal-like tumors, but 
that patients with basal-like tumors retaining 5q14 
have a worse prognosis. This might be explained by 
the presence of a tumor suppressor gene involved in 
basal-like cancer development, and another gene pro-
moting metastasis—both of which were located in the 
region. A similar effect has previously been observed 
for 16q loss in breast cancer.12,17 We pinpointed one 
gene, hyaluronan, and proteoglycan link protein 1 
(HAPLN1) in the 5q14 region, which had a strong 
association with the metastasis of basal-like cancers, 
making this a relevant candidate gene that may be a 
causal factor in the metastasis of basal-like tumors. 
HAPLN1 is involved in the stabilization of hyaluro-
nan and vesican. An interaction of hyaluronan and its 
receptor (CD44) induces signaling events that pro-
mote cell growth, migration, and metastasis,18 mak-
ing genes in this pathway relevant.

ERBB2-like tumors are not characterized by 5q 
aberrations, as compared to other subtypes (Table 2), 
but our results indicate that low expression of the 
5q33 region is associated with poor outcomes. This 
may be the result of 5q33 loss in the poor progno-
sis group, or gain of the region in the good prognosis 
group. However, this cannot be determined from the 
present results.

Many pathways have previously been linked to 
metastasis; however, investigations of the metastatic 
pathways within different subtypes of breast cancer 
are sparse, as will be discussed in the following. We 
identified the high expression of the TNFR2 pathway 
as an indicator of good prognosis in basal-like can-
cers. TNFR2 is a receptor with equal affinity for tumor 
necrosis factor (TNF)a and TNFb. Both of these are 
produced by activated lymphocytes and can be toxic 
to many tumor types. Nevertheless, for micropapillary 
breast carcinomas, overexpression of TNFR2 has been 
linked with higher incidence of lymph node metasta-
sis, which may conflict with our results.19 However, 
our finding that the TNFR2  metagene is associated 
with survival in basal-like and nonbasal-like cancers 
in both the training set and test set (borderline sig-
nificance for the nonbasal-like tumors in the test set) 
strongly indicate the prognostic disadvantage of low 
TNFR2 pathway expression. According to our results 
(Table  3), the TNFR2 pathway is not differentially 
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expressed between subgroups. However, the survival 
analysis within subtypes show smaller separations of 
high and low TNFR2 score curves (ie, lower hazard 
ratios for nonbasal-like tumors compared to basal-
like tumors; Fig.  2), indicating stronger metastatic 
prevention by the pathway in basal-like tumors. This 
is also supported by the GSEA meta-analysis that 
exclusively identified TNFR2 only among basal-like 
carcinomas. To our knowledge, no previous studies 
have described a prognostic influence of TNFR2/
TNF signaling among basal-like breast tumors.

The other pathway, IL-12, identified within the 
ERBB2  subgroup is also associated with good 
outcomes. This is supported by studies showing 
that IL-12 activates natural killer cells and enhances 
their ability to kill tumor cell lines that are treated 
with herceptin20 However, no benefit was observed 
by adding IL-12 to the herceptin treatment of breast 
cancer patients in a small Phase 1 study.21 None of the 
patients in our analysis received herceptin, indicat-
ing that IL-12 signaling has antimetastatic potential, 
independent of herceptin treatment.

Both IL-12 and TNFR2 signaling are involved in 
immune activation, suggesting that lymphocyte infil-
tration is beneficial for patients with ER-negative 
tumors. This is supported by pathological investiga-
tions conducted among subgroups of patients. For 
instance, Ménard et  al22 reported selectively higher 
survival rates in young breast cancer patients when 
they had lymphocyte infiltrated tumors, and Aaltomaa 
et  al23 described the benefit of lymphocyte infiltra-
tion among patients with rapid proliferating tumors. 
Several recent publications using gene expression 
datasets have also identified immune-related gene 
signatures that distinguish groups with different 
outcomes. Schmidt et al9 used hierarchical clustering 
to identify a B-cell signature with a prognostic impact 
among high-proliferating tumors. Teschendorff et al10 
focused their analysis on ER-negative tumors and used 
an unsupervised clustering technique to identify five 
subclusters. Among tumors with normal ERBB2 sta-
tus, they found an immune response gene cluster that 
was associated with survival. Alexe et al24 also used 
unsupervised clustering of ERBB2-positive tumors 
and reported a subtype with upregulated lymphocyte 
infiltration signal and improved survival. Rody et al25 
clustered immune-related genes and identified seven 
different gene clusters that were shown to represent 

different immune cell types. A T-cell cluster was asso-
ciated with survival rates among ER-negative tumors 
with and without ERBB2 amplification. These stud-
ies have used unsupervised clustering techniques 
and identified subgroups of patients with different 
rates of survival. Annotation of genes in these pat-
terns showed an overrepresentation of immune 
system-related genes. The overall conclusion from 
these studies is that immune response prevents metas-
tasis among patients with ER-negative tumors with 
or without ERBB2 amplification. However, different 
mechanisms in tumor cells and immune cells might 
result in very different outcomes. Elucidation of the 
most important mechanisms by the global pathway 
analysis of outcomes within subtypes has not been 
performed previously. Desmedt et  al26 examined a 
limited set of seven gene modules based on key pro-
cesses in breast cancer. Modules were defined as 
groups of genes that are correlated with the expres-
sion of seven key candidate genes. One of these key 
mechanisms, the STAT1 immune response module, 
was associated with the survival of patients with 
ER-/ERBB2- as well as ER-/ERBB2+ tumors. In a 
method that differed greatly from this approach, we 
analyzed a large collection of knowledge-generated 
canonical pathways and genome regions to screen for 
biological processes involved in metastasis within 
subgroups. In agreement with abovementioned stud-
ies, we identified immune related pathways. However, 
in addition to the previous studies, our results not only 
identified a broad immune response, but they also 
pointed directly at specific signaling pathways, sug-
gesting key roles of metastasis prevention for these 
cytokine pathways. Furthermore, the identified mech-
anisms are specifically associated to certain subtypes, 
suggesting different metastasis-related mechanisms 
depending on ERBB2 status.

Our comparison of molecular subtypes has iden-
tified comprehensive differences in pathways and 
genomic aberrations (Tables 2 and 3). Several of the 
somatic aberrations are supported by previous studies 
using aCGH to compare relevant groups. Bergamaschi 
et al27 examined 89 tumors by gene expression pro-
filing to identify four molecular subtypes; Adélaïde 
et al16 compared 44 basal and 49 luminal tumors via 
aCGH, and a recent large study28 performed a meta-
analysis of 773 tumors. The results from these studies 
confirmed many of the regions identified in the pres-
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ent investigation. For basal-like tumors, their results 
supported the extensive loss of 5q, as well as the loss 
of 10q23, 12q22, 14q21, 14q23, 15q22, and the gain 
of 3q25-27, 6p21, 7q32, 10p15, 12p13-12, and 21q22. 
For luminal A tumors, they also observed 1q41 and 
8p22-21 gains and a 16q loss. For luminal B tumors, 
gains of 8q22-24, 20p11, and 20q13 and a loss of 11q 
were in agreement with our findings. Finally, 8p22-21 
loss in erb2-amplified tumors was also seen by The 
Cancer Genome Atlas Network.28

Some studies have characterized ER-positive and 
ER-negative tumors by aCGH (Loo et al29) or by con-
ventional CGH.30 Although this is a more rough dif-
ferentiation using only two subgroups, many of their 
results were in agreement with our findings. Loo et al29 
identified a gain of 3q25-27 and losses of 3p21, 4p16, 
5q, 10q25, 14q32, 16p13, and 17p11 in ER-negative 
tumors, which is in agreement with our findings for 
basal-like tumors. Among the ER-negative tumors, 
they also identified a gain of 17q12 and losses of 
8p21 and 17p11, supporting our findings for ERBB2-
like tumors. For receptor-positive tumors, a gain of 
16p11-13 and a loss of 16q13-24 was in agreement 
with our results for luminal tumors.

Altogether, many of the regions we have identified 
are supported by other studies measuring the DNA 
copy number by more direct techniques, as compared 
to our indirect expression-based method. This strongly 
supports our conclusions and also justifies using this 
approach for mechanisms within subgroups. We iden-
tified many regional aberrations differing between 
subgroups that have not been reported before. This 
may be explained by our different approach (includ-
ing using gene expression data instead of directly 
measuring DNA copy numbers, for example, by 
aCGH). This has allowed us to considerably increase 
the sample size because only few small aCGH data-
sets with relevant information are available.

We have refined the data included in our analysis to 
obtain rates of distant metastasis or death from breast 
cancer as the outcome, but for one dataset (Hu), only 
time to relapse was available. However, this only 
introduces a minor bias because the majority of the 
typically observed relapse events included metasta-
sis, and because only one of the six training datasets 
had this outcome definition. Another potential bias is 
the inclusion of patients that have received adjuvant 
treatment, which will bias the conclusion about metas-

tasis biology because some patients will change their 
outcome status because of the treatment. However, 
the fraction of patients that respond to treatment and 
experience good outcomes as a consequence of treat-
ment will typically be below 10% (adjuvant online, 
http://www.adjuvantonline.com), meaning that this 
will also be a minor bias. A varying fraction of the 
tumors in the individual datasets have disseminated 
cells to the lymph nodes. The classification of lymph 
node-positive patients without recurrence as non-
metastasis may be controversial. This may bias the 
results towards the metastatic mechanisms following 
primary spread to the lymph node. We accepted these 
biases in the study design to obtain a broad representa-
tion of tumor subtypes; the exclusion of lymph node-
positive and treated patients would reduce the number 
of ERBB2-positive and basal-like tumors markedly, 
resulting in a lack of power in these groups.

Combining the datasets by standardization, as we 
have done for the survival analysis, assumes that there 
are comparable characteristics in the included datasets. 
The varying fraction of node-positive tumors violates 
this assumption. However, this results in a more con-
servative test of gene sets in the survival analysis. 
This may explain why only four of the nine gene sets 
identified in the meta-analysis were significant in the 
survival analysis of the training set. Furthermore, 
these four gene sets are all significant in the test set, 
even though the sample size is considerably smaller. 
This is in agreement with the better separation of sur-
vival curves and the higher hazard ratios in the test set 
(Figs. 2C, G, 3C, and G). This may be explained by 
the very homogeneous test set, which included only 
node-negative samples from untreated patients per-
formed with the same microarray platform.

Conclusion
By performing a pathway meta-analysis, we have 
demonstrated that the previously described molecu-
lar subtypes account for the majority of metastatic 
mechanisms in breast cancer. However, by perform-
ing the analysis within these subgroups we have iden-
tified two different regions on chromosome 5q that 
impact metastasis among patients with basal-like and 
ERBB2-amplified tumors, respectively. We suggest 
one gene, HAPLN1 at 5q14, which may potentially be 
a metastasis gene for basal-like tumors. The impact 
of these regions needs to be validated in future large 
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studies using more direct measures of the DNA copy 
number (for example, aCGH). Furthermore, the role 
of HAPLN1 and other potential driver genes needs to 
be addressed in further functional studies. We have 
also identified two pathways, TNFR2 and IL-12, 
which are involved in the metastasis of basal-like 
and ERBB2-amplified breast cancer, respectively. 
The molecular subgroups already form the basis for 
different treatments (such as trastuzumab, which is 
used against ERBB2-amplified tumors); however, 
future treatment protocols will aim to establish even 
more individualized strategies. Our study has iden-
tified genomic regions, single genes, and pathways 
that may be potential targets for future drug design 
for certain subgroups of patients.

Methods
Data sets
Eight publicly available datasets examining gene 
expression at the ribonucleic acid (RNA) level in 
primary tumors were included in the analysis. These 
studies were performed with different platforms, dif-
ferent populations, and so on, as depicted in Table 1. 
The outcome used is distant metastasis or death from 
breast cancer, which is nearly always caused by dis-
tant metastasis. Only one data set (Hu) included local 
and regional recurrences. However, nonmetastatic 
relapse constitutes a minority of clinical cohorts. For 
the TRANSBIG dataset, samples from Sweden were 
removed to avoid sample overlap with the Uppsala 
and Stockholm datasets. The resulting dataset is 
termed TRANSBIG-S.

The normalizations performed in the studies were 
retained because the authors found these methods 
optimal for the datasets, and because the pathway 
analysis was performed separately in each dataset.

Molecular subtypes
To identify the molecular subtypes, a single sample 
predictor was applied as described.8 Prior to this, data 
were preprocessed within each dataset as follows. 
First, probe sets with maximal expression values 
were selected whenever more probe sets recognized 
the same gene using the “collapse to gene symbol” 
function in GSEA. Data were then column standard-
ized for each sample by subtracting the mean expres-
sion of all genes in that sample from each genes 
expression value, and dividing by the standard devia-

tion for that sample. Next, row median centering was 
performed within each dataset by subtracting the 
median expression for a gene across samples from all 
expression values for that gene. Pearson’s correlation 
coefficient between each sample and each of the five 
centroids (defined by Hu et al8) were calculated, and 
the sample was assigned the subtype with highest cor-
relation coefficient. If the correlation coefficient was 
below 0.1 for any of the centroids, the sample was not 
assigned a subtype. Using this method, the samples 
were forced into the centroids defined by Hu et al.8

GSEA analysis of pathways and genome 
regions associated with molecular 
subtypes
To analyze genome regions and pathways that were 
differentially expressed between the subtypes, we 
compared one subtype at a time with all other tumors. 
Only the seven datasets with successfully identified 
molecular subtypes were included in the analysis. 
For this analysis, we used original data (ie, not stan-
dardized). GSEA version 2.031 was used with 639 
curated gene sets representing individual pathways. 
These pathway gene sets are adopted from KEGG 
(www.genome.ad.jp/KEGG), GenMapp (http://
www.genmapp.org), Biocarta (www.biocarta.com), 
and so on, and gathered in the Molecular Signature 
Database implemented in GSEA. Furthermore, we 
applied the analysis to positional gene sets delim-
ited by cytobands downloaded from the Molecular 
Signature Database (http://www.broadinstitute.org/
gsea/msigdb/index.jsp).

The GSEA program ranks genes according to a 
signal-to-noise value:

	 (XA - XB)/(sA + sB),	 (1)

where X is the mean and s is the standard devia-
tion for the two classes A and B (one subtype and 
the remaining tumors, respectively). When several 
probes recognized the same gene, the probe with 
the maximum expression value was extracted using 
the “collapse to gene set” function. Gene sets rep-
resented by less than 15  genes in a dataset were 
excluded. The output from GSEA is an enrich-
ment score, describing the imbalance in the dis-
tribution of ranks of gene expression in each gene 
set between the compared groups. The enrichment 
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score is normalized according to the size of the gene 
sets. Then, the gene sets were ranked according to 
the normalized enrichment score, with gene sets 
upregulated in the subgroup of interest on the top 
and downregulated gene sets at the bottom.

GSEA meta-analysis
The ranked lists of gene sets for each analysis 
generated by GSEA from the seven datasets were 
integrated so that only gene sets represented in the 
output from all datasets were included. The initial 
639 pathway gene sets were reduced to 347  gene 
sets passing the threshold (at least 15 genes in gene 
sets) in all datasets. For the analysis of chromo-
somal regions, 386 chromosomal gene sets from 
the Molecular Signature Database were reduced to 
188 gene sets.

For each dataset, individual gene sets were assigned 
a ranking value from 1 to the maximum number of 
gene sets, according to the ranking performed by 
GSEA. The mean ranking value for each gene set was 
calculated across the datasets and, finally, the gene 
sets were ranked according to this value.

Our null hypothesis is that the expressions of genes 
in the pathway gene sets are unrelated to the molecu-
lar subtype. This means that the ranking value for a 
given gene set in a given dataset is expected to be a 
random value between 1 and the maximum number 
of gene sets analyzed. To simulate the distribution 
of the mean ranking values across the six test data-
sets assuming the null hypothesis, a random drawing 
of the six ranking values was performed 106 times, 
and the mean value was calculated each time. A null 
distribution of the mean ranking values was gener-
ated from these results. To test the significance for a 
given gene set, the observed mean ranking value was 
compared to the null distribution. To fulfill the null 
hypothesis, an observed mean ranking value should 
be within 95% of the interval of the null distribution. 
Correction for multiple testing was performed by cal-
culating the FDR, controlling the expected proportion 
of incorrectly rejected null hypotheses. These calcu-
lations were performed in the R environment (http://
www.bioconductor.org). Gene sets with FDR values 
below 0.01 were considered significant. Validation of 
the identified gene sets in the test set (Mainz data set) 
was performed by GSEA analysis using a nominal 
P-value.

Mechanisms associated with metastasis 
among each molecular subtype
To identify the chromosomal regions and pathways 
involved in metastasis within the molecular subtypes, 
GSEA analysis was performed as described above. 
Once again, genes were ranked according to the 
signal-to-noise value:

	 (XA - XB)/(sA + sB),	 (2)

except that the compared groups were now tumors 
from patients that developed metastasis (class A) and 
tumors from patients that did not develop metastasis 
(class B). This analysis was performed within each 
subtype in each dataset, and the meta-analysis was 
applied to identify gene sets concordantly deregu-
lated in metastasizing tumors across datasets for each 
molecular subtype. Again, 347 pathway gene sets 
and 188 positional gene sets passed the inclusion 
threshold. FDR values below 0.05 were considered 
significant.

Survival analysis
The above GSEA analyses were performed indepen-
dently in each data set. To get a measure of the overall 
expression level for all genes in an identified region 
or pathway for each tumor—and in order to be able to 
compare these values across datasets—we calculated 
the region scores as follows. We started out with nor-
malized data. First, probe sets with maximal expres-
sion values were selected whenever additional probe 
sets recognized the same gene using the “collapse to 
gene symbol” function in GSEA. Then, probe sets 
recognizing the same genes from the three different 
platforms were extracted using the gene symbol as 
an identifier, resulting in 6,654 annotated genes. Data 
were then row standardized within each dataset by 
subtracting the mean expression from each expression 
value for each gene, and dividing by the standard devi-
ation for that gene. Finally, the standardized datasets 
were combined to a training set consisting of 1,239 
tumors and a test set containing 347 tumors. The com-
bination of row standardized datasets assumes that 
the sample characteristics (such as the clinical param-
eters) are comparable between the datasets. This intro-
duced a bias in the training set because the dataset 
contained a variable fraction of lymph node-positive 
samples and patients receiving adjuvant treatment. 
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However, we retained the node-positive samples to 
obtain a reasonable number of ERBB2 and basal-like 
tumors. Patients with these tumors are more likely to 
have lymph node metastasis and are more likely to 
receive adjuvant medical treatment.

For the chromosomal regions and pathways, we 
calculated a score for each sample as the mean stan-
dardized expression values for all genes in the gene 
set. The score is thus a continuous variable repre-
senting the overall expression level in the region or 
pathway. The region score is related to the DNA copy 
number. However, using gene expression data alone, 
it is not possible to define a cut-off region in the score 
between different DNA copy numbers.

The association of region and pathway scores to 
survival was analyzed by Kaplan–Meyer plots and a 
log-rank test using surv and pchisq packages, respec-
tively, in R. A high score (region score or pathway 
score) subset was defined as the third of samples 
having the highest score, and a low score subset 
included the third with the lowest score values. The 
middle third was excluded from the analysis. Haz-
ard ratios were calculated by fitting a Cox model to 
the data, assuming a constant hazard ratio over time. 
The P-values were calculated using a log-rank test, 
with the null hypothesis postulating that there were 
no differences in survival between the groups.

Validation of regions and pathways 
involved in metastasis
Validation of prognostic gene sets was performed in 
the latest published datasets (Mainz, TRANSBIG-S). 
The patients in these datasets are all node-negative and 
have not received adjuvant medical treatment; both 
studies were performed with Affymetrix HG133A 
chips minimizing bias from the treatment effect, clini-
cal differences, and platform differences. For the vali-
dation of metastatic mechanisms in basal-like tumors, 
41 basal-like tumors from the Mainz data were used. 
TRANSBIG-S data where the identification of molec-
ular subtypes failed were excluded for that analysis. 
For ERBB2-amplified tumors, the number in the 
Mainz dataset was too small, and the TRANSBIG-
S dataset was included, resulting in 347  samples. 
Instead of using single-sample prediction, we classi-
fied tumor ERBB2 status as 20% of tumors with the 
highest ERBB2 expression. The cut-off was set to 

20% of tumors, because this resembles the frequency 
of ERBB2 amplification in breast cancer.

The region and pathway scores were calculated 
as described for the training set described above, and 
once again, the extreme groups (one-third of the high-
est scores and one-third of the lowest scores) were 
compared by survival analysis.
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Figure S1. Distribution of ERBB2 and GRB7 expression in test set.
Notes: For validation of metastatic mechanisms in ERBB2 positive tumors, a test set including TRANSBIC-S and Mainz was used resulting in a total of 
347 samples. Instead of using single sample prediction, we classified tumor ERBB2 status as 20% of tumors with highest ERBB2 expression.

Table S1. GSEA meta-analysis within subtypes and survival analysis in training sets.

Direction in  
metastasis

Region or pathway Mean ranking  
value

Max ranking  
value

P-value fdr Survival analysis 
P-value

Basal
  Up 5q14 26.8 188 0.0004 0.05 0.007

8q24 28.2 188 0.0005 0.05 0.17
  Down TNFR2 290 347 0.0002 0.04 0.009
ERBB2
  Up 16Q22 27.4 188 0.0004 0.05 0.15

Xq22 28.4 188 0.0005 0.05 0.98
Fructose_mannose 32.5 347 0.00004 0.01 0.32

  Down 5q33 165 188 0.0002 0.04 0.08
IL-12 303 347 0.0002 0.04 0.004
GPCRDB 313 347 0.00006 0.02 0.15
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