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Abstract
Synchronization is crucial to wireless sensor networks. Recently a pulse-coupled synchronization
strategy that emulates biological pulse-coupled agents has been used to achieve this goal. We
propose to optimize the phase response function such that synchronization rate is maximized.
Since the synchronization rate is increased independently of transmission power, energy
consumption is reduced, hence extending the life of battery-powered sensor networks. Comparison
with existing phase response functions confirms the effectiveness of the method.
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I. Introduction
Pulse-coupled oscillators (PCOs) have received increased attention in past decades. It is an
effective tool to describe many biological synchronization phenomena such as the flashing
of fireflies, the contraction of cardiac cells and the firing of neurons [1], [2]. Due to its
importance in biological oscillations, PCOs have been extensively studied in the life science
literature [3].

Recently, the PCO based synchronization strategy has been applied to wireless sensor
networks. In pulse-coupled synchronization strategy, each sensor marks its individual time
slot starting point by sending a pulse, and by adjusting its state upon receiving a pulse from
adjacent nodes, the whole network can be synchronized [4], [5], [6]. Since PCOs can be
synchronized via pulse transmitting instead of packet exchanging, it avoids wasting the
limited computational capability of sensor nodes which is required by packet based
synchronization algorithms. Moreover, the pulse-coupled synchronization strategy does not
require any memory to store the information of neighboring nodes, which is of great appeal
to low cost sensor nodes. Therefore, the PCO based synchronization scheme has received
increased attention in the communication community recently. For example, the authors in
[5] discussed the implementation of PCOs in a wide band network, the authors in [7]
verified the effectiveness of PCO based synchronization strategy using a TinyOS simulator.
The authors in [8] and [9] discussed the scalability of pulse-coupled strategy when used to
synchronize sensor networks. The authors in [10] and [11] gave the maximal allowable
refractory period of PCOs when applied to synchronize wireless sensor networks.

In PCOs, oscillators interact in a pulsatile rather than a smooth manner. This effect can be
captured as a phase response function [12]. The phase response function tabulates the shift
in the phase of an oscillation induced by a perturbation as a function of the phase at which
the perturbation is received. It has been proven to play an important role in the
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synchronization process [3], [12], [13], [14], [15], [16]. However, in published applications
of pulse-coupled strategies to wireless sensor network synchronization, the phase response
function is not strategically designed. We propose to optimize the phase response function
such that the synchronization rate is maximized. Given that energy consumption in the
synchronization process is determined by the product of transmission power and time to
synchronization, which correspond to coupling strength and synchronization rate,
respectively, our optimal phase response function saves the energy consumed in the
synchronization process since it is independent of coupling strength. This has great
significance in wireless sensor networks, where sensors are typically battery driven.

II. Problem formulation and model transformation
Consider N pulse-coupled oscillators ẋi = fi(xi) where fi is the dynamics and xi ∈ [0, 1] is the
state (i = 1, 2 …, N). When xi reaches 1, oscillator i fires (emits a pulse) and resets xi to 0.
When oscillator i receives a pulse from an adjacent oscillator (e.g., oscillator j), it shifts xi to
xi + l or 1, whichever is less, i.e., [2]

(1)

The shift in state can be modeled by a Dirac function δ(t), which is zero for all values of t

except t = 0 and satisfies . The coupled dynamics is given by [12]:

(2)

where aij ∈ {0, 1} denotes the effect of oscillator j on oscillator i: when xj reaches 1 (at tj),
oscillator j fires and resets xj to 0, and at the same time pulls oscillator i up by an amount
lai,j.

Remark 1
If ai,j is 0, then oscillator i is not affected by oscillator j.

Assumption 1
We assume that the interaction is bidirectional, i.e., ai,j = aj,i, which is common in wireless
networks [17]. We also assume that the interaction topology is connected, i.e., there is a
multi-hop path (i.e., a sequence with nonzero values ai,m1, am1,m2, …, amp−1,mp, amp,j) from
each node i to every other node j.

Assumption 2
We assume that the coupling is weak, i.e., l ≤ 1 [15].

Based on Assumption 2, (2) can be transformed into a phase model using phase reduction
techniques and phase averaging techniques [12], [15], [18]:

(3)

where θi ∈ [0, 2π) and wi denote the phase and natural frequency of oscillator i, respectively.
Q(−ϕ) = F(ϕ) is the phase response function as defined in Definition 1:
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Definition 1
[12] Phase response function F(ϕ) is the phase shift induced by a pulse under coupling
strength l = 1, i.e., F(ϕ) ≜ ϕnew − ϕ, with ϕnew and ϕ denote the respective phase after and
before pulsing perturbation under coupling strength l = 1. F(ϕ) is 2π-periodic.

Remark 2
The transformation from (2) to (3) is a standard practice in the study of weakly connected
PCOs and it is applicable to any limit-cycle oscillation function fi and fg [12]. The detailed
procedure has been well documented in [19], Chapter 9 of [15], and Chapter 10 of [12].

In all existing pulse-coupled synchronization strategies for wireless sensor networks, the
phase response function F(ϕ) (i.e., Q(−ϕ)) is not strategically designed. In the paper, we
propose to increase the synchronization rate of wireless sensor networks by exploiting the
design freedom in F(ϕ), more specifically, we are interested in the optimal form of F(ϕ) that
maximizes the synchronization rate (The synchronization rate determines energy
consumption in sensor network synchronization, and it is an important metric for many other
oscillator networks as well [20]). As shown in [14], advance-and-delay phase response
functions outperform advance-only phase response functions, so we make the following
assumption:

Assumption 3
F(ϕ) is odd, i.e., F(−ϕ) = −F(ϕ) holds, and thus Q(−ϕ) = −Q(ϕ) holds.

III. Optimal phase response function in the identical natural frequency case
When the natural frequencies are identical, i.e., w1 = w2 = … = wN = w, (3) reduces to

(4)

To find the phase response function that maximizes the synchronization rate, we first study
how the phase response function affects the synchronization rate. The result is detailed in
Theorem 1:

Theorem 1

For the oscillator network in (4), when  and  satisfy θmax −

θmin < π, if  holds for −π < ϕ < π, then the oscillators will synchronize, and the

synchronization rate is maximized when  is maximized.

Proof—Since the interaction is bidirectional and Q(ϕ) is an odd function, we have

 from (4), which leads to  where α is a constant. Hence, the

difference between θi and the mean value  can be represented by

. So phases θi synchronize if and only if all φi are identical.

From the definitions of φi, we have , and thus the phases synchronize if and only
if all φi are 0.
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Next we prove that φi will converge to 0 when  holds for −π < ϕ < π.

Substituting θi = wt + α + φi into (4) gives the dynamics of φi:

(5)

Define a Lyapunov function as , where Φ = [φ1, φ2, …, φN]T. V ≥ 0 will be 0 if
and only if all φi are zero, meaning that the network is synchronized.

Differentiating V along the trajectories of (5) yields

(6)

In (6), the initial value of φi − φj resides in (−π, π) since φi − φj = θi − θj and θmax − θmin < π

hold. From the assumption  on (−π, π), we have Q(ϕ) ≥ 0 on [0, π) and Q(ϕ) ≤ 0 on

(−π, 0]. Given that  and  satisfy 0 ≥ φj − φmax > −π and π >
φj − φmin ≥ 0, respectively, we have φ̇max ≤ 0 and φ̇min ≥ 0 from (5). Therefore, φmax − φmin
will always reside in [0, π) in its evolution, and hence, φi − φj in (6) always resides in (−π,

π), on which  holds. Given that the interaction topology ai,j is connected, it follows

that V̇ ≤ 0 holds and V ̇ = 0 implies the equality of all φi. Recall , so V̇ = 0 implies

Φ = 0. In other words, Φ ≠ 0 implies V ̇ < 0. Therefore, if  holds, V, and hence Φ,
will decay to 0, meaning that all θi will synchronize.

Next we proceed to consider the synchronization rate. The synchronization rate is
determined by the rate at which Φ decays to 0. To get the decay rate of Φ, we rewrite (6) as
follows:

(7)

with L constructed as follows: for i ≠ j, its (i, j)th element is , for i = j, its (i,

j)th element is . L can be regarded as a weighted Laplacian of the

interaction topology [21]. Hence when , L is positive semidefinite and the decay
rate of φi is given by the second smallest eigenvalue λ2(L) (note that since ΦT 1 = 0 holds for
1 ≜ [1, 1, …, 1]T, Φ is orthogonal to 1, which corresponds to L’s smallest eigenvalue 0
[21]). From the Courant-Weyl inequalities (see, e.g., Chapter 2 of [21]), we know λ2(L) is an

increasing function of any  and hence an increasing function of . So the

synchronization rate increases with , and the maximal synchronization rate is attained

when  is maximized.
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Remark 3
In Theorem 1, the phase difference needs to be less than π, this is because Q(ϕ)’s periodicity
and oddness give (5) non-in-phase equilibria, which prevent global convergence to
synchronization over the whole phase space [22] (Note that [2] and [7] have shown that for
some initial conditions–even with measure zero–, PCOs cannot be synchronized even under
all-to-all connection). Moreover, a less than π phase difference is practical in sensor
networks due to limited clock drift [7]. Furthermore, even if this is not satisfied, a simple
initial flood (cf. [23] for flooding algorithms) can bring all nodes to within a small phase
difference quickly [7].

Theorem 1 shows that by designing Q(ϕ), synchronization rate can be increased, even with
coupling strength l fixed. Next, we derive the optimal Q(ϕ) to maximize the synchronization
rate. The optimal phase response function solves the following optimization problem:

(8)

The constraints come from the assumption Q(ϕ) = F(−ϕ) = −F(ϕ) and the fact that under
unit coupling strength (l = 1), the phase after pulsing perturbation (i.e., ϕ + F(ϕ)) still resides
in the interval [0, 2π). It guarantees that F(ϕ) is a single-valued function.

The optimal phase response function that solves (8) is given in Theorem 2.

Theorem 2
For PCOs with identical natural frequencies and θmax − θmin < π, the optimal phase response
function F(ϕ) that maximizes the synchronization rate is given by

(9)

Proof—From Theorem 1, we need to prove that (9) maximizes  for −π < ϕ < π. Since

Q(ϕ) = F(−ϕ) is odd, we only need to prove that Q(x) maximizes  on 0 < ϕ < π.

For any 0 < ϕ < π, because ϕ is non-negative,  is maximized when Q(ϕ) is maximized.
Given that Q(ϕ) is constrained in (ϕ − 2π, ϕ] for any 0 < ϕ < π according to (8), we know
the optimal Q(ϕ) that maximizes the synchronization rate is given by Q(ϕ) = ϕ when 0 < ϕ <
π.

For ϕ = 0 (corresponding to φi = φj in the proof of Theorem 1), the value of Q(ϕ) does not
affect the synchronization rate since all φi are already synchronized. So Q(0) = 0 is adopted
to guarantee the continuity of Q(ϕ) and the stability of the synchronization manifold [5],
[12].

For ϕ = π, Q(π) = π is adopted to guarantee the continuity of Q(ϕ) on [0, π].

The optimal phase response function is visualized in Fig. 1.
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IV. Optimal phase response function in the non-identical natural frequency
case

When oscillators have non-identical natural frequencies, their phases may not be
synchronized [24]. In this section, we will show that their oscillating frequencies can be
synchronized under certain conditions and the synchronization rate can be maximized by
optimizing the phase response function. It is worth noting that frequency synchronization is
extremely beneficial for wireless communication since it enables the use of cooperative
diversity techniques such as distributed space-time codes [25]. It is also crucial for
collaborative communication systems in that it increases data throughput and robustness to
signal fading [26].

When natural frequencies are non-identical, the oscillators’ phase dynamics are given by (3).

Assumption 4
We assume that the natural frequencies wi are constant with respect to time.

Theorem 3
For the oscillator network in (3), when Assumption 4 holds, their oscillating frequencies

synchronize if  is positive for −2π < ϕ < 2π, and the synchronization rate is
maximized when Q′(ϕ) is maximized.

Proof—The oscillating frequency of oscillator i is ϑi ≜ θ̇i. As shown in (3), it is affected by
both natural frequency wi and inter-oscillator coupling. Differentiating (3) yields its
dynamics:

(10)

Since the interaction is bidirectional and Q′ is an even function (the derivative of an odd

function is an even function [18]), we have  from (10), which leads to

 where β is a constant. Hence, the difference between ϑi and the mean value

 can be represented by . Oscillating frequencies ϑi

synchronize if and only if all ξi are identical. From the definitions of ξi, we have ,
and thus the oscillating frequencies synchronize if and only if all ξi are 0.

Now we prove that ξi will converge to 0 when Q′(ϕ) > 0 holds for −2π < ϕ < 2π.

Substituting ϑi = β + ξi into (10) gives the dynamics of ξi:

(11)

Define a Lyapunov function as , where Ξ = [ξ1, ξ2, …, ξN]T. V ≥ 0 will be 0 if and
only if all ξi are 0, meaning that the oscillating frequencies ϑi = β + ξi are synchronized.

Similar to (6), differentiating V along the trajectories of (11) yields
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(12)

So we know when Q′(ϕ) is positive in (−2π, 2π) (the range of θi − θj) and the interaction
topology ai,j is connected, V̇ ≤ 0 holds, and V̇ = 0 implies that all ξi are identical. Recall that

, so V ̇ = 0 implies Ξ = 0. In other words, Ξ ≠ 0 implies V̇ < 0. Therefore, V, and
hence Ξ, will decay to 0, meaning that the oscillating frequencies ϑi = θ̇i will synchronize.

To get the synchronization rate of oscillating frequencies, we rewrite (12) as follows:

(13)

with M constructed as follows: for i ≠ j, its (i, j)th element is − lai,jQ′(θi − θj), for i = j, its (i,

j)th element is . M can be regarded as a weighted Laplacian of the
interaction topology [21]. Hence when Q′(ϕ) > 0, M is positive semidefinite and the decay
rate of ξi is given by the second smallest eigenvalue λ2(M) (note that since ΞT 1 = 0, Ξ is
orthogonal to 1, which corresponds to M’s smallest eigenvalue 0 [21]). From the Courant-
Weyl inequalities (see, e.g., Chapter 2 of [21]), we know λ2(M) is an increasing function of
any lai,jQ′(θi − θj) and hence an increasing function of Q′(ϕ). Therefore, the rate of
frequency synchronization increases with an increase in Q′(ϕ), and it is maximized when Q′
(ϕ) is maximized.

Remark 4
Note that θi − θj and hence Q′(θi − θj) in (12) keep changing with time if oscillating
frequencies are not synchronized, so if Q′(ϕ) = 0 holds for some single ϕ (at which V̇ = 0), V
will not be retained at this point and can still converge to 0, hence ϑi will still synchronize.

Similar to Sec. III, by optimizing the phase response function, we can maximize the rate of
frequency synchronization even with coupling strengths fixed, hence we can reduce energy
consumption in synchronization. Since the algebraic derivation used in the preceding section
cannot be used anymore, we propose to solve the following optimization problem:

(14)

where C is a constant. The constraint in (14) is used to normalize the phase response
function.

Eqn. (14) can be considered as a variational problem minimizing the functional form

(15)

According to Euler-Lagrange equation, the optimal Q(ϕ) satisfies

(16)

Substituting (Q(ϕ), ϕ) in (15) into (16) yields
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Therefore, the optimal Q(ϕ) has a form of

where a1 and a2 are constants.

Q(ϕ) should be periodic, so λ must be positive and hence Q(ϕ) assumes the following form

(17)

where a and b are constants to be determined.

Given that Q(ϕ) is an odd function, we have a = 0 and

(18)

To guarantee Q′(ϕ) ≥ 0 for ϕ ∈ (−2π, 2π), b and λ should satisfy b > 0 and .

Next we prove that  maximizes  in (14). To this end, we only need to

prove that  is an increasing function of λ.

Substituting (18) into  produces

(19)

Differentiating both sides of (19) by λ, we obtain

(20)

which is always positive for . Therefore, f(λ) is an increasing function of λ and
 gives the maximal f(λ). Hence the optimal solution has the following form

(21)

We use the normalization constraint to determine b. Substituting (21) into the following
normalization constraint
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produces . So we have  and

(22)

Remark 5
The constant C in (22) can be regarded as a scaling factor and should be determined a priori
for practical considerations. It does not affect the shape of the optimal phase response
function that maximizes the synchronization rate.

Here, we determine C by using the constraint that the phase after pulsing perturbation still
resides in [0, 2π), i.e., 0 ≤ F(ϕ) + ϕ < 2π. Thus we have 0 ≤ ϕ − Q(ϕ) < 2π, which further
means that Q(ϕ) ≤ ϕ holds for 0 ≤ ϕ ≤ π and Q(ϕ) ≥ −ϕ holds for −π < ϕ ≤ 0. Therefore, we

have . Setting C as , we have the optimal Q(ϕ) as

(23)

Summarizing the above derivation, we get the optimal phase response function F(ϕ):

Theorem 4
For PCOs with constant non-identical natural frequencies, the optimal phase response
function that maximizes the rate of frequency synchronization is given by

(24)

Proof—Using the periodicity of Q(ϕ) and its relation with F(ϕ), the theorem can be easily
obtained.

The optimal phase response function is visualized in Fig. 2.

V. Comparison with existing phase response functions
We confirm the optimality of our phase response functions by comparing them with the
commonly used phase response functions (the Peskin phase response function used in [5]
and the M&S phase response function used in [7], [8]) in terms of time to synchronization.
The shapes of the Peskin phase response function and the M&S phase response function are
given in Fig. 3.

We considered a network composed of 20 PCOs. The oscillators are deployed in a plane
with 2-dimensional coordinates randomly chosen from a uniform distribution. Any two
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nodes within 0.35 unit distance can interact with each other. The random geometric graph
used in simulation is given in Fig. 4 and it is verified that the interaction topology is
connected. To show the optimality of our phase response function, we compared its time to
synchronization with the time to synchronization under phase response functions ‘Peskin
PRC’ given in [5] and ‘M&S PRC’ given in [7], [8]. We define synchronization to be
achieved when all nodes fire at the same time. For each phase response function, we
simulated the network under different coupling strengths l. For each given coupling strength,
we ran the simulation for 100 times and each time we chose the initial phases randomly
from the uniform distribution on [0, π). The time to synchronization is defined to be the
average over the 100 runs. When all oscillators have identical natural frequencies w1 = w2 =
… = w21 = 1 Hz, the times to synchronization under different coupling strengths for the
three phase response functions are given in Fig. 5. It is clear that our optimal phase response
function gives the fastest rate of synchronization.

We also simulated the network in the non-identical natural frequency case. The simulation
setup is the same as the identical-natural frequency case except that the initial phases were
randomly chosen from [0, 2π) and deviations randomly chosen from the interval [−0.01,
0.01] were added to the natural frequencies. The times to frequency synchronization for the
three phase response functions under different coupling strengths are given in Fig. 6. It is
clear that the optimal phase response function derived in Sec. IV gives a faster rate of
frequency synchronization compared with the currently most commonly used phase
response functions.

VI. Conclusions
Pulse-coupled synchronization strategies have attracted increased attention in wireless
sensor networks. We propose to maximize the synchronization rate by optimizing the phase
response function. This can increase the synchronization rate with coupling strengths fixed,
and hence can reduce the time to synchronization with the transmission power fixed. Given
that the energy consumption is determined by the product of the transmission power and the
time to synchronization, the optimal phase response function can reduce energy
consumption in synchronization. This has great significance for wireless sensor networks
where energy is a valuable system resource.
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Fig. 1.
The optimal phase response function for oscillators with identical natural frequencies.
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Fig. 2.
The optimal phase response function for oscillators with non-identical natural frequencies.
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Fig. 3.
Shapes of the Peskin phase response function (Peskin PRC) and the M&S phase response
function (M&S PRC).
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Fig. 4.
The distribution of nodes in the random geometric graph used in simulation.
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Fig. 5.
Time to synchronization for different phase response functions in the identical natural
frequency case.
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Fig. 6.
Time to synchronization for different phase response functions in the non-identical natural
frequency case.
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