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Abstract

The success of genome-scale metabolic modeling is contingent on a model’s ability to accurately predict growth and
metabolic behaviors. To date, little focus has been directed towards developing systematic methods of proposing,
modifying and interrogating an organism’s biomass requirements that are used in constraint-based models. To address this
gap, the biomass modification and generation (BioMog) framework was created and used to generate lists of biomass
components de novo, as well as to modify predefined biomass component lists, for models of Escherichia coli (iJO1366) and
of Shewanella oneidensis (iSO783) from high-throughput growth phenotype and fitness datasets. BioMog’s de novo biomass
component lists included, either implicitly or explicitly, up to seventy percent of the components included in the predefined
biomass equations, and the resulting de novo biomass equations outperformed the predefined biomass equations at
qualitatively predicting mutant growth phenotypes by up to five percent. Additionally, the BioMog procedure can quantify
how many experiments support or refute a particular metabolite’s essentiality to a cell, and it facilitates the determination of
inconsistent experiments and inaccurate reaction and/or gene to reaction associations. To further interrogate metabolite
essentiality, the BioMog framework includes an experiment generation algorithm that allows for the design of experiments
to test whether a metabolite is essential. Using BioMog, we correct experimental results relating to the essentiality of thyA
gene in E. coli, as well as perform knockout experiments supporting the essentiality of protoheme. With these capabilities,
BioMog can be a valuable resource for analyzing growth phenotyping data and component of a model developer’s toolbox.
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Background

The accuracy of constraint-based model predictions (e.g., of

growth phenotypes) and the application of such models in

metabolic engineering (e.g., strain design for biofuel production)

are contingent on a biologically accurate biomass equation.

Despite this, while numerous computational methods exist to

curate genome-scale models by interrogating, hypothesizing and

refining an organism’s reaction, gene-reaction and/or transcrip-

tional regulatory networks [1,2,3] comparatively little has been

done to automate the generation and modification of an

organism’s biomass requirements. To fill this niche, we have

developed the novel biomass modification and generation

(BioMog) framework as a means to determine, de novo, biomass

components that are consistent with large numbers (containing

1000 s of unique experiments) of high-throughput growth

phenotype datasets, which are becomingly increasingly facile and

inexpensive to create [4,5].

To date, numerous methods have been created and are

available to refine constraint-based models using growth pheno-

typing data (see [2] for recent review). SMILEY [6] works to add

missing reactions to a metabolic network to correct discrepancies

where the organism grows experimentally but the model does not

predict growth (false negative prediction). Another approach,

GrowMatch [3] groups model-data inconsistencies into false

negatives (model predicted no growth, experimental growth) and

false positives (model predicted growth, no experimental growth)

then adds or removes metabolic reactions, respectively, to

reconcile individual model-data inconsistencies. A newer ap-

proach, MIRAGE [7], makes use of metabolic flux and functional

genomics data to identify reactions that may be missing from a

model network. None of these methods, however, can be used to

automatically test and refine a microorganism’s modeled biomass

(while GrowMatch [3] does include a biomass reformulation step

to correct false positives it is done by manual inspection).

Moreover, due to scaling issues inherent in their design, all of

these methods correct single mispredictions at a time by making

sequential modifications to the model without considering how

these modifications will impact the overall predictive accuracy of

the model. Such sequential model modifications can result in

suboptimal model refinements and, thus, each proposed modifi-

cation requires subsequent evaluation over the entire global

dataset to ensure overall improved model performance. In

addition, alternate modifications may be able to reconcile the

same model-data inconsistency and the existing approaches

cannot identify which of the alternate solutions would best agree
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with the entire experimental dataset. Thus, we have developed the

BioMog (Biomass Modification and Generation) framework that

can, in a scalable, parallelizable and efficient manner, consider all

experimental results simultaneously to find a set(s) of biomass

components that best matches experimental growth phenotypes.

Consequently, BioMog proposes biomass requirements that best

match all existing information while avoiding the substantial

computational costs associated with existing mixed-integer linear

programming (MILP) refinement approaches. Moreover, BioMog

can be used to complement existing tools by suggesting other types

of model adjustments to improve model predictions.

Building upon the concepts of blocked metabolites [8] (i.e.,

metabolites that cannot be produced or consumed by an

organism), BioMog determines metabolites that are net production

blocked (i.e., metabolites which cannot be generated) in a

particular mutant but not in the wild type. We should note that

flux through net production blocked metabolites may still occur

(e.g., if the metabolite is part of a cycle) but no net production of

the metabolite is possible. For simplicity, we will refer to these

metabolites as blocked metabolites for the remainder of this paper.

Depending on the experimental growth phenotype of the mutant

in the dataset, the set of blocked metabolites can be assigned to one

of two list types, assuming a correct network reconstruction:

1) Exclude Metabolite List: if growth is observed, then any

blocked metabolite in the list that is included by BioMog in

biomass will result in a false negative growth prediction.

Metabolites within this list provide negative evidence for their

inclusion in biomass.

2) Include Metabolite List: if no growth is observed, then any

discovered blocked metabolites, if added to the biomass

equation, will result in the model recapitulating that particular

experimental result. Metabolites within this list are viable

candidates for biomass components.

Once all such lists have been created, a simple integer program

(IP) can be constructed to propose a new biomass de novo or by

modifying predefined biomass equation components such that the

computational agreement across all experimental observations is

maximized. It is important to note that the essential biomass

components proposed by BioMog are useful for qualitative

predictions only (i.e., they do not take into account the relative

abundance of each component and, as such, are not appropriate to

use for quantitative predictions of pathway fluxes or yields without

further experimental biomass composition measurements). Once

this set of new biomass components has been proposed, additional

experiments can be designed to interrogate the essentiality of a

given metabolite using methods similar to the recently proposed

FOCAL[9], which designs experiments to test the accuracy of

reaction and gene-reaction relationships in constraint-based

models.

Below, we describe the application of BioMog to genome-scale

models for Escherichia coli (iJO1366) and Shewanella oneidensis MR-1

(iSO783) using growth phenotype and fitness data for the two

organisms [5,10,11] to propose de novo and modified biomass

requirements. We demonstrate that the new biomass equations

outperform the qualitative growth predictions of their predefined

counterparts, while providing potential insights into inconsistent

experiments and model structures. We subsequently designed and

conducted additional experiments to interrogate the essentiality of

metabolites for which the existing phenotype data provides no

insight or provides conflicting results.

Results and Discussion

The BioMog framework uses the concept of blocked metabolites

and growth phenotype data to determine potential biomass

components that will yield fatal and non-fatal knockout predictions

for no growth and growth experimental results, respectively. Once

include and exclude metabolite lists have been generated for all

experiments, an improved biomass can be computationally

proposed either de novo or based on an existing biomass equation

via the appropriate algorithm. Based on this new biomass and any

relevant statistics teased from metabolite lists, BioMog can propose

additional growth phenotype experiments that are designed to

generate data specific to the essentiality of a particular metabolite

to cellular growth. Such experiments complete the BioMog cycle

and can be performed iteratively to improve both the quantity and

quality of evidence supporting the essentiality of a given

metabolite. This entire process is summarized in Figure 1.

The BioMog Framework: An Illustrative Example
For illustrative purposes, we first demonstrate the BioMog

process on a small reaction network (shown in Figure 2), where

the media contains metabolites A and G (Figure 2A). The

predefined biomass equation is removed from the network and

sinks are added for every metabolite in the network. Under these

conditions, the wild type network (Figure 2B) is able to produce

all metabolites except for Iex and I, which are blocked due to the

choice of media components. Iex and I should thus be removed

from consideration as possible biomass components since their

inclusion would suggest that the wild type would be incapable of

growth. For each knockout mutant evaluated experimentally, a list

of blocked metabolites (excluding those found in the wild type, i.e.,

Iex and I) are generated and stored as include/exclude metabolite

lists based on the knockout phenotype (i.e., lethal or non-lethal

knockout). Once all include/exclude metabolite lists have been

completed, BioMog can propose a de novo biomass or modify the

predefined biomass using a simple integer program (IP) such that

the agreement between model growth predictions and growth

phenotype data is maximized (Figure 2C). Depending on the

network structure, this process may result in new consumption

blocked metabolites (i.e., a metabolite for which no consuming

reaction exists) due to the removal of metabolites from the

predefined biomass, which naturally behaves as an outlet for many

essential metabolites.

Application of BioMog to Escherichia coli and Shewanella
oneidensis Metabolism

In order to demonstrate the efficacy and utility of the BioMog

framework, the BioMog framework was applied to models of

Escherichia coli (with ,4200 growth phenotype experiments) and

Shewanella oneidensis (with ,1500 fitness experiments) metabolism,

resulting in proposed biomass components that were generated de

novo or by modifying preexisting biomass equations. BioMog’s de

novo proposed biomass components are summarized in Table 1
while complete details of the predefined biomass modifications are

provided in the supplementary materials (Tables S1 and S2 in
File S1). In proposing these biomasses, metabolites most

commonly associated with biomass such as amino and nucleic

acids, as well as various currency metabolites, were weighted such

that they would be selected preferentially when alternative

metabolites were available (see methods for details).

The proposed de novo biomass requirements consistently

outperformed their predefined counterparts at predicting the

qualitative outcomes of growth phenotype experiments (Figure 3).

Despite improvements in growth phenotype predictions, it can still

Algorithm for Identifying Biomass Components
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be seen that there is room for improvement, particularly for

mutants that did not grow (NG) experimentally. Of the 139 E. coli

NG mutants that the de novo or predefined biomass equations failed

to properly predict under at least one media condition, 123 were

improperly predicted by both biomasses, 15 were incorrectly

predicted solely by the predefined biomass and just one (Db1098 –

Figure 1. A flow diagram summarizing the BioMog framework. Initially, mutants are evaluated computationally to determine metabolites
that are blocked in mutant strains but not in the wild type strain. While not strictly necessary, mutants that have substantially deleterious impacts on
the network (.100 blocked metabolites) are considered uninformative and filtered out to improve the quality of proposed biomass components.
Blocked metabolites are then assigned to an include/exclude metabolite list based on the experimentally observed growth phenotype. Once these
lists have been created, BioMog can use this information to propose de novo biomass components or to modify the existing biomass equation.
Additional experiments can be designed and run by BioMog to fill in any informational gaps that may exist in the current dataset after which the
cycle can be repeated.
doi:10.1371/journal.pone.0081322.g001
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a mutant defective in deoxythymidine triphosphate, dttp, biosyn-

thesis) was incorrectly predicted only by BioMog’s proposed

biomass. For the 123 commonly mispredicted mutants, just under

90% did not have any blocked metabolites beyond those observed

in the wild type network (implying the mutant can only result in a

growth phenotype given the existing metabolic network). These

mispredicted mutants could be due to experimental errors,

incomplete or erroneous GPR associations, enzyme redundancy

Figure 2. Application of BioMog to an illustrative example. (A) For an existing model and set of biomass requirements (metabolites F and H),
BioMog is capable (depending on the quality and quantity of data) of generating, de novo, an organism’s biomass requirements or of modifying a
predefined biomass equation. This is accomplished by removing the initial biomass equation from the network and adding sinks for every metabolite
(not shown). Blocked metabolites are determined for the wild type and mutant strains under a particular experimental condition (B). This process is
repeated for all growth phenotype experiments for which data exist. The set of blocked metabolites can then be used to propose a new biomass
equation or modify an existing one (C). Based on the include/exclude metabolite lists generated in this example, the original biomass equation
composed of substrates F and H is modified by adding metabolite C while removing F. Since the de novo biomass relies solely on experimental
evidence, it is important that enough data exist that test the essentiality of different metabolites if one desires an accurate and complete
understanding of the biomass requirements. Here, metabolite H was absent from the proposed de novo biomass because no supporting or refuting
evidence existed in the experimental dataset to justify its inclusion.
doi:10.1371/journal.pone.0081322.g002
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due to isozymes, metabolic redundancy due to the presence of

alternate metabolic pathways which may not be used experimen-

tally, or incomplete pathways that can be filled using methods like

GapFill [8]. For example, folA (encoding dihydrofolate reductase)

in E. coli has been repeatedly reported as an essential gene

[10,12,13]; however, the present GPR association for this reaction

suggests that an isozyme, folM, can compensate for the loss of folA

resulting in the model having no new blocked metabolites and an

erroneous growth phenotype prediction. Another experimentally

essential gene, guaB (encoding IMP dehydrogenase) converts imp

(inosine 5-phosphate) into xmp (xanthoine 5-phosphate) in

guanine biosynthesis; however, the model has another route to

make xmp from imp (imp R inosine R hypoxanthine R xanthine

R xmp) so there are no new blocked metabolites in the

DguaBmutant over the wildtype. While structural issues in the

model (e.g., GPR associations and alternative pathways) may

cause some discrepancies between model predictions and data,

such discrepancies can also be due to problems with the

experimental data itself. For example, sucC, (encoding succinyl-

CoA synthetase)was classified experimentally as essential; however,

other reports indicate that it is non-essential [12,13] in agreement

with the model predictions. The remaining 10% of the

mispredicted NG mutants did have blocked metabolites, but the

inclusion of these blocked metabolites into biomass would have

contradicted results of other experiments. For example, a number

of mutants (Db0722 [sdhD], Db0588 [fepC], Db0590 [fepD], Db0592

[fepB], Db1252 [tonB] and Db3919 [tpiA]) had Fe-enterobactin

(feenter) as a blocked metabolite; however, this was excluded from

BioMog’s proposed biomass requirements due to numerous

conflicting experimental results regarding the metabolite’s essen-

tiality (e.g., Db0584 [fepA], is a viable mutant where feenter is the

only blocked metabolite). Consequently, to improve the qualitative

predictions for these experiments it would require including

additional regulatory information, repeating some conflicting

experiments, or modifying the reaction network or gene-protein-

reaction (GPR) associations.

The BioMog framework also provides information about how

many experiments support/refute the essentiality of a given

metabolite. This can be extracted from the frequency of

appearance of a given metabolite in the include/exclude

metabolite lists. These metabolite list frequencies for select

predefined biomass components (E. coli metabolites with no

experimental evidence for or against were excluded to improve

visualization) are provided in Figure 4. Unsurprisingly, items with

more experimental evidence indicating that a metabolite becomes

blocked in a lethal knockout (i.e., those with high frequency in

include lists) are more likely to be added to the biomass equation.

Frequencies alone, however, provide an incomplete picture of

selection as is evidenced by numerous modifications made to the

predefined biomass equation of S. oneidensis (metabolites listed in

red, Figure 4B). To completely understand BioMog decisions, it

is necessary to know not only a metabolite’s frequency in include/

exclude lists but also the frequencies of its brethren (i.e., the other

blocked metabolites that co-appear in the same include/exclude

lists). Assuming a correct metabolic network, if a blocked

metabolite appears in an include list with other metabolites, it is

possible that the selection of one of these other metabolites may be

preferable in order to obtain the most accurate biomass equation

with the fewest number of components. The metabolite,

protein_son_aerobic (representing an average protein molecule

in the cell) in iSO783 is an example where replacing the

metabolite in the predefined biomass with other brethren

metabolites in the biomass improves agreement with experimental

observations. In the viable mutant DSO2085, protein_son_aerobic

is the sole blocked metabolite (beyond those observed in the wild

type network) providing evidence for its exclusion from the

biomass. Moreover, in a majority of no growth mutants,

protein_son_aerobic is found to be blocked along with various

amino acids that are precursors to protein production. As a

consequence, BioMog determines that composing the biomass

using essential amino acids rather than protein_son_aerobic will

improve the model’s qualitative growth predictions.

Having evaluated the decision making process for proposing de

novo and modified biomasses, we compared our de novo BioMog

biomass components to the predefined model biomass components

(Figure 5). A more detailed biomass component comparison is

provided in Tables S3 and S4 in File S1. As can be seen for E.

coli, over 70% of the predefined biomass components are captured

in BioMog’s proposed biomass, when alternative and downstream

metabolites are considered. When proposing E. coli and S. oneidensis

biomass requirements, BioMog would sometimes select metabo-

lites that are related to those in the predefined biomass but are

located farther downstream. While upstream predefined metabo-

lites are not explicitly included within the BioMog proposals, they

are implicitly essential under the media conditions examined when

the downstream metabolites are included in the de novo biomass.

For the E. coli analysis, none of the BioMog biomass components

were found to be upstream of the predefined biomass components.

For S. oneidensis, most de novo Biomog biomass components were

downstream of predefined components or were unique to the de

Table 1. BioMog proposed de novo biomass equations for E. coli and S. oneidensis.

E. coli Biomass S. oneidensis Biomass

Unique Contains Alternatives Unique Contains Alternatives

2,3-dihydroxybenzoylserine; 5-
Formyltetrahydrofolate; L-Glutamate 5-
phosphate; L-Histidine; L-Isoleucine;
KDO(2)-lipid IV(A); protoheme; L-Proline

2omhmbl; [2Fe-1S] desulfurated iron-sulfur cluster; 4c2me; L-
Arginine; adenosine thiamine triphosphate; Biotin; cardiolipin
(tetraoctadec-11-enoyl, n-C18:1); Coenzyme A; Flavin adenine
dinucleotide oxidized; L-Leucine; L-Lysine; Murein5p3p_p;
nadp; pe181; L-Phenylalanine; O-Phospho-L-serine;
Pyridoxamine; Siroheme; Selenite; L-Tryptophan; uagmda

L-Arginine; gdptp; L-
Histidine; O-Phospho-
L-homoserine

Reduced glutathione; DNA; L-
Leucine; L-Methionine; 2-Oxo-3-
hydroxy-4-phosphobutanoate; L-
Phenylalanine; L-Proline; O-Phospho-
L-serine; L-Tryptophan; L-Tyrosine

Unique metabolites were those compounds for which there was no alternative that would have maximized the objective function. Conversely, metabolites which
possessed alternatives could be replaced with another compound without adversely impacting the objective function. Abbreviations used were as follows: 2omhmbl,
2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol, 4c2me, 4-(cytidine 59-diphospho)-2-C-methyl-D-erythritol, murein5p3p_p, two linked disacharide
pentapeptide and tripeptide murein units (uncrosslinked, middle of chain), nadp, nicotinamide adenine dinucleotide phosphate, pe181, phosphatidylethanolamine
(dioctadec-11-enoyl, n-C18:1), uagmda, undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine, gdptp,
guanosine 39-diphosphate 59-triphosphate.
doi:10.1371/journal.pone.0081322.t001
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novo biomass, with the exception of eight amino acids that were

included in the biomass and that were all precursors for

protein_son_aerobic. For E. coli and S. oneidensis, seven and five

proposed metabolites respectively were unique to the de novo

biomass (i.e., they did not have alternatives that were either

directly included or were upstream or downstream of metabolites

in the predefined biomass). The unique elements of the BioMog

biomasses (seven components for E. coli and thirteen for S.

oneidensis, including the eight amino acid precursors) are critical to

improving growth phenotype predictions and are found in both

the de novo and biomass modification predictions (Figure 5B). It is

important to note that the metabolites unique to the predefined

biomass may be absent from the de novo biomass because there is

no data to support their inclusion or the data suggests that these

metabolites are not essential for growth.

Inclusion of Analytical Biomass Measurements in BioMog
While BioMog is designed to make proposals based on growth

phenotype data, it can also take into account additional

experimental data such as analytically measured biomass compo-

sitions. Such data is especially useful for metabolites for which

creating an informative mutant experiment would be prohibitive

due to both time and complexity (see Experimental Design
section below). This biomass composition data can be used to

improve BioMog proposals, such as those for amino acids in S.

oneidensis. It is well known that organisms generally require all

twenty amino acids for growth; however, based on just the

frequency of appearance in include/exclude metabolite lists

(Figure 6), the algorithm did not have sufficient evidence to

include all amino acids as biomass components even though

analytical data indicates that all amino acids (in addition to other

components) are present in the biomass [11]. To address this

shortcoming, we treated the analytically measured biomass

components as additional experimental data points for BioMog

to fit. By doing this, we capture the supporting evidence that these

analytical measurements provide, while still allowing BioMog to

determine where the phenotypic data contradicts the inclusion of a

metabolite into the biomass. De novo and modified biomass

requirement proposals for S. oneidensis using this additional

information are displayed in Table 2 and Table 3. As can be

seen, the proposals are similar to those using just growth

phenotypes (Tables 1 and S2); however, now all amino acids

and a few additional analytically measured currency metabolites

(e.g., nadh and amp) have been added. Additionally, while the list

of items removed from the predefined biomass is largely the same,

extracellular crosslinked peptidoglycan (peptx_e in Figure 4B)

was retained based on the experimental measurements, even

though it appeared in equal numbers of include and exclude lists

indicating growth phenotypes were inconclusive regarding its

essentiality.

Experimental Design
In addition, to proposing and modifying biomasses, BioMog is

capable of proposing experiments to interrogate the essentiality of

Figure 3. Percent of growth phenotype agreements for the BioMog De Novo biomass and the predefined biomass. Unsurprisingly, the
BioMog biomass equation consistently outperforms the curated biomass over the entire dataset. Numbers reported above a given bar indicate the
total number of experiments for that category.
doi:10.1371/journal.pone.0081322.g003
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Figure 4. Frequency of appearance in the include/exclude metabolite lists. Frequency of select predefined biomass metabolites in include
(red bars, corresponding to experiments where mutants do not grow) and exclude (blue bars, corresponding to experiments where mutants grow)
metabolite lists, as well as the difference between the two (green bars) for both E. coli (A) and S. oneidensis (B). For E. coli, 29 of the 72 predefined
components (40%) had no direct supporting or refuting experimental evidence (i.e., the red and blue bars were zero). A positive difference between
the include and exclude frequency indicates a potential improvement in agreement by including the metabolite as a biomass component. Note that
a positive difference does not ensure that a metabolite’s inclusion will lead to a maximal agreement score. Selection of biomass components from
multiple blocked metabolites associated with a given experiment can potentially replicate the same experimental phenotypes while minimizing
overall disagreements (see text for details). Red labeled metabolites indicate those that were recommended for removal by the biomass modification
algorithm. Metabolite abbreviations match those used in the two metabolic models.
doi:10.1371/journal.pone.0081322.g004
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any given metabolite (see File S1 and File S2 for methods
and implementation respectively). Various experimental

proposals involving the use of minimal media lacking essential

inorganic compounds, or the deletion of genes essential to

metabolite production were generated for E. coli predefined

biomass components where BioMog indicated that little to no

Figure 5. Comparison of predefined biomass to BioMog’s de novo (top) and modified biomass (bottom). Numbers above bars indicate
the number of metabolites in each category. iJO1366 and iSO783 are the genome-scale models used for E. coli and S. oneidensis, respectively.
doi:10.1371/journal.pone.0081322.g005
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Figure 6. Frequency of Amino Acid appearance in the include/exclude metabolite lists for S. oneidensis. While twelve amino acids were
not included in the original de novo biomass proposals of BioMog (Table 1), the growth phenotypes do not preclude their addition as shown here.
Their exclusion by BioMog is a result of insufficient evidence for their inclusion based soley on the growth phenotype experiments performed.
Metabolites in green are those that were selected by BioMog as essential biomass components. Metabolites in blue are those that have evidence to
support their inclusion but were omitted because they are redundant with other metabolites for matching experimental results (e.g., isoleucine,
leucine and valine biosynthesis pathways share many of the same enzymes). Metabolites colored red have no growth phenotype evidence to support
their inclusion or exclusion from the biomass.
doi:10.1371/journal.pone.0081322.g006

Table 2. BioMog Proposed De Novo Biomass for S. oneidensis using Growth Phenotype and Experimentally Measured Biomass.

Amino Acids Present in Predefined Biomass No Equivalent in Predefined Biomass

L-Alanine L-Leucine Putrescine O-Phospho-L-homoserine

L-Arginine L-Lysine nad O-Phospho-L-serine

L-Asparagine L-Methionine nadh gdptp

L-Aspartate L-Phenylalanine nadp Reduced Glutathione

L-Cystine L-Proline nadph 2-Oxo-3-hydroxy-4-phosphobutanoate

L-Glutamine L-Serine dna_son

L-Glutamate L-Threonine Glycogen

Glycine L-Tryptophan peptx_e

L-Histidine L-Tyrosine rna_son

L-Isoleucine L-Valine amp

When given additional information about biomass components measured experimentally, BioMog is able to propose more physiologically accurate components, such
as including all twenty amino acids. The abbreviation peptx_e stands for extracellular cross-linked peptidoglycan, dna_son and rna_son stand for average DNA and RNA
macromolecules. Other abbreviations match those in Table 1.
doi:10.1371/journal.pone.0081322.t002
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experimental evidence existed or the experimental evidence was

conflicting (see supplementary dataset S1). Experiments

testing for the essentiality of protoheme (pheme) and deoxythy-

midine triphosphate (dttp) were then conducted. The first

experiment was designed to test the essentiality of pheme through

the double deletion of hemF and hemN. We were unable to

construct a viable double knockout mutant – implying the double

knockout was lethal in LB medium – indicating this metabolite is

likely essential. The second experiment, designed to test for the

essentiality of dttp, was one already performed by Orth et al.[10],

that is the growth phenotyping of a DthyA mutant on glucose M9

medium. However, the positive growth result contradicted findings

of other publications [12,14,15] and led to the removal of dttp

from BioMog’s biomass. Since BioMog’s decision to exclude dttp

from the biomass was solely due to the DthyA experiments, we

decided to repeat the results based on the supporting literature.

Thus, growth phenotype experiments were performed evaluating

the DthyA mutant’s fitness in LB medium supplemented with

thymine, glucose M9 minimal media, and glucose M9 media

supplemented with thymine. Our results (see Figures S1–S3 in
File S1 for growth curves) suggest that DthyA is a thymine

auxotroph, incapable of growth in glucose M9 media, in

agreement with findings by Weiss[15]. Based on these experi-

ments, it can be seen that the BioMog framework can be a

valuable tool, not only for discovering new metabolite require-

ments for growth, but also for identifying potentially inaccurate

experimental results within a large dataset.

Conclusions

The BioMog framework provides a facile, fast and scalable

approach to the task of generating biomass related hypotheses.

Such an approach can be used to identify organism specific

biomass components and improve a model’s predictive power

compared to using a predefined biomass equation. Alternatively,

future efforts could focus on using growth phenotype data in

conjunction with 13C and other multiomics data to further

improve and refine essential biomass components. Since these

approaches do not require a biomass to be defined a priori, it

should be possible to combine metabolic flux analysis (MFA) [16]

and BioMog.

Since the quality of BioMog solutions can only be as good as the

experimental data used to generate them, it is important to have a

large, diverse and accurate experimental dataset. This is especially

true when generating biomass components de novo, since the

method cannot include metabolites in the biomass when there is

no experimental evidence to support (or refute) their inclusion as

was seen with S. oneidensis. Presently, there are numerous methods

that can be used to generate high-throughput growth and fitness

data and to construct higher order genetic knockouts such as

TagModule [17], TRMR [18], and MAGE [19]. Using such

methods, in conjunction with the BioMog experiment generation

tool, should ensure a broad evaluation of an organism’s essential

metabolites. Nonetheless, for organisms with robust metabolic

networks, higher order knockouts may be needed to detect

essential metabolites. With the E. coli iJO1366 network, for

example, over 50% of the metabolites (after filtering out mutants

resulting in large numbers of blocked metabolites) had no direct

supporting or refuting evidence for their essentiality when

considering experiments only involving single gene deletions.

Perhaps more critically, over 40% of the components in the E. coli

predefined biomass have no explicit evidence for their inclusion in

biomass based on the single knockout datasets considered here

[10]. Thus, to properly interrogate the accuracy of an organism’s

biomass composition it is critical that targeted higher order

mutants be created.

From a mathematical perspective, BioMog works to find the

best biomass requirements for the current model structure

(reactions and GPR associations) and provided experimental

results. As such, the proposed de novo and modified biomass

components represent the needs of the organism assuming the

model and experiments are an accurate portrayal of the

organism’s genetic and metabolic capabilities. If known biomass

components are not proposed by BioMog then it is possible that

the model or experiments are incorrect. This is most readily

apparent when BioMog suggests the removal of previously

reported essential metabolites such as dttp, Cu2+ and Ca2+ for

E. coli or protein_son_aerobic for S. oneidensis. In these instances, it

should not immediately be interpreted that these metabolites are

inessential for growth (especially if these compounds have been

measured experimentally to be a component of biomass) but

instead this result should be considered a red flag, indicating

Table 3. BioMog Modified Predefined Biomass for S. oneidensis using Growth Phenotype and Experimentally Measured Biomass.

Added Unmodified Removed

L-Alanine L-Leucine gdptp amp 1,2-Diacyl-sn-glycerol 3-phosphate Phosphatidylglycerol

L-Arginine L-Lysine Reduced Glutathione dna_son 1,2-Diacylglycerol protein_son_aerobic

L-Asparagine L-Methionine 2-Oxo-3-hydroxy-4-
phosphobutanoate

Glycogen 5-Methyltetrahydrofolate Spermidine

L-Aspartate L-Phenylalanine O-Phospho-L-homoserine nad Acetyl-CoA Succinyl-CoA

L-Cystine L-Proline O-Phospho-L-serine nadh acyl-glycerophosphoethanolamine UDP-glucose

L-Glutamine L-Serine nadp acyl-glycerophosphoglycerol

L-Glutamate L-Threonine nadph Coenzyme-A

Glycine L-Tryptophan peptx_e Flavin adenine dinucleotide

L-Histidine L-Tyrosine Putrescine lipopolysaccharide

L-Isoleucine L-Valine rna_son Phosphatidylethanolamine

While BioMog is now able to capture amino acid essentiality, it will still propose the removal of certain metabolites from the predefined biomass equation based on the
present model structure and results from the growth phenotype experiments. These removals may not indicate that these metabolites are non-essential but may
instead indicate an experimental or network structural issue. Abbreviations match those in Table 1 and 2 with the addition of protein_son_aerobic which represents an
average protein macromolecule.
doi:10.1371/journal.pone.0081322.t003
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additional experiments are needed to verify the accuracy and

validity of both the model structure and experiments. In this

aspect, BioMog behaves as a hypothesis generation and model

interrogation tool with easy traceability (as the exclude metabolite

lists allows for facile determination of experiments which conflict

with metabolites being classified as essential).

Because BioMog depends on the model structure in order to

make biomass proposals, it should be used in conjunction with

other model refinement such as GrowMatch [3], SMILEY [6] and

other knowledge gap filling algorithms for refining metabolic

models when experimental results conflict with known biomass

components. By using these tools in conjunction, it should be

possible to add or remove reactions or GPR associations, such that

a particular gene knockout and the resulting phenotype are

consistent with known biomass components. For example, the

biotin synthesis pathway was incomplete in the latest S. oneidensis

genome-scale model since the enzyme for producing the precursor

pimelyl-ACP was only recently discovered [20]. Consequently, it

would have been impossible for BioMog to predict the essentiality

of biotin; however, one of the biotin precursors S-Adenosyl-L-

methionine was predicted to be an alternative biomass component.

Any network structural issues that cause a metabolite to be net

production blocked in the wildtype strain will prevent BioMog’s

ability to propose these metabolites in the biomass. There are a

number of net production blocked metabolites in the wildtype (134

and 109 in E. coli and S. oneidensis, respectively) that are not

biomass candidates due to an inability to synthesize precursors or

due to various attached cofactors (e.g., ACP and trna) for which

there is no synthesis pathway included in the model. We should

note that when determining net production blocked metabolites

sinks are added for all metabolites in the network, so metabolites

will only be blocked if their precursors can not be produced (an

inability to degrade by-products will not cause a metabolite to be

net production blocked by BioMog). If some of these net

production blocked metabolites are to be considered as biomass

components, the model will first need to be gap filled so the

metabolite of interest can be produced using methods like

SMILEY and GrowMatch or by adding artificial source reactions

(e.g., using reaction notation, RACP) for precursors. Nonetheless,

while various structural issues may prevent BioMog from

proposing an essential end product used in biomass, it can still

capture essential upstream precursors that can be produced by the

network. As mentioned above, while biotin is a net production

blocked metabolite in S. oneidensis, S-Adenosyl-L-methionine, a

biotin precursor, is one of the alternative proposed biomass

candidates. Thus, the process of model refinement and automated

biomass proposals should be an iterative one where the model is

refined, BioMog is used to modify a biomass and any unexpected

results investigated and further refined using existing tools.

While valuable as a hypothesis and experimental generation

tool, BioMog also has value in identifying experiments with

erroneous or contradictory results. Researchers can not only use

blocked metabolite lists to assess which experiments support or

refute the essentiality of a particular biomass component, but also

which experiments appear inconsistent either because of experi-

mental or model inaccuracies. Moreover, BioMog biomass

modification proposals can further point out potential structural

flaws in an existing genome-scale model’s GPR or reaction

networks. For example, the recommendation removing calcium

and copper from the E. coli biomass appears to be the direct

consequence of an incomplete depiction of the transport systems

for these two inorganic compounds. The iJO1366 model includes

single calcium and copper transport reactions into the cytoplasm

that are associated with zupT (b3040) and yrbG (b3196),

respectively. The DzupTand DyrbG mutants are the only ones

that contain Ca2+ or Cu2+ as blocked metabolites and both

mutants are viable, suggesting either an incomplete picture of

copper and calcium transport across the cell membrane or the

non-essentiality of these metabolites. While this may have been

difficult to pick out of the entire dataset, using BioMog’s blocked

metabolite frequencies makes finding areas of metabolism needing

model improvement easier. Consequently, even if experimenters

are confident in the quality of the defined biomass composition,

BioMog can be a valuable component of a model curator’s toolbox

and supplements existing approaches [2].

Accurate knowledge of an organism’s essential metabolites is

critical to a model’s predictive utility. Constraint-based analyses

rely on a model’s biomass equation to determine whether a

particular genetic modification will be fatal. Failure to accurately

capture this aspect of a cell can be costly both in terms of time and

money when models are used in experimental design, such as

strain design in metabolic engineering [21]. Such metabolite

essentiality information can also be valuable for the development

of new antimicrobial agents by facilitating the identification of

novel drug targets using computational methods [22,23,24,25].

For this application in particular, finding unique essential

metabolites would be valuable for the selective and targeted

treatment of specific pathogenic species. By generating more

representative and organism specific biomass components, Bio-

Mog has the potential to improve the performance of algorithms

that use constraint-based metabolic models.

Methods

The biomass modification and generation (BioMog) framework

allows for the identification of required biomass components from

high-throughput growth and fitness experiments. The framework

enables scientists to systematically make metabolic additions or

removals from a predefined biomass or create new biomass

equations de novo. Subsequently, experimentalists can use the

BioMog framework to recommend additional wet lab experiments

to interrogate the essentiality of particular metabolites for which

data is lacking or contradictory. This process is accomplished

through a series of linear, integer and mixed integer programs (LP,

IP and MILP respectively), as described in detail in the following

sections.

Genome-Scale Models
BioMog was applied to genome-scale models for Escherichia coli

(iJO1366) and Shewanella oneidensis MR-1 (iSO783). While iJO1366

was evaluated as is, thirty-five reactions were added to iSO783 to

reflect additional knowledge regarding the organism’s metabolic

capabilities. These modifications are summarized in supplemen-
tary dataset S2).

Finding Blocked Metabolites
BioMog functions by determining which metabolites can be

produced and removed from the system by the wild type strain,

but not by a particular mutant. Such metabolites are referred to as

blocked metabolites. The discovery of blocked metabolites was

accomplished using the following MILP and is similar to that used

by the GapFind algorithm [8]:

max
vi ,xi ,zi

X

i[M

zi ð1Þ
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X

i[R\m

Sij
:vj{xi~0, Vi[M ð2Þ

vjƒ0, Vj[R\UL ð3Þ

vj§0, Vj[R\LL ð4Þ

xi§zi � vmin, Vi[M ð5Þ

Network Specific Constraints ð6Þ

Where zi is a binary variable indicating whether a metabolite i

can be produced, vj is a free variable for the magnitude of the flux

through reaction j, and xi acts as a sink for metabolite i and is used

as an indicator of metabolite production. M is the set of all

metabolites, R is the set of all reactions, m is a set of predefined

biomass components (if any exist), UL is the set of reactions with

non-zero upper limits and LL is the set of reactions with non-zero

lower limits. The parameter vmin sets a minimum production

threshold and was set to 0.0005. Network specific constraints refer

to any constraints that are particular to a given genome-scale

model. For example, constraints that force reaction fluxes to zero

by default, that fix P/O ratios or that set oxidase ratios to a fixed

value. Blocked metabolites are those for which zi is 0 and are

determined for the mutant and wild type strains used in the

experiments. A set difference between the two is then performed

and the remaining blocked metabolites are considered potential

biomass equation candidates for inclusion or exclusion.

Note that the formulation above is written such that mass is

actively removed from the system via sinks (Eq. 2). As a

consequence, the MIP has the unique feature of finding

metabolites associated with metabolic dead ends, as well as,

metabolites participating in cycles that cannot be depleted from

the system without violating conservation of mass. For example, in

the S. oneidensis mutant DSO4249, succoa is a blocked metabolite

even though flux through the metabolite is possible by running the

citric acid cycle. This also means that such blocked metabolites

may be implicitly essential for growth, but may be removed from

the biomass equation.

Validation of Blocked Metabolites and Generation of
Blocked Metabolite Lists

Once blocked metabolites have been determined for all

experiments, mutants associated with .100 blocked metabolites

are filtered from consideration as they are deemed uninformative

as these filtered mutants are often due to deletion of an essential

early reaction (e.g., glucose transport). The set of blocked

metabolites for a given mutant are given an experiment number

(e) and organized into include (In), if mutant does not grow, or

exclude (Ex), if the mutant does grow, metabolite lists. NG is the set

of experiments where mutants did not grow and G is the set of

experiments were mutants grew.

Generate De Novo Biomass Components
Once complete include and exclude metabolite lists have been

created based on the blocked metabolite lists and growth

phenotyping data, the following integer program (IP) can be

solved to propose, de novo, an optimal biomass:

max Agreement ~
X

e[NG

nez
X

e[G

gez
X

i[EM

wi ð7Þ

geƒ1{wi, V(i,e)[Ex(i,e) ð8Þ

neƒ

X

i[In(i,e)

wi, Ve[NG ð9Þ

ne,ge,wi[f0,1g ð10Þ

Where ne and ge are binary variables indicating agreement with

no growth and growth experiments respectively, wi is a binary

variable indicating whether metabolite i is a biomass component,

In(i,e) and Ex(i,e) are mappings from a blocked metabolite to an

experimental and are the include or exclude metabolite lists,

respectively, and EM is an optional set containing metabolites that

have been experimentally measured within a microbe’s biomass.

For most analyses EM was left as an empty set, with the exception

of the S. oneidensis analysis using analytical biomass measurements.

While not done for the purposes of this paper, it is also possible to

weight individual experiments in Eq. 7 based on one’s confidence

of a particular result (e.g., independent repetitions of a particular

experiment). Once the maximal experimental agreement is

determined, a biomass equation that best agrees with experimental

results can be generated. When, multiple possible solutions exist,

negative weights can be added to select more common metabolic

components by preferentially including them in a new objective

(Eq. 11) (e.g., amino acids) or positive weights can be used to find

a minimal number of required biomass components (in this case all

metabolites have the same positive weight).

min WeightedObj ~
X

i[M\W

wi{0:9
X

i[W

wi ð11Þ

FixObj ~
X

e[NG

nez
X

e[G

gez
X

i[EM

wi ð12Þ

FixObj ~ Agreement ð13Þ

Here, W is the set of weighted metabolites for preferential

inclusion in the biomass, FixObj, is the objective score obtained

from running the LP using Eq. 7–10, and WeightedObj is the new

weighted objective function. While not shown, Eq. 8–10 should

also be included along with Eq. 11–13 in the weighted LP in

order for the problem to be solved correctly.

Modify Biomass Components
In addition to generating a biomass equation de novo, it is also

possible to begin with an existing biomass equation and modify it

to include likely biomass components and only remove compo-

nents that fail to match experimental results. This allows one to

include components for which no supporting growth phenotype
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data exists, but may have been demonstrated to be essential using

alternative methods:

max Obj ~

100 � (
X

e[NG

nez
X

e[G

gez
X

i[EM

wi){
X

i[M

wi {
X

i[M

0:5 � yi
ð14Þ

geƒ1{wi{yi, V(i,e)[Ex(i,e) ð15Þ

neƒ

X

i[In(i,e)

wi{yi , Ve[NG ð16Þ

wi ~ 1, Vi[m ð17Þ

yi ~ 0, Vi[M\m ð18Þ

ne,ge,wi,yi [ f0,1g ð19Þ

Here yi is a binary variable that removes biomass components if

experiments disagree with its inclusion, wi is a binary variable that

adds biomass components if experiments support their inclusion,

and m is the set of metabolites in the predefined biomass equation.

Precursors and Alternative Biomass Components
For the purpose of this paper, alternative metabolites are any

compound that can replace a proposed biomass compound

without negatively impacting the objective function (Eq. 7). To

determine alternative metabolites, wi, all proposed biomass

components were fixed to 1 with the except for a single metabolite,

k, for which an alternative metabolite is being sought. For this

single metabolite, wk was set to 0. The de novo minimal biomass LP

is then resolved (Eq. 8–13) using a variant of the objective

(Eq. 11) in which no metabolites are preferentially weighted (i.e.,

the set W is empty in Eq. 11). If a solution exists, then the newly

added metabolite is an alternative for metabolite, k. The newly

discovered alternative metabolite’s indicator value is subsequently

fixed to 0, and this process is repeated until the problem is

infeasible so that all possible alternatives for that metabolite are

exhausted.

Precursor metabolites are defined as upstream compounds that

are essential for the production of a biomass metabolite. As such,

including a particular metabolite in the biomass implicitly makes

that metabolite’s precursors essential. Thus, any metabolites

within the predefined biomass that are found to be precursors to

the de novo biomass components can be considered implicitly

included in the de novo biomass for the conditions tested. Since

precursor lists depend on the nutritional environment of the cell, a

robust media was modeled that included all the possible conditions

tested experimentally (glucose, succinate and lactate for E. coli and

lactate, pyruvate, ammonium and nitrate for S. oneidensis). To

determine precursors, all reaction fluxes, vj, were decoupled into

forward and reverse directions such that vj = vj,for2vj,rev where vj,for

and vj,rev are both positive variables. Then, the following

formulation was used:

max
X

i[Biomass

Sinki ð20Þ

X

j[R

Sij
:(vj,for {vj,rev) {xi~0, Vi[M ð21Þ

xi§Sinki, Vi[Biomass ð22Þ

xi~0, Vi6 [Biomass ð23Þ

vj,forƒ0, Vj[KillForwardRxn ð24Þ

vj,revƒ0, Vj[KillBackwardRxn ð25Þ

Sinki[f0,1g ð26Þ

Here Biomass is the set of de novo biomass components and Sinki is

a binary variable indicating if there is flux through sink xi. For

each metabolite not contained within the de novo biomass, the

metabolite was individually removed from the system (i.e., all

associated reaction fluxes that consume the metabolite were fixed

to zero), and the MIP given by Eq. 20–26 was solved. If the cell is

only viable when the metabolite is present (i.e., the cell can only

produce all biomass components when the metabolite is present),

then the compound was declared an essential precursor. This

process was repeated using the predefined biomass to determine if

any de novo components could be found upstream. In this LP,

KillForwardRxn and KillBackwardRxn remove consuming reactions

associated with the targeted metabolite in the forward and reverse

directions respectively, as well, as any forward (reverse) reaction

which has an upper (lower) limit equal to zero.

Addition of Dead-End Metabolites to Biomass
Due to the addition of sinks for all metabolites when finding

blocked metabolites in the BioMog framework (Eq. 1–6), it is

possible that a biomass equation generated only from biomass

components proposed using Eq. 8–13 may result in no growth

predictions for cases where the model was supposed to predict

growth (i.e., ge equals 1). This occurs when a by-product of a

proposed biomass component has no way of being consumed in

the network for that experiment (e). The presence of sinks for these

by-products in Eq. 2 still allows for the biomass components to be

produced when evaluating blocked metabolites. As a result these

dead-end by-products need a way of being consumed in the

model, which can be done by adding additional consuming

reactions to the model or including them in the biomass equation

as well. For example, in order to correct erroneous predictions due

to dead end by-products, a few metabolites (S-adenosyl-L-

homocysteine, glycolaldehyde and oxidized glutathione) were

added to the iJO1366 BioMog proposed de novo biomass to behave

as sinks for these by-products. To determine these dead end by-

products, the following formulation was used:
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min
X

i[M

xi ð27Þ

X

j[R

Sij
:vj{xi~0, Vi[M ð28Þ

vjƒv
upper
j , Vj[R ð29Þ

{vjƒvlower
j , Vj[R ð30Þ

vBiomasswE ð31Þ

Network Specific Constraints ð32Þ

Where vBiomass is the flux through the newly proposed de novo

biomass equations and E is a small number (e.g., 0.001). Network

specific constraints (Eq. 32) covers any additional constraints

specific to the network (e.g., P/O ratios in iJO1366). To avoid

erroneous results due to the predefined biomass behaving as a sink,

the predefined biomass equation was removed from the stoichio-

metric matrix for all subsequent analysis involving the BioMog

biomass equation. All non-zero xi, should be considered dead end

by-products of required biomass components. These should be

fixed by addition of the metabolite to the biomass equation or by

adding consuming reactions to the network. This process was

repeated for all experiments where the model was supposed to

predict growth (ge = 1). Additionally, cuts can be added to

determine alternative solutions for any given experiment by fixing

a proposed sink to 0.

FBA Testing
To test the qualitative performance of the de novo biomass

requirements, an FBA was solved as described by Feist et al. [13]

for each growth and non-growth phenotype experiment for which

data was collected using the predefined biomass, as well as, the de

novo variant. Since BioMog only makes qualitative proposals, an

arbitrary stoichiometric value of 20.0002 was assigned to each

essential metabolite proposed. To prevent the predefined biomass

from behaving as a sink, both the core and wild type biomasses

were removed from the iJO1366 model when evaluating the de

novo biomass components.

Description of Growth Phenotype Datasets
Growth phenotyping datasets for E. coli and S. oneidensis were

taken from publications by Orth et al. [10] and Deutschbauer et

al. [5] respectively. For E. coli, the growth and no growth

determinations were used as reported by in the paper for four

conditions (glucose aerobic, glucose anaerobic, succinate aerobic

and lactact aerobic). Additionally, all essential genes from the Keio

collection [12,26] were included as no growth mutants under

glucose aerobic conditions. For Shewanella, a fitness score of less

than 21 indicated no growth and greater than 21 indicated

growth. From this dataset, we tested three conditions (lactate

aerobic, pyruvate aerobic, lactate anaerobic with nitrate electron

acceptor).

Strains
All E. coli strains used in the experiments were derived from the

Keio collection [12]. The following single knockout mutants were

used: thyA::kan, hemF::kan, and hemN::kan as well as the parental

strain, E. coli K-12 BW25113. Two double mutants (DhemN::kan

DhemF, and DhemF::kan DhemN) were attempted to be made by first

removing the kan gene from the single knockouts using FLP

recombinase [27] and then moving the second mutation into the

single knockout using P1 transduction [28]. However, no

kanamycin resistant double knockouts were found. P1 phage

efficacy and recipient strain sensitivity was verified using P1

transduction of the original mutation back into the kanomycin

sensitive strains (i.e., by infecting P1 phage from DhemN::kan

strains into kanomycin sensitive DhemN strain and DhemF::kan into

DhemF) and finding robust growth on kanomycin plates following

P1 transduction.

Growth Phenotype Plate Experiments
All strains were grown in triplicate unless otherwise noted. All

strains were pre-cultured for approximately 24 hours in 90% (V/

V) M9 minimal medium supplemented with 2 g/L glucose and

10% (V/V) LB with 125 mg/mL thymine. Cells were washed twice

with M9 minimal media containing no carbon source to remove

any residual glucose and LB from precultures. Cells were then

resuspended in different media, M9 minimal media with 2 g/L

glucose or M9 minimal media with 2 g/L glucose and 125 mg/mL

thymine, such that the starting OD600 measurement was ,0.05

and cultured for at least 3 days in a Tecan plate reader at 37uC.
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