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Abstract
To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic
data were integrated with well water arsenic concentration data and well construction data for 471
private wells in Orange County, NC, via a geographic information system. For the statistical
analysis, the geologic units were simplified into four generalized categories based on rock type
and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary
pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The
data were fitted to a left-censored regression model to identify key determinants of arsenic levels
in groundwater. A Bayesian spatial random effects model was then developed to capture any
spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results
indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic;
(2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater
arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater
depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention
by creating three-dimensional maps of predicted arsenic levels in groundwater for any location
and depth in the area.
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INTRODUCTION
Arsenic (As) is a naturally occurring element contained in rocks, soil, water, and air, but
human ingestion is primarily from drinking water.1 A growing body of research shows that
long-term exposure to arsenic in drinking water can cause serious health effects including
adverse pregnancy outcomes,2,3 disrupted neuropsychological development,4 vascular
disease,5 skin lesion,6 and cancer.7 Research also shows that elevated levels of dissolved
arsenic tend to be more prevalent in groundwater than in surface water.8

Arsenic concentration in public drinking water supplies is regulated by the U.S.
Environmental Protection Agency (EPA). In 2001, the EPA lowered the public drinking-
water standard from 0.05 to 0.01 mg/L (equivalent to 10 ppb) to sufficiently protect the
public from long-term exposure.9 Some argue that the EPA arsenic standard for drinking
water should be revised downward to no higher than 0.003 mg/L due to potential cancer and
other health risks.10 The EPA’s maximum contaminant level goal (MCLG) is set to 0 mg/L,
and North Carolina’s drinking water health risk evaluations use a health-based maximum
Ccontaminant level (MCL) of 0.00002 mg/L.11

As groundwater from private wells is still a primary source of drinking water for many
people in rural areas in developing and developed countries,12 understanding which private
wells are at risk for potentially high levels of arsenic is a critical environmental and public
health concern. Approximately 15% of U.S. citizens receive their drinking water from
private wells, but the EPA does not regulate private wells.13 Environmental determinants
have been identified in past global,14 regional,15–18 and local19–23 studies of the distribution
of naturally occurring arsenic. However, little is yet known about the environmental
determinants of arsenic in groundwater or the nature of its spatial pattern in the Piedmont of
North Carolina.

Naturally occurring dissolved arsenic in groundwater is a growing concern in the North
Carolina Piedmont.11 Currently, the minimum detection limit (MDL) of arsenic in the North
Carolina Department of Health and Human Services (NCDHHS) Laboratory is 0.001 mg/L.
The left map of Figure 1 shows that arsenic-detected wells above the current MDL of
arsenic (shown as red) exhibit a clear spatial pattern in North Carolina: they concentrate in
the Carolina terrane (formerly known as the Carolina slate belt) located in the North
Carolina Piedmont, including Guilford, Montgomery, Moore, Orange, Randolph, Stanly,
and Union Counties.

The distribution of naturally occurring arsenic is controlled by regional and local geology.
Abundant literature exists detailing the distribution of arsenic contamination of groundwater
from metallic sulfide mining activities or other anthroprogenic sources.24–28 Reports on the
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spatial distribution of naturally occurring arsenic contamination of groundwater supplies in
nonmined areas have been reported in the bedrock aquifers of the eastern U.S. and
elsewhere.14–23,29–31 Pippin11 compiled groundwater arsenic data from North Carolina and
plotted its spatial distribution throughout the state. This study performed a simple
probability analysis to identify potential “hot spot” areas with elevated groundwater arsenic.
Specific areas of the Piedmont of North Carolina underlain by metavolcanic or
metavolcaniclastic rocks were identified as the areas of greatest potential for groundwater
arsenic problems. Pippin’s analysis narrowed the focus of elevated arsenic distribution to
more localized areas (tens of square miles).

Extensive research into the local distribution of groundwater arsenic has occurred in
Bangladesh,32,33 Wisconsin,34,35 Michigan,21 and other localities. Groundwater arsenic in
Bangladesh, Wisconsin, and Michigan occurs in sedimentary basins in which the local
geology is relatively well understood through subsurface investigations. Past studies in
crystalline rock terranes15–20,22,23 range from regional in scope (covering areas of several
thousand square miles) to local (several square mile area) but rely on low resolution
geologic data (1:100 000 to 1:500 000).

Research into the distribution of groundwater arsenic in areas of complex geology with
unconfined fractured bedrock aquifers, as present in parts of North Carolina, using high
resolution geologic data (e.g., 1:24 000 scale) is less common.36 This Article is one of the
first attempts to utilize detailed 1:24 000 scale geologic data in a GIS platform coupled with
geolocated groundwater arsenic data to the parcel level in a folded crystalline rock area to
produce highly resolved modeling on the spatial distribution of arsenic. Our statistical
approach enables us to attach uncertainty to both the significance of the determinants as well
as to predicted levels of arsenic at any location and depth. The results from these analyses
illustrate the potential for developing guidelines for environmental sampling and public
health intervention.

MATERIALS AND METHODS
This study integrated detailed geologic data with groundwater arsenic concentration data,
well construction data, and tax parcel data for portions of Orange County, NC (area inside
blue polygon in Figure 1) into a GIS. All data were obtained from publicly available data
files. Well sampling data from Orange County, which lies in the NC piedmont, indicate
multiple locations with detectable levels (greater than or equal to 0.001 mg/L) of arsenic.
This, in combination with the availability of 1:24 000 scale geologic data, makes Orange
County an especially attractive location for exploring potential predictors of arsenic in well
water. Modeling was implemented using a spatial random effects model in a Bayesian
computational framework.

Geologic Data
Detailed geological data were provided by the North Carolina Geological Survey for the
Chapel Hill, Hillsborough, and Efland 7.5 min (1:24 000 scale) quadrangles.37–39 The
detailed geologic mapping separated the study area into over 45 geologic units. For the
statistical analysis, the geologic units were simplified into four generalized categories based
on rock type and interpreted mode of deposition/emplacement. The generalized rock types
are (1) plutons/intrusive, (2) felsic and mafic lavas and tuffs (“rock type A”), (3) welded
tuffs and hydrothermal quartz bodies (“rock type B”), and (4) air fall tuffs and epiclastic
rocks (“rock type C”). Welded tuffs and hydrothermal quartz bodies were included into their
own category to differentiate them from air fall tuffs and epiclastic rocks based on their
temperature of emplacement. Welded tuffs and hydrothermal quartz bodies are emplaced at
temperature >200 °C, whereas air fall tuffs are emplaced at temperatures around 25 °C.40
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In addition to generalized rock types, the geologic data include line elements (line
shapefiles) depicting the location of faults and lines termed “transition zones”. The
“transition zones” mark zones that indicate a rock type transition from an area dominated by
tuffs (also known as primary pyroclastic rocks) and lavas to an area dominated by epiclastic
(also known as volcaniclastic sedimentary) rocks. “Transition zones” are incorporated into
the statistical model because geologic models of volcanic massive sulfide and disseminated
gold-pyrite deposits (deposits that have abundant hydrothermally altered rock and/or arsenic
bearing rock) indicate that favorable horizons for economic mineral deposits occur at the
transition from an environment dominated by primary pyroclastic rocks and lavas to an
environment dominated by volcaniclastic sedimentary rocks.41

Groundwater Arsenic and Groundwater Well Construction Data
Groundwater chemistry data were obtained from the NCDHHS laboratory. The data derive
from water samples collected in Orange County, NC and analyzed between 1999 and 2005.
Orange County private well construction data were provided by the Orange County Health
Department, including information on well depth, water flow, and age of well.

Water samples from both public and private water systems were examined for chemical and/
or physical parameters. Arsenic is one of the routinely analyzed inorganic contaminants, and
the detection limit is 0.001 mg/L. Wells drilled before July 2008 are tested only on request
by the Orange County Environmental Health staff for a fee of $35.42 A private water system
(homeowner) can obtain chemical analyses from the State Laboratory only if the sample is
submitted through the local health department.

There are 2178 arsenic measurement records between 1999 and 2006 in Orange County
from the North Carolina inorganic chemistry data. Some of the records represent repeat
sampling of the same well to track arsenic concentration over time. Therefore, only the
maximum recorded value was kept from the wells with multiple test results to reflect
potential groundwater concentrations, which reduced the data set to 1788 records. Only
about 10% of wells had multiple test results, and, of these, most had only two records.
Among these, 543 records were spatially joined to parcels in the study area where well
construction data were available using a standard batch geocoding protocol developed by the
Children’s Environmental Health Initiative at Duke University.43 The 68 records collected
under the older detection limit (0.01 mg/L) were discarded. After dropping 4 records that do
not belong to our rock type categories, 471 records were included in the final data set for
analysis. Finally, arsenic, well construction, and geologic data were integrated into a
comprehensive geographic information system.

Statistical Modeling
Statistical modeling was performed to (1) measure the effect of environmental and geologic
factors on groundwater arsenic levels; (2) determine if any spatial patterns in groundwater
arsenic detections were present; and (3) predict actual arsenic level at any location and depth
in the study area. Recent studies suggest that arsenic concentrations in groundwater may be
spatially positively correlated.19,21,44 We developed spatial statistical models that borrow
information from nearby wells to estimate arsenic levels in nondetect and nonsampled wells.
Spatial modeling also helps identify spatial patterns in the determinants, which affect not
only arsenic levels in a well but also levels in neighboring wells. Moreover, spatial
techniques can capture the spatial dependence in arsenic levels. Such dependence is ignored
in standard models, including regression analyses that assume independence among
observations.
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We also take a Bayesian approach to implement full and exact inference in analyzing data,
particularly with regard to uncertainty, which is useful for decision-making purposes.45–48 It
gives explicit posterior probability distributions for all parameters and for any predicted
outcomes, conditioned on the observed data, and revises the probabilities as new
information becomes available.49 Posterior probabilities produced by Bayesian methods can
be used to calculate expected risks associated with arsenic concentrations along with the
levels of uncertainty. In addition, credible intervals (which are similar to confidence
intervals in classical statistics) provide direct probability statements with regard to a
parameter falling within certain bounds.

In our data, arsenic levels in the wells with nondetect results are coded as zero, although the
actual arsenic levels would be between 0 and 1 ppb (equivalent to 0.001 mg/L). Hence, the
observed data can be represented as Y(s, d) = A(s, d)1(A(s, d) ≥1), where, at location s and
depth d, A(s, d) is the actual arsenic level, Y(s, d) is the measurable arsenic level, the
conditional function 1(•) returns one if the inside condition is true and zero otherwise, and
the scale is in ppb with 1 ppb the detectable limit. To accommodate the right skewness in the
data due to the 328 nondetects in the data set, we model arsenic on the log scale. We first
provide a nonspatial model where the data are viewed as independent given their means.
That is:

(1)

where ε(s,d) ≈ N(0, τ2). Here, X(s, d) is the design vector incorporating 10 geological
covariates, including a continuous variable for distance to the closest transition zone or fault
(in feet), and nine dummy variables for underground rock types and distance to pluton. The
dummy variables indicate the full combination between three categories of underground
rock types where the well is located (i.e., rock types A, B, and C) and three categories of
Euclidean distance to the closest pluton from the well (i.e., “less than 200 feet”, “200–1000
feet”, and “over 1000 feet”) with pluton as reference. The depth of a well is introduced into
the model linearly (other forms were considered, but the linear version appears to be
adequate). β is the coefficient vector associated with the explanatory variables and βd is the
coefficient associated with depth. Therefore, the observed arsenic measurements at location
s and depth d (Y(s,d)) become:

(2)

where Z(s,d) are independently distributed N(X(s,d)Tβ + βdd, τ2).

Next, we introduce spatial dependence in the form of a hierarchical spatial random effects
model where the spatial random effects are modeled assuming a stationary Gaussian spatial
process so that now:

(3)

Here, W(s) is the spatial random effect at location s arising from a Gaussian process with
mean 0 and covariance function, cov(W(s),W(s′)) = ρ(s − s′;ϕ). In particular, for simplicity,
we adopt the isotropic exponential covariance function, ρ(s − s′;ϕ) = σ2 exp{−ϕ‖s − s′‖}.
The isotropic exponential covariance function is introduced to explain the spatial random
effects in the residuals adjusted for the explanatory variables. The exponential covariance
function is commonly used to model spatial random effects. Hence, we assume additive
effects of three components to arsenic levels: (1) geological determinants (X); (2) well depth
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(d); and (3) spatial random effect (W). As a result, adjusted for covariates, the effects of
space and depth on arsenic are separable and additive. To obtain the posterior distribution of
each parameter, we use the Markov Chain Monte Carlo (MCMC) model fitting in the form
of a Gibbs sampler50 employing a Metropolis–Hastings algorithm.51

RESULTS AND DISCUSSION
Exploratory Analysis

The distribution of arsenic measurements in the combined data is positively skewed with an
approximate 70% of the data under the detection limit of 1 ppb. Arsenic was detected in 143
of 471 unique wells, and the maximum arsenic level was 8 ppb. Because it is analytically
unattractive to ignore such a high proportion of sites (328 sites) or to assign an arbitrary
level less than 1 ppb to the nondetect sites,52 we introduce a left-censored data model.53 The
right map of Figure 1 displays the spatial distribution of arsenic levels in the 471 wells in the
data (BDL = below detection limit). A majority of the wells with relatively high arsenic
levels are clustered around a diagonal axis from northeast to southwest. Wells with
nondetect results are distributed throughout the study area. The map also illustrates the
geological features in the study area, including the geological transition zones and faults
(dotted and dashed lines, respectively), anticline axis (solid line), and generalized rock
types.

Figure 1 suggests that geological features may be associated with groundwater arsenic
levels; we hypothesize that wells with elevated arsenic levels are more likely to be located
near transition zones or faults and at felsic/mafic lavas and tuffs (rock type A) or welded
tuffs and hydrothermal quartz bodies (rock type B). Because arsenic levels are measured at
varying well depth, we also hypothesize that deeper wells are more likely to contain higher
levels of arsenic. Well depths are non-normally distributed and right skewed, with an
average of 318 feet, and range of 105–925 feet.

Multivariable Analysis
The results for the spatial random effects model are compared to those for the nonspatial
model. Both nonspatial and spatial models converge well with 40 000 MCMC iterations.
The first 30 000 burn-in iterations were dropped. To achieve roughly independent posterior
samples, we used only the results from every 10th remaining iteration for posterior
inference. The mean estimate for σ2 is 0.79 with a 95% credible interval of (0.03, 3.39),
while the mean estimate for τ2 is 1.31 with a 95% credible interval of (0.01, 5.24). The
posterior probabilities for the three values of ϕ are 0.43 (small), 0.34 (middle), and 0.23
(large).

As presented in Table 1, both nonspatial and spatial models show that well depth is
positively associated with relatively high arsenic levels. As expected from Figure 1, distance
to the closest transition zone or fault is negatively associated with elevated arsenic levels.
These results indicate that wells that are deeper and closer to a transition zone or fault are
more likely to contain higher levels of arsenic. The models also show that only one of nine
dummy variables for combinations of rock types and distance-to-pluton categories is
significantly associated with arsenic in groundwater (i.e., wells located on welded tuffs and
hydrothermal quartz bodies (rock type B) and closer to plutons). This result indicates that
welded tuffs and hydrothermal quartz bodies are associated with relatively higher
groundwater arsenic concentrations, and welded tuffs proximal to a pluton appear to exhibit
even higher groundwater arsenic concentrations. These results correspond well with the
initial hypotheses that variations in arsenic concentrations may be related to the effects of
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hydrothermal alteration and the spatial relationships to geologic transition zones described in
geological models of volcanic massive sulfide and disseminated gold-pyrite deposits.40,41

We note that the effects of these significant variables appear to be accentuated in the spatial
random effects model as compared to the nonspatial model. For instance, the negative effect
of distance to the closest transition zone or fault in the spatial model is 5 times larger than
that in the nonspatial model. The key difference between the two models lies in the
estimation of arsenic values for the nondetect wells. We found that the estimated arsenic
levels from the nonspatial model cluster toward one, while those from the spatial model vary
more in the entire interval between zero and one. Such difference in estimating actual
arsenic levels for nondetect wells indicates that the spatial model depends not only on the
observed values in arsenic-detected wells, but also on the spatial correlation structure of
observed and estimated arsenic levels for all wells in the sample.

Model Validation
To validate the performance of both the nonspatial and the spatial random effects models in
predicting arsenic levels, two follow-up analyses were designed to (1) calculate predicted
mean squared errors (MSE) for both models, and (2) assess empirical coverage of the
models. For such analyses, we randomly selected 20 wells out of 143 wells with detected
arsenic levels and held out those wells from the model fitting. We fit the model to the
remaining wells and used the fitted model to predict arsenic levels at the hold-out wells.

By calculating predicted MSE, we compared what was observed at each of the 20 hold-out
wells with the posterior mean from fitting the model at that well (i.e., the average of the
posterior samples from the predictive distribution for that well). The predictive MSE for the
spatial model is 0.25, and that for the nonspatial model is 0.47. By checking empirical
coverage, we obtained 80%, 90%, and 95% predictive intervals for the arsenic levels,
calculating the proportion of times the intervals contain the observed value. The term 90%
empirical coverage refers to the proportion of times a predictive interval is correct for data
that were held out from the model fitting. For a satisfactory model, the observed or empirical
proportion should be approximately the nominal probability (in this case 0.9). We found that
the empirical coverage for the spatial model was consistently larger than that for the
nonspatial model. For instance, the empirical coverage for 90% nominal coverage is 100%
for the spatial model (i.e., all 20 hold-out samples are contained by the 90% predictive
intervals), while it is only 85% for the nonspatial model (i.e., 17 out of 20 hold-out samples
are contained by the 90% predictive intervals). The results of these hold-out analyses
indicate that the spatial random effects model outperforms the nonspatial model in
predicting arsenic levels in groundwater in the study area.

Arsenic Mapping
Using the results of the spatial random effects model, we predicted arsenic levels for 500
new locations, which were determined using a regular grid superimposed on the map of the
entire study area. We constructed the data for all of the covariates used in the multivariate
model for the new locations and predicted an arsenic level for each location, using the
coefficient vector of the spatial model along with the covariate data for the new locations.
Separate predictions are made at each location assuming that wells are installed to a depth of
150 feet or, alternatively, to a depth of 400 feet. Once we completed prediction for the 500
locations, a simple kriging interpolation method in the ESRI’s ArcGIS program was used to
create the predicted arsenic surfaces for 150 and 400 foot wells. This neighborhood
interpolation was done solely for display purposes and is unrelated to the results of the
statistical modeling. Because of the large changes in observed arsenic values over short
distances, the mapping process is limited.
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Figure 2 provides a map of predicted arsenic surface at each well depth, interpolated to the
entire study area. Several hotspots for arsenic-affected groundwater are observed in these
maps, and arsenic levels in the areas are higher for deeper wells. This result implies that
greater concern for arsenic concentrations should be given to deeper wells, especially for
those located in the hotspot areas.

Figure 3 displays the areas of hotspots for each of the two well depths, where the posterior
probability of arsenic being detected is greater than 0.75 (i.e., predicted arsenic levels are
found to be greater than 1 ppb for three-fourths of the simulated samples). We note that the
hotspot areas are located around transition zones and faults and are larger for deeper wells.
Considering high well-to-well variability of arsenic concentrations in the data, it would be
possible that a low level of arsenic is observed within a hotspot and arsenic is a problem
even in low risk areas. However, these maps could be used as a guideline for environmental
and health intervention in this area, such as instruction for new well locations, health
education of households consuming water from wells with potential arsenic risks, and
selection/design guidelines for additional water testing for arsenic.

Limitations and Future Work
Our analytical work has four major limitations in that it (1) assumes there is no interaction
effect between well location and well depth on arsenic levels; (2) uses simplified categories
for underground geological features such as rock type and transition zone; (3) ignores data
uncertainty around polylines and polygons; and (4) employs interval-censored instruments
measuring arsenic levels above detection limit as integers which potentially creates a
measurement error. Moreover, due to the apparent high variability in groundwater arsenic
concentrations from well to well, spatial estimation and mapping is limited to some extent.
In addition, the analysis relies on detailed geologic data, which may not be available in other
locations.

In future research, the spatial model can be refined to capture the interaction effects of two-
dimensional spaces (easting and northing) and depth on arsenic levels in groundwater by
allowing spatial random effects to vary by depth. This approach would allow us to map out
the full three-dimensional surface for arsenic in groundwater in the study area. Furthermore,
sensitivity analyses can be performed to evaluate the models by examining how the model
results vary with different categorizations of geological features and uncertainty levels of
geological data.

Detailed geologic data used in the statistical model runs were collected up to 2006, and
additional detailed geologic data have been collected by the North Carolina Geological
Survey in Orange County. Additionally, new regulations, enacted in 2006, mandate that all
newly constructed private groundwater wells be tested for numerous inorganic parameters
including arsenic. As such, new unbiased arsenic groundwater data are available from
Orange County. A reanalysis of the statistical model incorporating the newly available
geologic data and arsenic data would provide more robust model results.

In summary, the results of the Bayesian spatial random effects model for the left-censored
arsenic data identified three major determinants of arsenic levels in groundwater: (1) wells
close to a transition zone or a fault are more likely to contain detectable arsenic; (2) welded
tuffs and hydrothermal quartz bodies, especially proximal to a pluton, are associated with
relatively higher groundwater arsenic concentrations; and (3) deeper wells are more likely to
contain arsenic-affected water. Our spatial modeling work provides initial evidence of the
potential environmental determinants of groundwater arsenic levels. The resulting three-
dimensional maps showing spatial patterns of predicted groundwater arsenic levels could be
used as a partial basis for public health intervention.
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Figure 1.
Arsenic levels in 471 sample wells and geological features in study area.
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Figure 2.
Predicted arsenic levels in groundwater: 150 feet and 400 feet deep.

Kim et al. Page 13

Environ Sci Technol. Author manuscript; available in PMC 2013 December 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Arsenic hotspots (posterior probability of arsenic detected >0.75).
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