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Abstract Identification of gene expression mechanisms be-
gan with works on embryonic induction. The same mecha-
nism of cell-cell interactions also contributes to the process
of oncogenesis. Damage to epithelial cells’ genetic appara-
tus turns them into precancerous stem cells that are not yet
capable of tumor growth. They can be transformed into
cancer stem cells and undergo further progression as a result
of epigenetic effects of apocrine secretion by surrounding
activated stromal cells (mostly myofibroblasts). These fac-
tors may activate the damaged genetic information. On the
contrary, the level of malignancy can be decreased by add-
ing culture medium from non-activated stromal cells. One
must not exclude the possibility that in a number of cases
genetically altered bone marrow may migrate to damaged or
inflamed tissues and become there a source of stromal cells,
as well as of parenchymal stem cells in a damaged organ,
where they may give rise to changed epithelial
(precancerous) stem cells or to activated stromal cells, thus
leading to malignant tumor growth. Cancer treatment should
also affect activated stromal cells. It may prevent emergence
and progression of cancerous stem cells.
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Epigenetic Effects of the Tissue Environment on Cell
Differentiation

The background to understanding the control role of some
cells in development of others is deeply rooted in H. Schpe-
mann’s work on embryonic induction. The fundamental con-
cept is that a mature region of the embryo sends a signal to
another region that determines the fate of the latter. The
determining signal is produced by the cells of the inducing
tissue. For example, neural tube and neural plate are induced
from the ectoderm under the influence of the subjacent arch-
enteron roof. Later, derivatives of the neural tube and neural
plate induce the development of lens, cutaneous glands, etc.
[1]. The phenomenon of embryonic induction appeared to be
one of the basic laws of development and intercellular inter-
action. Various embryologists have expressed the opinion that
carcinogenic induction is one of those factors that induces
malignant transformation [2].

An inducer can only trigger cell differentiation if the cell
has the relevant genetic information encoded in its DNA [3].

Genotype becomes phenotype through expression of the
relevant genes, whereas triggering is epigenetic in nature
[4], i.e., genome-encoded stem cell differentiation requires
tight epigenetic control through micro-environmental fac-
tors that are external to these cells [5]. DNA-associated
information is more stable than epigenetic information.
The latter is more labile and can change over the course of
cell differentiation under the influence of external factors in
the course of cell differentiation [6]. The chemistry of epi-
genetic change includes alterations in DNA methylation and
in chromatin structure. Hypomethylation of regulatory pro-
moter region 5′ of the genes results in increased expression
of such genes (e.g., in the case of oncogenes), whereas
hypermethylation suppresses their functions (e.g., in the
case of genes that suppress cancer progression). Alterations
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in chromatin structure are related to methylation of DNA
cytosine residues and acetylation of the nucleosomal histo-
nes forming the structure around which the DNA is folded.
Small RNA molecules (microRNA) also play a role in the
gene expression algorithm [7, 8]. Predisposition to abnormal
gene methylation is age-related; this is one of the factors
contributing to the increased incidence of cancer with age. It
is supposed that epigenetic status is to some extent related to
diet and is substantially affected by smoking and alcohol
consumption [9–11].

Epigenetic influence is to some extent regulated by var-
ious intercellular barriers, e.g., by the basal lamina. It serves
as a regulating barrier for the transfer of inducer macro-
molecules from cells located beneath the membrane to those
above it. As has been demonstrated in the case of develop-
ing duodenum, this membrane is still fragmented during
early embryogenesis. It is this discontinuity of the basal
lamina that makes epithelial-mesenchymal interactions pos-
sible, since it allows maximum inducer access to the matur-
ing epithelium [12].

Studies on prostate development have made it possible to
formulate some basic principles regarding mesenchymal-
epithelial interactions. First, it was demonstrated that prostate
development requires reciprocal mesenchymal-epithelial
interactions. Second, mesenchyme induces and determines
epithelial development and differentiation. Third, certain
types of epithelium can only develop in the presence of a
specific mesenchyme. Fourth, mesenchymal-epithelial inter-
actions are reciprocal. Urogenital sinus mesenchyme induces
the development of adult prostatic epithelium [13].

It should mentioned that certain authors use the term “mes-
enchyme” erroneously when discussing semi-differentiated
elements of connective tissue. Mesenchyme as such does not
exist in a differentiated organism [14]. The term “mesen-
chyme” found below is merely a repetition of the terminology
used by the authors cited.

Mature colonic mucosa is a good example of the role,
which intercellular interactions play in cell development in a
mature organism. This mucosa contains pericryptal fibro-
blasts, or myofibroblasts originating from fibroblasts [15],
which exhibit some smooth muscle morphological features.
They regulate the growth and differentiation of adjacent
epithelial cells [16]. It has been suggested that there is a
paracrine interaction between pericryptal fibroblasts and
colonic epithelium [17].

Modern approaches to the problem of cell induction
make it possible to state that the inducing signal triggers
certain genes within cells of the induced tissue, thus deter-
mining function and morphology. Molecular factors that act
as inducers include fibroblast growth factor, transforming
growth factor—β (TGF-β) [18], hepatocyte growth factor
[19], insulin-like growth factor 1 [20] and certain other
proteins, in addition to heparan sulphate proteoglycan and

laminin originating from the basal lamina [21, 22]. Accord-
ing to some studies, the paracrine factor released by cell-
inducers is an isoform of cyclooxygenase (COX-2) [23, 24].
A similar function is also attributed to chloride intracellular
channel 4 (CLIC4) [25].

Conclusion So, it is possible to assume that histogenesis is a
result of reciprocal interactions of internal (genetic determi-
nation) and external regulating (epigenetic) factors.

DNA Damage as the First Stage of Malignant
Transformation

Tumor development is a multi-stage process involving the
accumulation of various damage events. The first group of
such damages are damages to the genome: mutations of
various types, point mutations, amplifications and rear-
rangements of proto-oncogenes leading to their transforma-
tion into oncogenes. Damage to or switching off of genes
that are responsible for apoptosis in cells with damaged
DNA is another prerequisite for malignant transformation.
In particular, it may occur if an allelic gene is lost, for
example as a result of deletion. The remaining allele may
have a point mutation [26, 27]. It is speculated that malig-
nant transformation may also require mutations in certain
other groups of genes. These include the malfunction of
genes that are responsible for DNA repair [28] and the
accumulation of recessive mutations at a critical “cancer
initiator locus” [29]. Over-expression of the c-Myc gene
imposes a “mutator” phenotype. This gene makes cells
susceptible to various mutations, including oncogenic muta-
tions [30]. Certain mutations, e.g., those in the BRCA genes,
are inheritable [31].

Oncogenic viruses can induce chromosomal instability
that can in turn result in oncogenic mutations [32]. Cells
may undergo oncogenic virus mediated fusion (somatic
hybridization). The resulting cell would be tetraploid and
characterized by chromosomal instability. As a result, such
cells are affected to a greater degree by mutations, including
mutations in genes that suppress malignant growth [33, 34].
Viruses can also have their own versions of oncogenes.
Thus, for example, the E6 protein of HPV-16 inactivates
p53 in squamous cell carcinomas [35]. There are two
options for cells that have been infected: they may be
eliminated through apoptosis or continue their existence as
chronically infected cells. In the latter case, this chronic
infection creates the potential for malignant transformation
[36].

Conclusion Hence, DNA alterations are the first and
indispensable component of the malignant transforma-
tion process.
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Epigenetic Influence of Activated Stroma Triggers
Malignant Transformation of Precancerous Cells

The second group of damages leading to the emergence of
cancer cells involves the epigenetic oncogenic influence of
the adjacent tissues [37]. There are two different types of
DNA alterations leading to the emergence of two different
forms of colon cancer [38]: on one hand, there may be
chromosome instability or loss of heterozygosity resulting
in aneuploidy and in loss of alleles [39], and, on the other
hand, microsatellite instability may result in mutations in
cells with an almost diploid karyotype and relatively rare
allele loss [32]. Inflammation is also one of the epigenetic
factors of malignant transformation [40].

“Cancerization fields” are another example of the role
played by the epigenetic factors. These fields were first
described by Slaughter [41]. He found abnormal hyperplas-
tic epithelial cells around squamous tumors of the mouth;
however, these cells did not demonstrate phenotypic traits
typical of cancer cells. Since then, cancerization fields have
been described in various other organs: lung, esophagus,
breast, colon and several others. Biomolecular analysis has
shown that cancerization field cells are genetically altered in
the same way as cancer cells; nevertheless, their morpholo-
gy and behaviour differ from those of cancer cells [42].
Other studies have confirmed the existence of morphologi-
cally non-malignant cancerization field epithelial cells with
genetic alterations (e.g., mutations in the p53 gene) [43].
These studies have demonstrated that genetic changes are
not sufficient for the emergence of a cancer cell [44]. Tumor
initiation and progression of such genetically altered cells is
promoted by their microenvironment [45], through epige-
netic changes which promote expression of the altered ge-
notype to produce a malignant phenotype [46]. Some data is
now available on the existence of fields where epigenetical-
ly altered cells without oncogenic genetic alterations are
located. Such fields have been found in Helicobacter pylori
infected stomach and in some other organs: esophagus,
liver, colon, lungs, kidneys. However, malignant transfor-
mation is not the only process associated with epigenetic
alterations [47]. This means that epigenetic changes in the
way the genetic information is read only become oncogeni-
cally relevant if the cell genome has oncogenic changes.

Each stage in cancer progression is characterized by the
existence of a corresponding cancer stem cell. In other
words, cancer initiation and progression can be represented
as a sequence of cancer stem cells characterized by succes-
sively increasing malignancy [48]. Tissue stem cells are
critical for tissue homeostasis regulation and regeneration
of damaged tissue. Bone marrow derived stem cells often
migrate to damaged or inflamed tissues and become a source
of stromal stem cells [49–52], as well as parenchymal stem
cells in a damaged organ, to which they are recruited [53–56],

and may undergo malignant transformation [48]. It is also
important that cancer cells may induce cancer stem cell trans-
formation in non-stem cells if the parenchyma is damaged
[57]

Cancer cells can develop from a stem cell of any type;
however, most malignant cells are derived from genetically
altered tissue stem cells.

It is widely accepted that the earlier the differentiation
stage of a cell that has undergone malignant transformation,
the more heterogeneous will be the resulting tumor [58].
However, the phenotypic heterogeneity of cancer cells in
advanced stages of the disease can be in part explained by
the fact that the parenchymal cells of a tumor may undergo
an epithelial-mesenchymal transition (EMT) and acquire
stem cell characteristics. This process can generate cancer
stem cells, from which new clones then derive.

Precancerous stem cells constitute the very beginning of
the malignant transformation process. They have the potential
for transformation into either a normal tissue cell or into a
malignant cell, or they can enter the quiescent phase G0 [59].
It has been observed that whereas low fibroblast saturation
density in cell cultures is associated with resistance to cancer,
high fibroblast saturation density is typical of individuals in
families with hereditable forms of cancer [60]. In the bodies of
immunodeficient mice, unlike in healthy animals, a precan-
cerous stem cell always gives rise to a tumor [61].

Precancerous stem cells have been found in mammary
tissue. The transition from a precancerous stem cell to a cancer
stem cell does not require genetic alterations; changes in the
expression of certain genes as a result of epigenetic influences
is sufficient for this transition [62]. Cancer stem cells can both
self-renew and produce the cells that constitute the bulk of the
tumor. Mitosis frequency in the latter reflects the degree of
tumor malignancy [63]. Thus, precancerous stem cells emerge
after accumulation of all the required mutations; whereas it is
the impact of epigenetic factors that determines their fate as
cancer cells or as dormant stem cells.

Further cancer progression is associated with the emer-
gence of migrating cancer stem cells, characterized by their
smaller size and invasive growth. This phenomenon is known
as epithelial-mesenchymal transition [64]. The reverse pro-
cess, mesenchymal-epithelial transition, takes place when a
metastatic deposit is established. Through this process, a
cancer cell regains its stationary state and thus gives rise to
the organization of primary tumor tissue, an in situ metastatic
carcinoma [65]. Thus, epithelial-mesenchymal transition
gives rise to a migrating cancer stem cell, whereas transfor-
mation of the latter into a stationary stem cell requires
mesenchymal-epithelial transition. The biological character-
istics of metastatic stem cells differ from those of stem cells in
the primary tumor. Metastatic cancer stem cells from the
primary cancer canmetastasize to various organs. On the other
hand, cancer stem cells originating from metastatic sites only
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metastasize to a limited number of organs. Thus, stem cells
from the primary prostate cancer metastasize into liver, lungs,
and brain, whereas stem cells from the metastatic sites can
only give rise to bone metastases [58]. This means that a
stationary stem cell from the primary cancer is not identical
to a stationary stem cell from the metastatic site. Nor is a
migrating stem cell from the primary cancer the same as a
migrating stem cell from the metastatic site. The population of
cancer stem cells is highly heterogeneous. This heterogeneity
can be established using various immunohistochemical
markers: CD133, CD44, CD166, CD49b [66]. The malignant
progression of a stationary cancer stem cell, i.e., its transfor-
mation into an invasive and then into a migrating cancer stem
cell, occurs under the influence of stromal cells [25, 67, 68].

Myofibroblasts produce paracrine factors that epigeneti-
cally affect cancer stem cells [69–73]. This effect only
occurs if the altered epithelial cell has undergone the re-
quired genetic alterations [74]. Myofibroblasts release a
paracrine factor that activates Wnt signaling in target cells.
The Wnt signaling pathway determines the expression of
certain genes; as a result, it can activate malignant pathways
[75]. Endothelial cells are also capable of influencing cancer
cells through paracrine regulation [76].

Changes in stromal cells are the most common cause for
the disruption of stromal-epithelial interactions, required for
malignant transformation. Studies on the role of stroma and
subjacent connective tissue in the malignant transformation
of epithelium have demonstrated that the emergence, growth
and fate of cancer cells strongly depend on the condition of
the underlying connective tissue [77]. The application of
coal tar to the skin of mice induces changes in both the
epithelium and in the underlying connective tissue. In the
same study, it has been demonstrated that tar applications
also have a systemic effect [78]. Mice whose skin was
treated with 20-methylcholanthrene for 12 weeks developed
skin cancer in the control group; however, carcinogen-
treated epidermis did not yield tumors when transplanted
to the denuded dermis of the untreated body side [79, 80].
This data is a convincing argument in favour of the role
connective tissue plays in carcinogenesis.

Electron microscopy of throat and skin epithelium and
underlying connective tissue in precancerous condition
revealed gaps in the basal lamina under the altered epitheli-
um, allowing epithelial cell cytoplasmic projections to ex-
tend into the connective tissue [81].

Studies on the condition of basal lamina in cancer or
precancer conditions have clearly demonstrated that if epi-
thelial dysplasia is present, the underlying basal lamina
appears more distinct. At the non-invasive stage of cancer,
swelling, looseness and indistinct contours of the basal
membrane may be observed. The first stages of invasive
growth are associated with the destruction of all basal lam-
ina components. Newly developed basal lamina may only

be observed in the most differentiated regions of the neo-
plasm. This means that changes in basal lamina develop
under the influence of cancer cells [82].

Precancerous conditions of the uterine cervix are charac-
terized by changes in elastic fibres caused by abnormal
fibrillogenesis. Newly formed fibres do not reach maturity
and are easily destroyed. This means that connective tissue
reactivity is already aberrant at the early stages of neoplastic
growth [83].

Morphological studies on human colon carcinogenesis have
demonstrated that, for human colon adenocarcinomas, cyto-
logical changes in the epithelium followed by disorganization
of tissue structure are the first signs of malignant cell transfor-
mation. Subsequently, it is possible to detect invasion and
metastases. In experiments with chemically induced tumors,
changes have been found in both epithelium and in the con-
nective tissue, where collagen fiber swelling, an increase in the
number of elastic fibers, fibroblast proliferation, and lympho-
cyte and mast cell infiltration of the stroma have been ob-
served. The latter are presumed to have a protective function.
Destruction of basal lamina between stroma and epithelium is
the first stage of skin, mammary and colon cancer progression,
irrespective of the specific cancer induction method. Electron
microscopy studies have clearly confirmed the existence of a
strong link between changes in epithelium-connective border
area and carcinogenesis [84–86].

Aberrant crypts in colon mucosa are the earliest identifiable
lesions in colon cancer progression. Their formation is the
result of genetic and epigenetic damage [87, 88]. These aber-
rant crypts are the earliest, pre-neoplastic stages of a malig-
nancy. The nuclei of some epithelial cells are enlarged. It has
been found that epithelial cells from aberrant crypts have gene
mutations, which are the earliest stage of cancer progression
[89]. Stromal cells are also altered [90]. When an inflamma-
tory process begins in the colon, the number of inflammatory
cells (neutrophils and endothelium) in the stroma increases.
With progression of chronic disease, the level of monocytes
(macrophages) and lymphocytes increases and the structure of
the endothelium and fibroblasts changes. Dysplastic changes
in cryptal epithelium show a positive correlation with the
decrease in the number of pericryptal fibroblasts. This can
be a sign of progression of the pre-cancerous state of cryptal
epithelium [91]. The interaction between stroma and epitheli-
um can either result in a protective outcome or in malignant
transformation [65]. So, epithelial stem cell malignant trans-
formation is initiated by certain mutations. Later changes are
regulated by stromal signals, i.e., to a certain extent, malignant
change depends on the cell’s location in the crypt, differences
in stromal environment being a possible explanation [92].

Various polyps are potentially pre-cancerous intestinal
neoplasms. Their histological structure already differs from
that of normal mucosa at the early stages of their develop-
ment. The genotype of their cells shows several mutations
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and epigenetic damage [86]. A study of 123 sporadic colo-
rectal polyps and 41 sporadic colorectal invasive carcinomas
revealed genetic instability in both epithelial and stromal
cells [93].

The same laboratory had previously published the results
of their study on microsatellite instability and p53 mutations
in cancer and stromal cells from 40 sporadic cancer speci-
mens [94]. According to this report, p53 gene mutations in
stromal cells are associated with microsatellite instability.
This data confirms the hypothesis that genetic changes (p53)
alone can only lead to cancerization field formation, where-
as transformation of these cells into cancer cells requires
signals from altered stromal cells [95].

In another paper, the authors demonstrated presence of
the TGFBR1*6A mutation in both epithelial and stromal
cells adjacent to intestinal tumors, whereas lymphocytes
from those locations did not have this mutation. The authors
believe that this mutation in stromal cells promotes the
initiation of intestinal cancer if the epithelial cell genotype
is damaged. According to the authors, this article is the first
report of decreased TGF-β activity in stroma as one of the
stages in colon cancer progression in humans [96].

Of the many types of stromal cells, activated fibroblasts
[78] and myofibroblasts [75] are noted for their influence on
epithelial cells. They can be activated by inflammation, by
adjacent cancer cells, wounds, ageing, etc. [97]. Activated
stromal cells release into the blood a substance (a trigger for
certain genes) that stimulates cell proliferation. This reaction
has a protective role in a wounded organ; however, it also
promotes cancer progression [98]. This means that cancer
progression is to a great extent determined by the influence
of the activated stroma surrounding precancerous stem cells.
In the absence of a triggering signal from the altered stroma,
a genetically altered precancerous cell may not reveal its
malignant potential. Stroma from the regions adjacent to the
mammary tumor show clear genetic and epigenetic changes
[99, 100]; however, this fact cannot be considered as strong
evidence in support of the role of stroma in malignant
progression, since such changes could develop in response

to the nearby tumor. However, there is also data providing
more solid support for the opinion that changes in stroma
develop independently of cancer: fibroblasts isolated from
the healthy relatives of patients with familial breast disease
exhibited a phenotype that was similar to that of tumor-
associated fibroblasts [101].

Conclusion This means that activated stromal cells act as an
inducer of malignant transformation in the epithelium,
which has genetic preconditions for such a transformation
[102–104].

Other authors share this opinion that cancer initiation and
progression is a process that is determined by genetic alter-
ations in an epithelial stem cell and by epigenetic changes
mediated by its microenvironment [25, 105–107]. It has
been found in animal studies that malignant transformation
of mammary cells occurs if fibroblasts have been previously
exposed to a carcinogen. Extracellular matrix that has been
treated in such a way also has this capability [108].

Normal Fibroblasts Prevent Malignant Transformation

It is interesting to note that the malignant phenotype can be
reversed in culture by integrin-blocking antibodies (Integ-
rins are cell surface receptors that regulate cell shape, mo-
tility, and the cell cycle) [108].

Normal fibroblasts are also capable of inhibiting or pre-
venting tumor formation [107]. Stationary cancer stem cells
from a metastasizing tumor undergo epithelial-mesenchymal
transition under the influence of stromal signals. Transforma-
tion of cancer stem cells of a cancer in situ into invasive cancer
stem cells occurs via epithelial-mesenchymal transition under
the influence of epigenetic signals from activated stroma. In
target organs, signals from non-activated stroma induce the
reverse (mesenchymal-epithelial) transition of invasive cells.
These cells develop into carcinomas in situ. Once the stroma
becomes activated by the tumor, its signals increase invasive
ability of the tumor cells. [109].

Fig. 1 Epithelial-stromal interactions and influence of normal fibroblast cell culture on the cancer cells
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Stroma influences the development of oral squamous epi-
thelial stem cells. Altered stroma triggers carcinogenesis by
inducing the development of precancerous stem cells [110].

The same epigenetic triggering influence of activated stro-
ma (fibroblasts) on precancerous cells has been observed in
the initiation and progression of prostate cancer [111–113]. On
the contrary, healthy stroma containing smooth muscle cells
impedes the malignant progression of prostate adenocarcino-
ma in rats. Stroma from rats with advanced prostate cancer
does not have any effect on genetically normal prostate cells;
at the same time, it promotes cancer progression in genetically
altered cells [114].

The state of fibroblasts was found to alter cancer cell
gene expression in experiments, when cancer cells and
fibroblasts were cocultured [115, 116]. Endodermally de-
rived epithelium and myofibroblasts of mesodermal origin
interact epigenetically. The actual inducers may be affecting
miRNA, various growth factors and so on [116, 117].

It should be mentioned that the malignant transformation
of colon epithelial stem cells does not prevent them from
undergoing differentiation in various directions. Such cells
retain antigenic markers typical for their cell lineage. These
markers include secretory components (columnar cells),
mucin antigen (goblet cells), chromogranin (enteroendo-
crine cells), and lysozyme (Paneth cells). Immunohisto-
chemical analysis of these markers makes it possible to
classify such tumors for diagnostic, therapeutic or prognos-
tic purposes [118].

Conclusion Several papers have now provided scarce, but
compelling data on the ability of normal fibroblasts to
decrease malignancy of tumor cells or even to induce their
reverse transformation. It can be surmised that cultural me-
dium of embryonic fibroblasts may contain some active
components capable of producing such an effect.

Conclusion

The role of stroma in cancer initiation and progression has
been confirmed by many experiments using cell cultures, in
studies on animals and by examination of clinical specimens
[119–129]. It is, therefore, an established opinion that car-
cinoma is an epithelial stem cell disease. It is caused by the
accumulated mutations, which transform the cell into a
precancerous stem cell, and by the influence of activated
adjacent stroma [130], which sends altered epigenetic sig-
nals through the basal lamina, if the integrity of the latter is
disrupted. Under this stromal influence the cell develops
malignancy traits [35], i.e., it becomes a stationary and then
a metastatic (migrating) cancer stem cell.

Tumors include bone marrow derived stem cells that can
produce both epithelial and stromal stem cells [48]. The

stromal cells of tumors are also pathologically altered. Such
changes may precede the tumor or may result from the
proximity of the stroma to tumor cells. Therefore, cancer
is a structure that consists of various tissues; as a result of
their interactions, those tissues undergo changes in the pro-
cess of cancer progression [131].

To a great extent, a cancer can progress and survive
because the cells of which it is comprised are organized as
a harmoniously collaborating metabolic domain [132]. We
believe that one should not exclude a variant of tumor
formation from a mutant bone marrow derived stem cell
that can give rise to both precancerous and activated
(altered) stromal cells in the affected organ. The further
interactions of these cells initiate the tumor.

The above data on the dual nature of the malignant
pathology—genetic changes that transform epithelial cells
into precancerous stem cells, and epigenetic changes that are
caused by the influence of altered (activated) stroma and
result in implementation of the malignant program and
cancer progression—have stimulated studies on epigenetic
differentiation therapy that is directed against various cancer
stem cells [133–138] (see Fig. 1).
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