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Abstract

Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity
between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white
matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function
relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the
tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI
signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that
there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and
that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions.
These observations suggest that MRI signal variations from within white matter in a resting state may convey similar
information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal
correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in
both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate
the potential of the technique for mapping the functional structure of neural networks and for direct integration of
structure-function relations in the human brain.
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Introduction

Magnetic resonance imaging (MRI) has permeated many

aspects of neuroscience and is widely used for studying the

structure and functional architecture of the brain. Two types of

imaging in particular, viz. functional MRI (fMRI) based on

imaging changes in BOLD (blood oxygenation level dependent)

signals, and diffusion tensor imaging (DTI) based on quantification

of the anisotropy of water movements in white matter fibers, have

contributed enormously to our ability to assess functional activity

in cortical areas and the fine structure of white matter tracts

respectively [1–4]. Collectively these enable the interrogation of

how localized volumes in the brain are engaged in specific

functions and how separate regions are anatomically connected. In

addition, evaluations of the temporal correlations between voxels

of low frequency BOLD fluctuations in a resting or steady state are

believed to provide direct measurements of the functional

connectivity between cortical regions [5,6], and thereby reveal

which distributed neural circuits underlie various brain functions.

There is considerable interest and potential importance in

extending such MRI methods and in combining their different

types of information to achieve a greater understanding of the

functional anatomy of the brain [7,8].

The studies described here were motivated by three consider-

ations. First, although there is considerable motivation and

potential applications for combining structural tractography

obtained from DTI with functional information obtained by

fMRI, at present these different imaging methods provide only

complementary information and do not lend themselves to direct

integration [9]. Rather, because fMRI signals arise from gray

matter, in which water appears to diffuse largely isotropically, and

DTI data are derived from white matter, from which task-based

activation signals have not been robustly obtainable, most current

approaches simply identify separated cortical sites of activation

and attempt then to connect them via resting state correlations of

BOLD signals and/or white matter tract tracings (e.g., [10–14]).

There is no overlap in the biophysical origins of these different

data sets, so a method for directly fusing fMRI and DTI may

potentially provide new abilities to integrate and interpret

structure and function.

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82107



Second, in general, task-based activations within white matter

have not been routinely observed, and the conventional explana-

tion is that white matter blood volume and flow are much lower

than in gray matter, and the energy requirements for electrical

activity and hemodynamic response in white matter are different.

However, more recent studies of task-induced activation report

significant BOLD effects within the corpus callosum [15],

suggesting that MRI signals related to underlying neuronal activity

may be encoded in these regions. Moreover, it is also apparent that

fluctuations in resting state BOLD signals need not be directly

related to task-based changes, and may be relatively greater when

baseline flow is lower. The mean signal intensity in typical BOLD-

sensitive acquisitions in gray matter is typically only 5–20% higher

than from white matter, and the coefficient of temporal variation

in white matter is 60–90% of that in gray matter [16]. We expect

that larger fractional changes in blood flow or volume may occur to

meet increased metabolic demands when the baseline flow is low,

as is also seen in gray matter.

Third, examination of the power spectra of MRI signals from

white matter in a resting state show significant components at the

low frequencies (f = 0.01 – 0.1 Hz) associated with evidence of

functional connectivity in gray matter. Indeed, even after

correcting for global time course variations, the percent power

in the range 0.01 to 0.1 Hz within white matter is about 10% of

the total variance, comparable to that in gray matter (see the

Results Section for more detail). These observations are all

consistent with the postulate that resting state variations that

reflect neural activity may be observable in white matter as well as

gray matter even if task-based activations are not detectable.

Taken together, these considerations motivated our hypothesis

that appropriate analysis of resting state acquisitions may reveal

MRI signal variations within white matter that reflect neural

electrical activity and the propagation of information. As such we

might also expect to see patterns of BOLD signal variations that

exhibit anisotropic correlations with neighboring regions and are

associated with major white matter tracts. To evaluate this

hypothesis, we examined the correlations of voxels within white

matter in resting state acquisitions with their nearest neighbors.

For every voxel this creates a matrix of 26 inter-voxel values which

may then be used to construct a local spatio-temporal correlation

tensor. In gray matter we expect these tensors to be largely

isotropic except at the boundaries of functional domains. In white

matter, evidence of anisotropy would be consistent with our

hypothesis and could form the basis of a new way to integrate

directly the structure and function of neural networks in the

human brain.

Methods

Ethics Statement
The protocol used in this study was approved by Vanderbilt

University Institutional Review Board. Prior to experiments,

written informed consent was obtained from each participant.

Six healthy volunteers (three females, mean age = 28.5 yrs, age

range = 24–34 yrs) participated in this study. For each subject, a

set of anatomical and diffusion weighted MRI (DW-MRI) data

and resting state BOLD signals were acquired on a 3T MRI

scanner. For each subject both spatio-temporal correlation tensors

and diffusion tensors were computed. Axonal fibers were tracked

from the DW-MRI data and temporal correlations of resting state

BOLD signals along the fiber tracts were measured. In addition,

the spatial distributions of temporal correlations of resting state

signals to seed voxels in white matter were examined for selected

regions, and pathways reconstructed from spatio-temporal tensors

were mapped. Details for key procedures in this study are

described below.

In vivo resting state fMRI and diffusion imaging
All imaging was performed on a 3T Philips Achieva scanner

(Best, Netherlands) installed at Vanderbilt University Institute of

Imaging Science. Subject motion was minimized by using pads

placed within the head coil.

Image Acquisitions. Anatomical MRI: T1-weighted (T1w)

images were obtained using a multi-shot gradient echo (GE)

sequence with TR = 8.9 ms, TE = 4.6 ms, matrix

size = 256|256|170, and voxel size = 1|1|1mm3. DW-MRI:

A single-shot, spin echo (SE), echo-planar imaging (EPI) sequence

was used to acquire DW-MRI data with b = 1000 s/mm2, 32

diffusion-sensitizing directions, TR = 10 s, TE = 60 ms, SENSE

factor = 3, matrix size = 128|128|60, and voxel size =

2|2|2mm3. To improve the image signal-to-noise ratio, three

repeated scans were acquired. FMRI: Images sensitive to BOLD

contrast were acquired using a T2*-weighted GE EPI sequence

and the following parameters: TR = 2 s, TE = 35 ms, matrix

size = 64|64, FOV = 240|240 mm2, 30 slices of 4.5 mm

thickness with a 0.5 mm gap, and 200 dynamics. Subjects were

instructed to close eyes without performing any functional tasks.

Image Processing. First, the three repeated DW-MRIs were

co-registered and averaged, from which diffusion tensor elements

were calculated using linear least squares fitting [17]. Second, the

resting state fMRI data were corrected for slice timing and head

motion using standard spm2 tools (http://www.fil.ion.ucl.ac.uk/

spm/software/spm2). Subject data with movement more than

2 mm of translation or 2u of rotation in any direction were

excluded. The corrected data were then co-registered with the

b = 0 DW-MRI volume. For each subject, a global time course was

removed by intensity normalization, i.e., equalizing the mean

values of all volumes in the data. The voxels in the brain were low

pass filtered with a cutoff frequency of 0.1 Hz. Spatio-temporal

correlation tensors were constructed voxel-wise, as described in the

sub-section below, using Pearson’s linear correlation coefficients (r)

of BOLD signals and C = r2.

Construction of spatio-temporal correlation tensor
The BOLD-sensitive MRI signal from within each voxel

provides a time series that exhibits small amplitude fluctuations.

The temporal correlation between pairs of voxels indicates their

degree of synchronous variation. For any single voxel, a

correlation tensor can be constructed to characterize the

covariation of neighboring voxels, which is mathematically similar

to the construction of diffusion tensors in DTI experiments [17].

Assuming only a first tier neighborhood of 26 voxels is used, a

direction vector connecting a voxel of interest and each voxel in

the neighborhood is defined, which is subsequently normalized

into a unit vector. For a spatio-temporal correlation tensor T to be

constructed, the estimated correlation C projected along a vector

ni (xi, yi, zi) is

Ci~ni
:T : nt

i , ð1Þ

where t denotes a transpose operation.

Let C denote observed temporal correlations along the 26

directions, C = (C1, C2, …, C26)t. After rearranging the tensor T
into a column vector Tc, the relation between C and Tc can be

expressed as

Correlation Tensors Reveal Functional Structure
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C~M :Tc, ð2Þ

where M is a design matrix of size26|6. The ith row of M has the

form of ( x2
i , 2xiyi, 2xizi, y2

i , 2yizi, z2
i ). A least squares

solution for the column vector Tc can be obtained as follows:

Tc~(Mt :M){1 :Mt :C, ð3Þ

where the superscript -1 denotes matrix inverse.

Similar to the diffusion tensor, the eigenvector of the spatio-

temporal correlation tensor T corresponding to the largest

eigenvalue (the major eigenvector) represents the dominant

direction of temporal correlation.

Fiber tracking with diffusion tensor images
To examine correlation profiles along anatomic fiber tracts,

streamline fiber tracking was performed with DTI data acquired

Figure 1. Intensity profiles of BOLD signals in GM (A) and WM (C). Image in (B) is an enlarged view of the boxed region in Fig. 3D, which is
segmented into WM and GM using intensity thresholding (D). Cerebro-spinal fluid and regions of WM-GM intensity overlapping are denoted in black
and excluded from analysis.
doi:10.1371/journal.pone.0082107.g001

Figure 2. Power spectrum distribution in the slice shown in Fig.
3D. The intensity represents the ratio of the power (i.e., squared Fourier
coefficient) for the frequency f = 0.01–0.1 Hz to the total power for all
frequencies at f.0.
doi:10.1371/journal.pone.0082107.g002
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during the same session. For each subject, a tracking process was

launched from white matter seed voxels selected by identifying all

voxels with FA.0.6. Fibers were traced using a step of 0.05 voxel

until either of two conditions was satisfied: reaching a voxel with

FA,0.4 or reaching a step-wise change in fiber direction greater

than 30u. This identified a set of fiber tracts that were confined to

major white matter pathways.

Temporal correlations of resting state BOLD signals were

measured between voxel pairs lying on the same fiber tract defined

by DTI above, and these correlations were compared to those

measured between pairs of voxels randomly sampled in the brain

with FA.0.4. This serves to test whether the pair-wise correlations

measured along a fiber tract are different from the background

correlations measured throughout the brain, and how this changes

as a function of the fiber length (separation distance). The number

of randomly sampled voxel pairs was chosen to be equal to the

number of on-fiber voxel pairs at each given separation. The mean

correlation amongst all pairs of voxels in both the on-fiber or

random samples was compared, and t-tests were performed to test

for significant differences.

Probabilistic tracking of optic radiation pathways
To demonstrate the potential of spatio-temporal correlation

tensors for visualizing long range functional structures, pathways

of the left optic radiation were reconstructed using probabilistic

tracking from the maps of correlation tensors derived. First, a seed

region of3|6|1cubic voxels was defined. Similar to [18], the

location was chosen to be distal to the Meyer’s Loop, so as to avoid

difficulties in following rapid directional changes around the loop.

Second, we defined the target region to be the primary visual

cortex (Brodmann Area 17), using the WFU PickAtlas tool [19].

The probabilistic tracking process began with random sampling of

the 18 voxels in the seed region. For each sampled seed voxel, a

pathway was reconstructed sequentially at a step size of 0.5 voxel

until it reached the target region or a step-wise change in path

direction was greater than 60u. At each step, the path followed the

major eigen direction of a tensor that was randomly sampled from

an average of the incoming tensor and the current tensor.

The probabilistic tracking process was repeated 100,000 times,

and the pathways that reached the target region were retained.

From these pathways, maps of probability density were computed

to record the ratio of the number of times that each voxel was

traversed to the total number of pathways. Maps of mean path

direction were also computed voxel-wise to record the mean

direction of all paths traversing the voxel. With these two maps,

streamline tracking was implemented from the target region (left

primary visual cortex) with cut-off probability density of 0.01, in

which the direction opposite to that of mean path direction was

followed sequentially. The backward tracking process was

terminated when it reached the seed region.

Results

Intensity profiles and power spectra of MRI signals in
gray and white matter

Histograms of BOLD-sensitive MRI signal intensities from gray

matter (GM) and white matter (WM) for a selected region are

shown in the left column of Fig. 1. Mean signal intensity in WM is

,91% of that in the GM, and their standard deviations are

comparable (<7%). Voxel-averaged temporal variations of MRI

signals in the WM are ,82% that in the GM.

Figure 3. Maps of temporal correlations of BOLD signals to a seed in the corpus callosum. The background is the anatomic image. Shown
from (A) to (C) are maps thresholded at different levels of temporal correlations (see text for explanations). Shown from (D) to (F) are respectively a
slice of anatomic T1 weighted image, map of spatio-temporal correlation tensors and map of diffusion tensors for the region demarked in (D).
doi:10.1371/journal.pone.0082107.g003
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Power spectral analysis of the entire slice containing Fig. 1b

shows that the power for the frequency range f = 0.01–0.1 Hz is

,11–12% of the total power for all frequencies at f.0 across the

brain parenchyma (Fig. 2). Further statistical analysis shows that

the mean percent power of lower frequency (f = 0.01–0.1 Hz) in

the WM is 11.41% with standard deviation of 0.03%. This mean

percent power is slightly although significantly greater than that in

the GM, which has a mean percent power of 11.39% with

standard deviation of 0.04% in the low frequency range of

f = 0.01–0.1 Hz (p,0.01).

The analyses of intensity profiles and power spectra above

demonstrate that MRI signals across the parenchyma contain a

similar magnitude of variations in the temporal domain, and that

WM possesses a slightly greater power in low frequency

fluctuations than GM. These observations indicate that similar

to GM, WM also conveys information that may be similarly

detectable using appropriate signal analysis.

Spatio-temporal correlation of resting state BOLD signals
Anisotropic temporal correlations between resting state signals

are observed in many WM regions in all the six subjects studied.

Representative findings in the corpus callosum (CC) of a female

subject (Subject One, age = 29 yrs) and those along the left optic

radiation (OR) of a male subject (Subject Two, age = 25 yrs) are

reported below.

The spatial distributions of temporal correlations of resting state

signals with a point seeded in the CC are shown in the top row of

Fig. 3 for Subject One. From (A) to (C) are respectively the

correlations of the entire slice with a seed indicated by the dark

arrow, correlations thresholded at correlation coefficient r.0.14,

and correlations thresholded at r.0.28. The threshold value of

0.14 is chosen on the basis of data from Subject One (described in

the next sub-section) such that it is the lower bound of mean

correlations along WM fiber tracts in the whole brain. The

correlation map is further thresholded at 0.28 to remove many

‘‘false positive’’ voxels structurally unrelated to the CC. It can be

seen from Fig. 3A–C that voxels in the CC of both hemispheres

tend to show much higher temporal correlations to the seed than

the vast majority of other WM voxels. These high correlations

extend over long distances from the seed to reach the WM-GM

interface, signifying there are synchronized variations in the CC.

Maps of spatio-temporal correlation tensors and diffusion

tensors computed for a region that contains a portion of the CC

are shown in the bottom row of Fig. 3. In this figure (and in Fig.4

below as well), radiologic view conventions are used (image right

= subject left), and the color scheme follows that adopted by the

DTI community (red = left-right direction, green = anterior-

posterior direction, blue = inferior-superior direction). The same

portion of the T1 weighted image is shown underneath for

anatomical reference. Voxels with very low time-averaged MRI

signal intensities or mean diffusivity greater than 1:5|10{5 cm2/s

were excluded.

The spatial-temporal correlation tensors in WM show clear

patterns of anisotropy and suggest an underlying macroscopic

structure. There is gross agreement in the patterns of the resting

state correlation and diffusion tensor maps, particularly along

some of the large WM tracts (pointed to by yellow arrows). Close

inspection reveals that the correlation tensors sometimes tend to

better delineate fine structures than the diffusion tensors, as

Figure 4. Maps of temporal correlations of BOLD signals to a seed in the left optic radiation. See captions for Fig. 3 for explanations of
the individual images.
doi:10.1371/journal.pone.0082107.g004
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evidenced by a clearer ‘‘U-turn’’ shaped pattern seen in the

vicinity of the gray matter gyri (pointed to by the pink arrow).

The spatial distributions of temporal correlations of BOLD-

sensitive signals with a point seeded in the left OR are shown in

the top row of Fig. 4 for Subject Two. From (A) to (C) are

respectively the correlations of the entire slice with a seed indicated

by the dark arrow, correlations thresholded at r.0.21, and

correlations thresholded at r.0.50. The threshold value of 0.21 is

chosen similarly to that in Fig. 3(B) but on the basis of data from

Subject Two. The threshold value of 0.50 is chosen to further

remove many voxels structurally unrelated to the left or right OR.

It can be seen that, similar to the CC, voxels in the OR of both

hemispheres tend to have higher temporal correlations than the

vast majority of other WM voxels. These high correlations

virtually extend to the entire course of both ORs and reach the

WM-GM interface, which again signifies there are synchronized

variations in the WM structure, and they are specific and confined

to the known anatomical extent of the OR.

Maps of spatio-temporal correlation tensors and diffusion

tensors computed for a region that contains a portion of the left

Figure 5. Mean correlation coefficients along fiber tracts versus fiber length. Each plot is for a different subject.
doi:10.1371/journal.pone.0082107.g005
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OR are shown in the bottom row of Fig. 4. Again the spatio-

temporal correlation tensors show clear patterns of anisotropy

along the OR (pointed to by yellow arrows), which are grossly

consistent with those in the diffusion tensor map as well.

Furthermore, there are clear patterns of correlational anisotropy

around the OR (pointed to by cyan arrows), which also agree with

those observed in the diffusion tensor map.

Temporal correlations of resting state signals along WM
tracts

We evaluated the variation of temporal correlations in resting

state data along individual WM tracts over increasing voxel

separations. Variations of correlation coefficients of the MRI

signals along the length of fibers tracked from DTI data of the six

adult subjects studied are shown in Fig. 5. Voxel pairs along the

same fiber tract were grouped according to the distance of their

separation (i.e. fiber length), and their temporal correlation was

measured as a function of that separation (from 4 mm to 60 mm

apart). The mean correlation coefficient at each fiber length is

shown as the solid curve, and the mean correlation coefficient of

the same number of random voxel pairs in the WM is shown as the

dash-dotted curve.

It can be seen that the mean correlation coefficient is higher at

short fiber lengths and clearly persists over multiple voxel

dimensions and is significantly higher than with randomly chosen

voxels. Comparisons in the correlation coefficients between pairs

of points along the same fiber and those selected at random show

that the two groups are significantly different at each fiber length

(p,0.05 at each distance), implying that the correlations along

WM tracts are significantly different from background levels

unrelated to connectivity.

Figure 6 shows a more detailed analysis of MRI signal

correlations along seven fiber segments tracked in the CC of

Subject One. Along the fiber length, the correlation coefficient for

resting state signals averaged over the seven segments (solid curve)

is significantly different from those averaged over 1000 random

pairs of WM voxels separated by the same distance (dash-dotted

curve), with p,0.05 at each distance.

Functional pathways of optic radiation
Probability density maps of the left OR in Subject Two based

on resting state correlations and pathways reconstructed from

these maps are shown in Fig. 7. Images in the top row (A) are

density maps of four selected slices that contain the left OR, and

the images in the bottom row are axial (B) and oblique (C) views of

reconstructed pathways of the left OR. It can be appreciated that

the density maps agree well with previous reports [18,20], and

pathways reconstructed are consistent with known functional

anatomy [21]. Pathways of the left OR from all the six subjects

studied are shown in Fig. 8. Although there are some variations

across subjects, likely due to inter-subject anatomical variabilities,

they all appear physiologically realistic. These demonstrate that

the spatio-temporal correlation tensors derived from resting state

BOLD signals have the potential of depicting functional structure

of long range neural circuits.

Discussion

Since the advent of the resting state fMRI paradigm, a variety of

analysis methods have been proposed, including model-driven

methods such as temporal correlation [5] and hierarchical

clustering [22], or data-driven methods such as principal or

independent component analyses [23,24]. More advanced statis-

tical techniques have also been proposed to infer ‘‘effective

connectivity’’ between cortical regions by using dynamic causal

modeling [25] or Granger causality analysis [26], but the

inferences drawn therein remain controversial [27].

This study presents an alternative way of analyzing fMRI data,

and demonstrates there are correlated signal fluctuations between

voxels within both white matter and gray matter. Drawing upon

temporal correlations of these BOLD-sensitive signals within

neighboring voxels, this new approach measures the local

anisotropy of these correlations, particularly in white matter,

which appears to indicate underlying structure. Our resting state

acquisitions indicate that there are synchronized signal variations

within white matter, and quantitative analyses of these temporal

correlations along fiber tracts defined by DTI demonstrate that the

correlations are significantly higher than background correlations

Figure 6. Detailed analysis of correlations along fiber segments tracked in the corpus callosum of Subject One. The dashed line at the
left denotes the seed plane for fiber tracking. The solid curve at the right is the mean correlation coefficient over the seven segments and the dash-
dotted curve is the mean correlation coefficient over 1000 random pairs of voxels in the white matter separated by the same distance.
doi:10.1371/journal.pone.0082107.g006
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in white matter, and have similar temporal properties as BOLD

fluctuations in gray matter. These provide the basis for the concept

of using local spatio-temporal correlation tensors for visualization

of white matter structure. The proposed analyses show gross

similarities between correlation tensors and diffusion tensors in

many white matter regions, and pathways reconstructed from

spatio-temporal correlation maps appear plausibly realistic.

In principle, because axonal fibers are carriers of neural activity,

the correlational anisotropy of BOLD-sensitive signals measured

in white matter may indicate information propagation. Thus the

local spatio-temporal correlation tensor derived from resting state

data may characterize a local functional structure (i.e., a

functionally active component of an anatomic structure defined

by the diffusion tensor). In practice, the interpretation may be

confounded by a number of processes that could degrade

measured signals during imaging or post-processing procedures.

These include the effect of point spread function during image

formation and explicit or implicit smoothing during post-

processing (such as spatial filtering or interpolation), all of which

locally blur the signals and can create artificial correlations. We

note, however, that the effect of point spread function by nature is

isotropic, as evidenced by round tensors inside many gray matter

regions in our experiments, and thus tends not to change the

dominant direction of the correlation tensors and affect their

Figure 7. Reconstructed pathways of the left optic radiation of Subject Two. Top row: probability density maps of four selected slices that
contain the left optic radiation, superimposed onto the corresponding T1 weighted image. Bottom row: randomly colored pathways back tracked
from density and mean direction maps, rendered in an axial view (B) and oblique view (C). The yellow squares denote the seed region.
doi:10.1371/journal.pone.0082107.g007

Correlation Tensors Reveal Functional Structure

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e82107



interpretation. Typical smoothing also introduces an isotropic

spreading effect unless anisotropic smoothing is specifically

employed.

Potentially of higher impact are imaging artifacts typical of

fMRI studies [28], which may complicate interpretations of

observed correlational anisotropy. Major fMRI artifacts include

head motion, signal drift due to instrument imperfection, and

signal contaminations by cardiac and respiratory rhythmic

modulations [29,30]. To ameliorate these effects, conventional

pre- and post-processing procedures were undertaken in this work.

First, we minimized head motion by placing restricting pads within

the head coil, corrected for head motion prior to data processing,

and excluded subjects with movement greater than pre-defined

thresholds. Second, we corrected for signal drift by using intensity

normalization. Third, we reduced non-neuronal physiological

noises by low pass filtering. We are aware that there are more

sophisticated techniques for reducing these artifacts, perhaps with

enhanced performance, such as removal of global signal drift with

voxel-level linear modeling [31], and regressing out of cardiac and

respiratory sources following independent component analysis

[32]. These options can be considered in the future, along with

more rigorous approaches to establishing appropriate false

discovery rates. Note however that the residual effects of such

artifacts would not explain the nature of the correlational maps

shown in this study or be specific to particular white matter

structures.

We recognize that, with a repetition time of 2 s, high frequency

cardiac signals may be aliased into low frequencies. These aliased

signals along with low frequency respiratory signals cannot be

removed by low pass filtering. To assess the influence of these low

frequency non-neuronal physiological signals, we constructed

resting state correlation tensors with low pass filtering and

RETROICOR [33], a common preprocessing method for

reducing physiological noise. Quantitative comparisons of corre-

lation tensors in a typical region that encompasses both gray

matter and white matter show that low-pass filtering at 0.1 Hz had

a major effect (,16u in the tensor dominant direction) and

correction with RETROICOR had a minor effect (,6u in the

tensor dominant direction). This is consistent with other studies

showing that high frequency noise has a significant effect on

measurements of functional connectivity, in which contributions

from non-neuro physiological noise including the cardiac and

respiratory rhythms are relatively small [34]. We further found

that, compared with low pass filtering alone, additional correction

by RETROICOR had a minimal effect (,3u in the tensor

dominant direction), suggesting that low pass filtering has removed

about half of the effects from cardiac and respiratory signals.

One of our major findings is that resting state MRI signals in

brain white matter exhibit anisotropic correlations. We should

point out that, in this work, two large white matter tracts are used

for the purpose of proof-of-concept. In our additional experiments,

many smaller white matter tracts are also visualized with the

spatio-temporal correlation tensors, which show a good agreement

with those delineated with diffusion tensors. Robust visualization

of smaller white matter tracts however involves some preprocess-

ing procedures for fMRI time series both in the frequency and

spatial domains, which are under our active development.

Nonetheless, the findings from this work, along with the recent

report of BOLD effects in the corpus callosum [15], support the

hypothesis that MRI signals reflecting neural activity might be

reliably detected in white matter.

The mechanism underlying the generation of white matter MRI

signal variations is however unclear. White matter consists of

axons whose primary role is conducting action potentials that

carry neural signals. The axonal fibers are in effect an

‘‘information highway’’ that conducts action potentials using the

mechanism of saltatory propagation, which is achieved via

electrical field propagation mediated by Ranvier nodes that are

regularly spaced among axon segments [35]. It seems that white

matter possesses high functional efficiency, which in turn requires

much less oxygenated blood for energy supply than the gray

matter where neuronal cell bodies reside, and thus may not be able

to produce measurable BOLD signals. It is possible that the signal

variations we report are not BOLD in origin, but instead reflect

changes in M0 and/or T2 associated with non-vascular phenom-

ena that affect the MR properties of axonal water. Continuing

Figure 8. Reconstructed pathways of the left optic radiation of all the six subjects studied. The same set of parameters were used for
probabilistic tracking in these subjects, and pathways are randomly colored and rendered in an axial view.
doi:10.1371/journal.pone.0082107.g008
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efforts are being made to further elucidate the contrast mecha-

nism, and to characterize quantitatively structure-function rela-

tions on the basis of the spatio-temporal correlation tensors and

diffusion tensors in the same volume.
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