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Abstract
The past 25 years have seen great progress in parcellating the cerebral cortex into a mosaic of
many distinct areas in mice, monkeys, and humans. Quantitative studies of inter-areal connectivity
have revealed unexpectedly many pathways and a wide range of connection strengths in mouse
and macaque cortex. In humans, advances in analyzing ‘structural’ and ‘functional’ connectivity
using powerful but indirect noninvasive neuroimaging methods are yielding intriguing insights
about brain circuits, their variability across individuals, and their relationship to behavior.

Introduction
In recent years there has been an explosion of interest in mapping the brain and its
connections systematically across a range of spatial scales and in a number of species. This
is embodied in the concept of a connectome as a “comprehensive” map of brain connectivity
(Sporns et al., 2005). However, a truly comprehensive connectome that charts all synaptic
connections in all neurons over an entire brain is currently feasible only for tiny
invertebrates such as the nematode; at the other extreme, such an achievement may not ever
be feasible for the human brain. Instead, methodological constraints lead to a natural
division of labor (and enthusiasm) across three complementary domains of the connectome
landscape: the micro-, meso-, and macro-connectomes (Akil et al., 2011). Each domain aims
to map connectivity down to the spatial resolution of the available methodologies, and over
as large a spatial expanse as is technically feasible.

Every brain is an extremely complex network. Two fundamental and complementary levels
of description are those of maps and connections. Maps refer to the spatial arrangement of
brain parts (parcels), along with countless types of information that can be associated with
each spatial location or each parcel. This is the domain of brain cartography – how maps
are generated, visualized, and navigated, and what information can be represented on them.
Connections are, in essence, pairwise relationships indicating the existence, strength, and/or
polarity of links between different locations or different parcels as determined directly using
anatomical methods or as inferred using one or another indirect imaging method. When the
analysis aims to be comprehensive rather than piecemeal, connectivity studies fall into the
realm of connectomics.

Why is connectomics important? Skeptics can correctly point out that knowing a complete
wiring diagram will not on its own tell us how the brain works. For example, the availability
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of a complete nematode connectome (White et al., 1986; Varshney et al., 2011) leaves open
many mysteries of how its nervous system actually processes information – i.e., how it
‘computes’. A starting counterpoint is to invoke the analogy of the genome: knowing the
precise sequence of 3 billion base pairs in the human genome on its own tells us precious
little about how our bodies and brains are assembled and regulated by genes and regulatory
sequences. Yet the early skeptics of the Human Genome Project have largely been quieted
by the awesome success of modern genomics - even though it remains humbling to realize
how much is not yet understood about the workings of the genome. However, the reasons
for mapping connectomes arguably goes deeper, because the precise wiring of the brain is
fundamental in constraining what it can (and cannot!) compute. The brain is not a general-
purpose computer that can support a variety of operating systems and software applications.
Instead, the software (functions) and hardware (the squishy stuff) are intimately co-
embedded with one another.

This essay focuses on brain cartography and connectomics in three intensively studied
species: human, macaque monkey, and mouse. The emphasis is on cerebral cortex, owing to
its physical dominance as well as the special challenges it poses, but subcortical and
cerebellar domains are considered as well. Throughout the nearly four decades that I have
been involved in brain mapping, methodological advances have played a transformative role
in accelerating progress and deepening our understanding of brain circuits and function. The
focus here is also on macroscopic cartography and connectomics, while recognizing that
there have been exciting discoveries and methods development on the meso- and micro-
connectome front as well.

Special emphasis is placed on the Human Connectome Project (HCP), an ambitious
endeavor to chart brain connectivity and its variability in a large number of healthy adults.
The HCP has already achieved a coordinated set of advances in acquiring, analyzing,
visualizing, and sharing large amounts of exceptionally high quality brain imaging data
along with extensive behavioral data (Van Essen et al., 2013a). This includes information
about brain connectivity provided by the complementary imaging modalities of resting-state
fMRI (rfMRI) and diffusion imaging (dMRI). Both modalities are powerful and have been
substantially improved through advances made by the HCP, yet both have major limitations
that are not always adequately appreciated. The HCP is also acquiring data using additional
modalities that provide information about brain function (task-evoked fMRI and
magnetoencephalography) and brain architecture (high-resolution structural MRI and
cortical myelin maps derived from them). Ongoing analyses of HCP data, while still at an
early stage, are already reshaping our understanding of human brain cartography,
connectivity, and function, as well as their relationship to behavior.

Cartography. (Van Essen et al., 2013a; Van Essen et al., 2013b)
Cartography

An earthly comparison—The history of earth cartography provides a useful context for
the ensuing discussion of brain cartography. Classical earth maps have used physical media
(e.g., parchment sheets, book atlases, 3D globes) whose size limitations force tradeoffs
between spatial resolution (detail) and overall spatial extent that can be represented on a
given map. These restrictions do not apply to computerized maps enabled by the digital
revolution. Earth maps can now cover the globe yet be exquisitely detailed, using copious
computer memory to store vast amounts of information acquired by satellite imagery and
other imaging methods. In parallel, the Global Positioning System has transformed the
centuries-old concept of latitude and longitude into a spatial coordinate system that is
precise within a few meters. This information is fed into devices and software (e.g. Google
Earth, Google Maps) that have transformed our daily lives. Digital earth maps can represent
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countless types of information overlaid dynamically in flexible combinations that include
the broad categories of geographical features (continents, mountains, rivers, etc) and
political/cultural features (countries, states, etc., based on the activities and affiliations of
human populations).

Earth cartographers map changes over a wide range of time scales, but there is only one
earth and one spatial coordinate system. In contrast, brain cartographers must cope with the
diversity of individual brains within a given species, dramatic changes in structure and
function of every brain over the lifespan, and large differences between species.
Nonetheless, brain cartography has undergone a parallel set of advances, including a
transition from paper-based to computerized brain maps that provide increasingly powerful
and flexible navigation capabilities. We first consider brain geography (shapes and physical
features) and then brain parcellations that represent functionally distinct subdivisions (akin
to the political subdivisions on earth maps).

Sheets and blobs; slices and surfaces—As every neuroanatomy student knows, gray
matter in the mammalian brain includes the sheet-like cerebral and cerebellar cortex plus a
diverse collection of blob-like subcortical nuclei. Historically, neuroscientists have tended to
visualize brain anatomy mainly using slice-based representations. In classical neuroanatomy,
the primary data comes from sectioning postmortem brains histologically. For MRI-based
neuroimaging studies, the primary data are typically stored as 3D volumes - stacks of
‘voxels’ that are most readily visualized in slices through the volume. For example, Figure 1
(top row) shows slices of mouse, macaque, and human brains in a parasagittal slice plane
that includes cerebral and cerebellar cortex plus several sub-cortical nuclei. While planar
slices are invaluable for many aspects of analysis and visualization, they do not respect
cortical topology and can obscure key spatial relationships between neighboring locations in
the cerebral and cerebellar sheets.

A key to circumventing this difficulty is to use surface-based representations that respect the
sheet-like topology of cortical structures. This is obvious nowadays, especially when aided
by attractive images such as those in Figure 1. However, it assuredly was not obvious to the
field when I started working on monkey visual cortex several decades ago at University
College London. I quickly became frustrated by the limitations of the traditional slice-based
approach to analyzing anatomical data. Consequently, much of my postdoctoral year was
spent fiddling with pencil and tracing paper, until I successfully developed a manual method
of making flat maps of macaque extrastriate visual cortex (Van Essen and Zeki, 1978). After
I joined the faculty at Caltech, John Maunsell and I extended this approach to the entire
macaque hemisphere (Van Essen and Maunsell, 1980). However, this quaint manual
approach to map-making was tedious and was impractical to extend to the highly convoluted
human cerebral cortex. It was clear that generating and manipulating cortical surfaces was a
job far better suited for computers than humans; indeed I started on that effort in the 1970's
(see Van Essen, 2012). However, the transition took decades (and is still ongoing), because
it required more powerful computers, automated segmentation and surface reconstruction
algorithms, and the emergence of structural MRI as a reliable way to distinguish between
gray and white matter (e.g., Dale and Sereno, 1993; Van Essen et al., 2001a; see also Fischl,
2012; Van Essen, 2012). The lower panels in Figure 1 show 3D surface reconstructions of
cerebral cortex (the cortical midthickness, approximately in layer 4) for mouse, macaque,
and human as well as inflated surfaces and flat maps. The surface area of the two cerebral
hemispheres combined varies over several orders of magnitude, smaller than a dime for a
mouse (~1.8 cm2), cookie-sized in a macaque (~200 cm2), to pizza-sized in humans (2,000
cm2 = two 13-inch pizzas) (Van Essen, 2002a; Van Essen et al., 2012a; Van Essen et al.,
2012b).
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Cerebellar cortex is very difficult to segment because it is so thin (~1/3 the thickness of
neocortex) and has very little underlying white matter (owing to the absence of cortico-
cortical connections) (Fig. 1A-C). To date, the only accurate surface cerebellar
reconstructions are for the three individual mouse, macaque, and human cases illustrated in
Figure 1 (Van Essen, 2002b). The human cerebellar surface is from the ‘Colin’ individual
atlas and was generated by a labor of love, in which I spent hundreds of hours manually
editing the initial segmentation in order to achieve a topologically correct and reasonably
faithful representation! The two cerebellar hemispheres are connected across the midline to
form a single sheet, whose surface area is comparable to that of a single cerebral
hemisphere: ~0.8 cm2 for the mouse cerebellum, ~60-80 cm2 for the macaque, and ~1100
cm2 for humans (Sultan and Braitenberg, 1993; Van Essen, 2002b), but these values are
lower bounds because the surface reconstructions failed to capture most of the fine
cerebellar folia.

Surface reconstructions serve three vital and complementary functions. (i) Visualization. In
gyrencephalic species, cortical inflation or flattening exposes buried regions while
preserving neighborhood relationships within the convoluted cortical sheet. Figure 1 (lower
panels) includes inflated maps for the gyrencephalic macaque and human cerebral and
cerebellar cortex, plus flat maps for all three species. Shape information (cortical
“geography”) can be preserved on the smoothed surfaces using maps of “sulcal depth” to
denote buried (darker) vs. gyral (lighter) regions. (ii) Within-subject data analysis.
Mathematical operations such as spatial smoothing and computing spatial gradients are best
carried out on surfaces when dealing with data that is specific to the cortical gray matter.
Regrettably, the alternative of using volume-based 3D smoothing remains widespread in
many neuroimaging studies, even though this leads to undesirable blurring between gray and
white matter and across gray matter on opposite banks of (sometimes deep) sulci. Surface-
constrained smoothing improves signal strength and spatial specificity (Jo et al., 2007),
particularly when analyzing high-resolution data such as that from the HCP (Glasser et al,
2013c). (iii) Intersubject registration. The convolutions of human cerebral cortex are highly
variable across individuals in many regions (Ono et al., 1990). In order to compensate for
this variability and thereby enable accurate intersubject comparisons, it is vital to register
each individual to a common atlas target. For the mouse and macaque, an individual brain is
reasonable for an atlas target (Fig. 1, columns 1-2), though MRI-based population-average
atlases are available as volumes (Kovacevic et al., 2005; McLaren et al., 2009) and surfaces
(Glasser et al., 2012a; Glasser et al., 2013a). For human cortex, early surface-based atlases
used individual brains (Van Essen and Drury, 1997; Van Essen, 2002a) but these have been
supplanted by population-average atlases. Volume registration achieves accurate intersubject
alignment of sub-cortical nuclei, as shown by the group average of 120 HCP subjects (Fig.
1D), blurring of cortical sulci and gyri is variable even when using high dimensional
nonlinear registration. Instead, surface-based cortical registration provides clear advantages
(Fischl et al., 1999a; Fischl et al., 1999b; van essen, 2005; Fischl et al., 2008; Yeo et al.,
2010; Van Essen et al., 2012a; Van Essen et al., 2012b; Glasser et al., 2013a; Glasser et al.,
2013b). For cerebral cortex, registration to a population-average surface-based template
avoids biases associated with the idiosyncratic convolutions of any individual subject. One
widely used atlas template is FreeSurfer's ‘fsaverage’, which uses an energy-based
registration method to align individual folding patterns to a population average map based
on the pattern of folding (Fischl et al. 1999, 2008). A recent extension of this is the ‘fs_LR’
surface mesh and the ‘Conte69′ atlas, which capitalize on FreeSurfer's energy-based
registration but achieve geographic correspondence between left and right hemispheres
using landmark-constrained interhemispheric registration (Van Essen et al., 2012b). In the
average midthickness surfaces from 120 HCP subjects (Fig. 1, right column), only the major
sulci and gyri are visible; the distinctive secondary and tertiary folds of individual subjects
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are not well preserved owing to imperfect alignment, especially in regions of high
variability.(Glasser et al., 2012b)

The cerebellar atlas surfaces shown in Figure 1 are useful for surface-based visualization,
but unfortunately not for surface-based analysis (e.g., smoothing) or intersubject alignment.
Higher quality structural images and cerebellum-specific segmentation algorithms will be
needed in order to enable cerebellar surface reconstructions in individual subjects as a matter
of routine.

Subcortical nuclei—Subcortical nuclei constitute a major fraction of the mouse brain, but
progressively much smaller fractions of the macaque and human (Fig. 1, top row). Despite
their critical roles in brain function, subcortical nuclei are only ~8% of total human brain
volume and even more modest in neuronal count because of their low neuronal density; they
contain ~1% of total neurons in humans (Azevedo et al., 2009). The relatively modest
expansion of subcortical structures compared to the evolutionary explosion of cortical
structures suggests that the evolutionary changes in subcortical organization may have been
modest.

Cortical parcellation—A holy grail for systems neuroscience is to identify and accurately
chart the mosaic of distinct cortical areas in humans and key laboratory mammals. This is as
fundamental to brain cartography as the charting of major political boundaries is to earth
cartography. However, cortical parcellation has proven to be a remarkably challenging
problem, owing to a combination of neurobiological and methodological complexities.

In general, cortical parcellation has been powered by four conceptually distinct approaches.
Architectonics is the oldest, starting with cytoarchitecture and myeloarchitecture a century
ago. This was followed by physiological and anatomical methods for mapping topographic
organization of sensory and motor areas (e.g., retinotopy, somatotopy). When the modern
era of systems neuroscience began in the 1970's, two additional approaches came into
vogue, one that identifies areas based on pattern of connectivity and the other based on
their distinctive functional characteristics. Using these approaches in isolation or in
combination, evidence for a large number of cortical areas has been reported in many
mammalian species. Ideally, each cortical area and each parcellation scheme would be
validated by demonstrating agreement across multiple approaches. The poster child for this
is area V1 in the macaque, which is readily identifiable by its distinctive architecture (e.g.,
the stria of Gennari), connectivity (e.g., geniculo-cortical terminations in layer 4C and
projections from layer 4B to area MT), functional signature (orientation and ocular
dominance columns), and precise retinotopy. Unfortunately, V1 is the exception rather than
the rule. Consequently, many competing schemes coexist, and a consensus pan-hemispheric
parcellation has yet to be achieved for any species. Before summarizing the current state of
mouse, macaque, and human cortical parcellation efforts, it is useful to comment on four
general obstacles to accurate parcellation that reflect a combination of neurobiological and
methodological considerations.

(i) Noise and bias. The transitions in features that distinguish neighboring cortical areas are
typically rather subtle. Identification of these transitions is often impeded by the distortions
induced by cortical folding and by various artifacts and noise associated with any given
parcellation method. (ii) Within-area heterogeneity. A conceptually deeper challenge arises
from genuine heterogeneity in connectivity found within some cortical areas. For example,
within-area heterogeneity has been reported for V1 and V2 in the macaque, where central vs
peripheral parts of the visual field representation differ in their connectivity with parietal and
temporal cortex (Baizer et al., 1991; Falchier et al., 2002); in primary motor cortex, the head
and leg regions are connected with different areas (Tokuno et al., 1997; Hatanaka et al.,
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2001). In human cortex, internal heterogeneity within a single area can exceed the
connectivity differences between corresponding topographic locations in neighboring areas;
as illustrated below this can result in marked differences in boundaries revealed by
connectivity vs architectonic methods. (iii) Topographic complexity. Topographic
organization is precise and orderly in early sensory areas (e.g., visual area V1). It becomes
coarser and more disorderly in regions areas progressively farther from the primary area;
some areas also have an incomplete or biased representation of the contralateral sensory
space (Maunsell and Van Essen, 1987; Hansen et al., 2007; Kolster et al., 2009; Kolster et
al., 2010). Genuine irregularities in topographic organization make it difficult to delineate
areal boundaries, and this can be compounded by methodological noise or bias. (iii)
Individual variability. Comparisons across individuals are vital for crossmodal validation
and for assessing the consistency of any given parcellation scheme. However, such
comparisons must cope with individual variability in the size (surface area) of each cortical
area and in its location relative to cortical folds. Well-defined cortical areas such as V1 vary
in areal size by two-fold or more in humans and nonhuman primates (Andrews et al., 1997;
Amunts et al., 1999; Amunts et al., 2000). The relationship of areal boundaries to gyral and
sulcal folds is reasonably consistent in the moderately gyrencephalic macaque (Van Essen et
al., 2012a) but is much more variable in humans, especially in regions of high folding
variability (Amunts et al., 1999; Van Essen et al., 2012b) A corollary of this observation is
that perfect alignment of cortical areas (and hence cortical function) cannot be achieved
using any registration method that relies exclusively on folding pattern or other shape
features. Fortunately, novel approaches now enable registration based on function and other
areal features (see below).

The next three subsections provide an update on cortical parcellations in the mouse,
macaque, and human, along with reference to key historical milestones in order to provide
perspective. Visual cortex warrants special consideration owing to the recent identification
of many more visual areas than envisioned in classical schemes.

Mouse—Early studies of rodent visual cortex suggested that area V1 was surrounded by
only one or two neighboring retinotopically organized visual areas (Wagor et al., 1977).
This simplistic view has been overturned by studies from Andreas Burkhalter's lab that
identified 10 retinotopic visual areas in the mouse (plus additional non-retinotopic visual
areas) based on focal tracer injections combined with neurophysiological mapping (Wang et
al., 2007, 2011). A multimodal analysis applied to all of cortex (neocortex, transitional
cortex, and part of hippocampal cortex) provides evidence for a total of 40 areas (Wang et
al., 2012) as displayed in Figure 2A on a tangentially sliced section of physically flattened
cortex. This cortical parcellation differs in a number of ways from that of Paxinos and
Franklin (2000) and also the Allen mouse atlas (http://atlas.brain-map.org/; Dong, 2008),
which are both based on cytoarchitectonics using conventional histological sections.

Macaque—Studies that address one or another aspect of cortical parcellation in the
macaque and other nonhuman primates now number in the thousands. Classical
architectonic maps of the old world monkeys contained three concentrically organized visual
areas in occipital cortex and a total of only 28 areas or 25 areas (Brodmann, 1905; von
Bonin and Bailey, 1947). The evidence for a more complex cortical organization emerged
gradually, starting in the 1970's with the discovery of multiple retinotopic extrastriate visual
areas in the macaque (Zeki, 1978) and owl monkey (Allman, 1977). Over ensuing decades,
evidence accumulated for many additional visual areas, but comparisons across studies were
impeded by the lack of a suitable atlas framework. One early step in addressing this need
was a summary map of 32 visual areas plus dozens of other cortical areas (Felleman and
Van Essen, 1991) generated using tools available at the time: a new manual flatmap to serve
as an atlas combined with ‘eyeballing’ to transfer data from other studies onto the map using
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gyral and sulcal features as landmarks. The transition to an atlas based on high-resolution
MRI scans occurred a decade later with the introduction of the surface-based ‘F99′ macaque
atlas (Van Essen, 2002a) (See Fig. 1B). Another key part of the growing toolkit was a
surface-based registration algorithm for aligning different parcellation schemes to the atlas
using geographic landmarks (gyral and sulcal folds) as registration constraints (Van Essen et
al., 2001b; Van Essen et al., 2005). More recently we used an improved landmark-based
registration method and generated a composite macaque parcellation scheme containing 130
cortical areas (Fig. 2B) based on regions considered most reliable from three independent
architectonic parcellations (Van Essen et al., 2012a). Undoubtedly there will be further
revisions and refinements, but this macaque parcellation provides a reasonable estimate of
the approximate number of neocortical and transitional areas in the macaque. (Van Essen,
1979)

Human cortical parcellations—As in the macaque, human cortical parcellation began
with classical architectonic parcellations a century ago, including a map of 44 neocortical
cytoarchitectonic areas proposed by Brodmann (1909) and a larger number (185) of
myeloarchitectonic areas proposed by C. and O. Vogt (see Nieuwenhuys, 2013). Advances
in parcellating human cortex have come from a combination of postmortem histological and
in vivo neuroimaging approaches, mainly in the past two decades. Here, the focus is on
analyses that use surface reconstructions of individual subjects followed by registration to a
surface-based atlas in order to cope with the complexity of human cortical convolutions and
the variability in areal boundaries relative to these folds. Figure 2C illustrates a summary
map (Van Essen et al., 2012b) that includes 52 surface-mapped cortical areas derived from
three parcellation approaches: (i) observer-independent architectonic methods (Schleicher et
al., 2005, 2009; Fischl et al., 2008); (ii) combined architectonic approaches involving cyto-,
myelo-, and chemo-architecture in the same individual (Ongur et al., 2000); and (iii)
retinotopic visual areas from four fMRI studies, all registered to the Conte69/fs_LR atlas. In
comparing the human and macaque parcellations, there are many similarities and likely
homologies between the two species, but there are also significant interspecies differences in
the arrangement of retinotopic and other areas. Some of these are likely to reflect genuine
evolutionary divergence in cortical organization, but others may reflect inaccuracy or
incompleteness in one or both of the illustrated parcellation schemes. In the case of
retinotopic areas, there are many similarities but also some clear species differences (Kolster
et al., 2009, 2010). The composite 52-area human parcellation (Fig. 2c) some covers only
1/3 of cerebral neocortex, suggesting that the total number of areas may be ~150, or even
more if cortical areas are on average smaller in the portions of frontal, parietal, and temporal
cortex yet to be accurately mapped. Relative to the estimate of 130-140 areas in the
macaque, the total number of human cortical areas may modestly exceed that in the
macaque. There are good prospects for filling in many of the gaps and addressing these
issues using high resolution data and improved analysis methods emerging from the HCP
(see below). However, it is unlikely that a consensus parcellation will emerge soon, owing to
of the subtlety of many areal boundaries and the challenges associated with individual
variability.

Cerebellum and subcortical nuclei—The cerebellum represents a fascinating
cartographer's challenge for several reasons. (i) It contains ‘fractured’ somatosensory maps
(Shambes et al., 1978) rather than a one-to-one mapping of sensory surfaces that
characterize neocortical sensory areas. (ii) It is very difficult to accurately and systematically
map properties across the full cerebellar sheet using currently available neurophysiological,
neuroanatomical, or neuroimaging methods owing to its thin and highly convoluted
configuration, even in rodents. (iii) A large portion of cerebellar cortex in primates is
implicated in higher cognitive processes (Strick et al., 2009) rather than being
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predominantly involved in sensori-motor coordination as traditionally thought. Human fMRI
studies have revealed functional cerebellar networks that are systematically related to
cerebral networks at a relatively coarse level (Buckner et al., 2011). However, until methods
improve to the point that accurate surface-based mapping can be done in individual subjects,
it seems likely that important organizational principles for the cerebellum may be hidden
from view.

Regarding subcortical structures, conventional in vivo neuroimaging enables visualization
and analysis of the larger nuclei; accurate automated segmentation of these nuclei (e.g.,
using FreeSurfer) is facilitated by their low degree of individual variability. However, there
are many small subnuclei (e.g. of the hypothalamus) that cannot be discerned using
conventional structural scans (e.g., T1w and T2w scans). On the other hand, conventional
histological atlases can be complemented by specialized MR-based imaging that reveals
considerably greater neuroanatomical detail using ultra-high field strength (7T or higher),
specialized pulse sequences such as susceptibility-weighted imaging (Abosch et al., 2010),
and/or postmortem scans (e.g. Augustinack et al., 2013) (Abosch et al., 2010; Augustinack
et al., 2013)

Connectomics
Our understanding of the amazing complexity of long-range neural connections in the
mammalian brain has evolved dramatically in recent decades. Key recurring themes that
have emerged are (i) an unexpectedly large number of identified pathways, implying a dense
rather than sparse connectivity matrix at the level of area-to-area connections; (ii) a range of
interareal connection strengths that is remarkably broad but conforms to a stereotyped
statistical distribution; and (iii) organization into highly distributed and interconnected
networks and subnetworks. As in the cartography section, the focus here is on cerebral
cortex, starting with the macaque and mouse. These are of great interest in their own right,
but they also provide a vital form of ‘ground truth’ when considering human brain circuits
that can only be explored using indirect methods. Quantitative ‘parcellated connectomes’
have recently been reported for all 3 species, representing major progress even though the
connectomes remain incomplete for the mouse and macaque and are indirect for the human
brain.

Macaque—Early studies using classical axonal degeneration-based methods suggested that
each cortical area was directly connected to only a handful of other cortical areas (Van
Essen, 1979). The advent of modern anterograde and retrograde tracers starting in the 1970's
gradually revealed that connectivity pattern are far more complex. The finding that most
pathways are bidirectional but asymmetric in their laminar pattern led Rockland and Pandya
(1979) to propose that laminar pattern could be used to distinguish between feedforward and
feedback directions of information flow. This in turn led John Maunsell to propose an
anatomically based cortical hierarchy (Maunsell and Van Essen, 1983). Dan Felleman and I
expanded this hierarchy by drawing from the available literature on macaque cortico-cortical
connectivity. After countless hours scouring papers (and frequent visits to the library –
another quaint habit!), we assembled evidence for the presence of several hundred pathways
interconnecting 32 visual areas (an average of ~10 inputs and 10 outputs per area). This
distributed hierarchical system (Felleman and Van Essen, 1991) was presented as a colorful
as a ‘subway-map’ version that has come to symbolize the complexity of cortical circuitry as
it was known at the time. We also illustrated the same data as a 32 × 32 binary connectivity
matrix that in retrospect can be considered the first ‘parcellated connectome’ for macaque
visual cortex. Another theme that emerged around that time was the realization that visual
processing is associated with multiple processing streams (Desimone and Ungerleider, 1989)
that show distinct pattern of convergence and divergence at different hierarchical levels
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(DeYoe and Van Essen, 1988). (DeYoe and Van Essen, 1988). (Rockland and Pandya,
1979)

For many years, it was frustrating that very little quantitative connectivity data was reported
in the literature, even though cortico-cortical connections were well known to vary widely in
strength. When Jim Lewis joined my lab, we put a major effort into quantifying the
distribution of retrogradely labeled neurons after tracer injections, assigning their
connections to different cortical areas, and registering the data to an atlas surface (Lewis and
Van Essen, 2000a; Lewis and Van Essen, 2000b; Van Essen et al., 2001b). However, further
efforts at quantifying cortico-cortical connectivity were rare until recently, when Henry
Kennedy's lab undertook major steps to remedy this deficit. They used a 91-area cortical
parcellation (Fig. 3A, top panel) and retrograde tracer injections placed into 29 different
areas (second panel) in followed by quantitative analyses of the complete pattern of
retrogradely labeled neurons (Markov et al., 2011; Markov et al., 2012; Markov et al.,
2013a; Markov et al., 2013b). Panel 3 shows the spatial pattern of the 32 areas that project to
area V2, colored according to a logarithmic scale for the projection strength. At the other
extreme in terms of number of inputs is area 8L, which receives input from 87 areas out of
the 90 possible (Fig. 3A, row 4). Key findings include: (i) a total of 1,615 cortical pathways
(average of 55 inputs per injected area), including many new-found pathways (Fig. 3E); (ii)
a distribution of connection strengths that spans 5 orders of magnitude and conforms to a
lognormal distribution for all injections; (iii) consistency across individuals of ~ 1 order of
magnitude when injections are placed in similar regions of a given area; and (iv) an
exponential distance rule, in which the strongest predictor of connection strength is the inter-
areal separation within the white matter (Ercsey-Ravasz et al., 2013). While these studies
represent a major milestone, they also point to the need for further advances. This includes
tracer injections placed into even more areas and within different subregions of areas having
connection heterogeneity, the use of finer-grained cortical parcellations (see above, Fig. 2B),
and quantifying connection strengths across the entire cortical sheet, irrespective of any
particular parcellation.

When considered as a binary interareal connectivity matrix, the macaque parcellated
connectome is a dense (highly interconnected) graph (67% of all possible connections exist
in the 29×91 matrix), which is incompatible with the small-world network architecture
previously hypothesized. However, viewed in a different way, macaque cortex contains ~1.4
billion cortical neurons (Collins et al., 2010) and approximately104 synapses/neuron
(Beaulieu and Colonnier, 1985; Braitenberg and Schuz, 1991). This suggests a sparsity of
~10-5 of individual neurons. At an intermediate level of ~1mm3 (i.e., the approximate voxel
size for whole-brain neuroimaging) cortico-cortical connectivity), each patch of cortical
neurons may be directly linked to a domain that may be roughly 10-20% of the cortical sheet
(based on supplemental figures in Markov et al., 2012), but it would be valuable to refine
such estimates.

Mouse—Systematic studies of cortico-cortical connectivity in rodents languished until
recently, despite its simpler cortical organization. Major progress has come from a recent
study that quantified projection pattern from anterograde tracer injections into 10 visual
areas in a 40-area parcellation of mouse cortex, that includes transitional and archicortical
subdivisions (Wang et al., 2012). Virtually all of the 10 visual areas are interconnected
reciprocally with one another, and the overall binary graph density in the 10 × 40
connectivity matrix they studied (Fig. 3F) exceeds that noted above for the macaque.
Connection strengths span at least three orders of magnitude (at a minimum, as estimates
were limited by the sensitivity of the method), and they follow a lognormal distribution
similar to that reported in the macaque. Thus, important principles apply to rodents and
primates despite major differences in the total number and arrangement of cortical areas.
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The Allen Brain Institute has taken the systematic analysis of long-distance connectivity in
the mouse to a new level through a publicly accessible connectivity atlas that currently
includes 1010 anterograde tracer injections (http://connectivity.brain-map.org). By using
sensitive viral tracers, whole-brain data acquisition via serial 2-photon microscopy, and
standardized experimental and analysis protocols that enable quantification of projection
strengths, this project will serve as an invaluable resource that greatly enhances our
understanding of the mouse meso-connectome.

Human structural and functional connectivity—Classical studies involving
postmortem blunt dissection of white matter (e.g., Gluhbegovic, 1980) provided a few key
insights about the relatively coherent trajectories of macroscopic fiber bundles within deep
white matter. However, most of what is currently known about long-distance pathways in
the human brain derive from two complementary neuroimaging approaches: analyses of
‘structural connectivity’ based on diffusion imaging (dMRI) and analyses of ‘functional
connectivity’ (fcMRI) based on resting state fMRI (rfMRI) scans. Both approaches emerged
in the 1990's and have subsequently been improved dramatically, which is greatly enhancing
our understanding of human brain circuits. However, the methods also remain indirect and
subject to substantial limitations that are inadequately recognized. Here, the focus is on
results from recent efforts by the HCP to improve the acquisition and analysis of structural
and functional connectivity data and to enable comparisons with other modalities, including
maps of function based on task-fMRI and maps of architecture (e.g., myelin maps) in
individuals and group averages. One of the most important advances has been the use of
improved scanning protocols, especially “multiband” pulse sequences that acquire data
many slices at a time, thereby enabling better spatial and temporal resolution (Ugurbil et al.,
2013).(Gluhbegovic, 1980)

Diffusion MRI (dMRI) relies on the preferential diffusion of water along the length of axons
in order to estimate fiber bundle orientations in each voxel. This includes not only the
primary (dominant) fiber bundle, but also the secondary and even tertiary fiber orientations
that can be detected in many voxels. The HCP has achieved improved dMRI data acquisition
by refining the pulse sequences, using a customized 3 Tesla scanner (with a more powerful
‘gradient insert’), and scanning each participant for a full hour (Sotiropoulos et al., 2013;
Ugurbil et al., 2013). This yields excellent data quality with high spatial resolution: 1.25 mm
voxels instead of the conventional 2 mm voxels. Data preprocessing and analysis (distortion
correction, fiber orientation modeling, and probabilistic tractography) have been improved,
as has the capability for visualizing the results of tractography analyses. As an example,
Figure 4 illustrates state-of-the-art analysis and visualization of the probabilistic fiber
trajectories, starting from a seed point on the inferior temporal gyrus (Fig. 4A) and viewed
in a coronal slice (Fig. 4B) and as a 3D trajectory through the volume (Fig. 4C). Obviously,
a major strength of tractography is that it provides evidence for the 3D probabilistic
trajectories within the white matter. Information about the trajectories of major tracts is of
interest for a variety of reasons. However, the white matter represents the ‘cables’ of the
brain's communications infrastructure, and for many purposes it is of particular interest to
know the gray-matter origins and terminations of long-distance pathways that can be
inferred from tractography. For example, Fig. 4D illustrates the estimated pattern of
structural connectivity with other cortical gray matter locations from the inferior temporal
seed location shown in Fig. 4A. It includes many anatomically plausible connections, but
there are many sources of bias and noise that can introduce false positives and false
negatives. Hence, caution is warranted in interpreting tractography results without
independent validation.

One set of limitations arises from a prominent ‘gyral bias’ that occurs because fiber bundles
in white matter blades point strongly towards gyral crowns (Van Essen et al., 2013b).
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Another source of complexity is the presumed ‘traffic jam’ of crisscrossing as well as
gradually diverging fiber bundles deep within white matter. A possible simplifying
hypothesis proposes a grid-like organization of fiber trajectories underlying the organization
of brain circuits (Wedeen et al., 2012). However, this hypothesis is controversial on
methodological grounds (Catani et al., 2012) and is difficult to reconcile with the sheer
complexity of wiring demanded by the many thousands of inter-areal pathways in the
primate parcellated connectome (Fig. 3A). In order to resolve these issues, it is important to
complement diffusion imaging with high resolution anatomical methods that provide direct
evidence on the statistical pattern of fiber fanning, dispersion, branching, and/or sharp
angles that characterize long-distance pathways. One such approach involves comparing
tracer injections in the macaque directly with tractography results (Jbabdi et al., 2013), a
topic my lab is actively exploring. Novel optical imaging methods such as CLARITY
(Chung et al., 2013) as well as ultrastructural reconstructions may provide critical
information needed for better ‘anatomical priors’ that can inform the modeling of dMRI
data. However, these will likely be most informative in primates; rodents will be of limited
value because they have a very modest amount of white matter, and many cortico-cortical
pathways are likely to travel directly through the unconvoluted gray matter. As the next
section illustrates, a different approach involves functional connectivity, which is also highly
informative in complementary ways.

Functional connectivity MRI (fcMRI) is based on BOLD fMRI signal fluctuations in the
resting state that show a complex pattern of spatial correlations with nearby and distant
regions. In the macaque, fcMRI correlations are strongest between anatomically connected
regions (Vincent et al., 2007), but the correlations likely reflect a combination of indirect as
well as anatomical connectivity, and they also may be influenced by more complex aspects
of neurovascular coupling. The HCP fcMRI data benefit from high resolution in space (2
mm voxels time (0.7s ‘frame rate’), and time (0.7s TR), and in many analysis steps. An
important component of preprocessing is the removal of spatially structured and
unstructured noise, as only an estimated ~4-6% of the variance of the unprocessed data
represents neurobiologically genuine signal (Marcus et al., 2013). Removal of spatially
structured noise has been greatly improved by an automated “FIX” denoising algorithm
(Smith et al., 2013b).

The fMRI data of interest are restricted to gray matter (white matter and non-brain voxels
are largely irrelevant to this analysis). At the 2mm spatial resolution appropriate for the
fMRI data, there are ~90,000 ‘grayordinates’ (surface vertices for cortex and voxels for
subcortical domains). Analysis of functional connectivity entails computing the correlation
of timeseries data for 90,000 × 90,000 grayordinates. This amounts to ~33 GB of data when
stored in the recently introduced “CIFTI” grayordinate × grayordinate file format; the data
files would be ~6-fold larger if stored in a conventional voxel-based volumetric format
(Glasser et al., 2013a). More generally, the CIFTI format provides efficient and flexible way
of representing many types of data used by the HCP, including task-fMRI and dMRI results.

One widely used way to analyze fcMRI data involves seed-based correlations, which reveals
the spatial pattern associated with any given region of interest (ROI), be it a single seed
point or a larger collection of grayordinates or conventional voxels. For example, Figure 5
compares the fcMRI seed-based correlations (column 2) in individual (top row) and a group
average (generated from 120 subjects). The selected seed in parietal cortex (black dot, green
arrows) reveals a pattern of strong correlations and anti-correlations in several distant
regions of frontal, occipital and temporal cortex (arrows). The high quality of HCP data
acquisition and analysis provides notably fine spatial detail for a single grayordinate seed in
each individual subject with minimal smoothing of the data. The group average pattern is
similar to the individual, but is much blurrier, because the alignment is imperfect but also
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presumably because there is noise in each of the individual subject maps, as well as
biological variation between individuals. One way to examine the specificity is by cross-
modal comparisons, using cortical myelin maps (column 3) and task-fMRI (column 4), that
are part of standard HCP data acquisition and processing. The fcMRI patches correspond
with patches of heavy cortical myelin (Fig. 5C, black dots, arrows). There is also a
correlation with the task fMRI results in Figure 5D, which shows the activation pattern from
viewing faces in the HCP ‘Emotion’ state.

The intersubject registration used in Figure 5 was based only on shape features, using
FreeSurfer's ‘sulc’ maps and registration algorithm (column 1). Alignment can be further
improved using a novel multimodal surface matching (MSM) algorithm (Robinson et al.,
2013a; Robinson et al., 2013b) that can capitalize on multiple additional modalities,
including myelin maps as well as resting state network maps (Glasser et al., 2013b; Smith et
al., 2013b).

From dense to parcellated connectomes—The sheer size of each dense connectome
(33 GB) makes them unwieldy for many analyses that instead can benefit from compact
representations of connectivity between regions defined by one or another parcellation. It is
obviously preferable to use a parcellation having relatively homogeneous connectivity
within the parcels rather than, say, a geographically-based parcellation having demonstrably
heterogeneous connectivity profiles. Accordingly, the fcMRI data provide the best available
evidence on which to derive an objective brainwide connectivity-based parcellation.

There are several complementary ways to analyze fcMRI data in order to infer or identify
parcels that reflect functionally distinct regions (Cohen et al., 2008; Wig et al., 2011; Power
et al., 2012; Blumensath et al., 2013; Wig et al., 2013; Smith et al., 2013a). One powerful
approach uses ICA analysis applied to group-average data (concatenated fMRI timeseries) in
order to identify grayordinates that share similar fMRI timecourses (Smith et al., 2013). The
left half of Figure 6 shows three representative components (network “nodes”) from a 98-
component ICA decomposition using data from 120 HCP subjects.

These fcMRI derived nodes are analogous to previously published resting state networks
(e.g. Yeo et al., 2011), but are much smaller and reveal much finer detail. Two distinctive
characteristics warrant mention. (i) Many nodes include topologically noncontiguous
portions, making them unlike classically defined cortical areas. (This is particularly the case
at lower ICA dimensionalities. The noncontiguous segments usually involve symmetric
portions of the two hemispheres, often involve both cerebellum and cerebral cortex, and
often involve dispersed regions within a single cerebral hemisphere. This reflects the
physically dispersed nature of network and sub-network components defined by similarities
in fMRI time-series. (ii) In relation to topographically organized sensory and motor areas,
some nodes cross multiple areal boundaries but occupy only part of the topographic map of
each area. In Figure 6A (top row), node 7 includes the face region of somatomotor cortex
bilaterally, and extends across areas 1, 3a, 3b, 4a, and 4b. In row 2, node 36 includes the
hand region only in the left hemisphere. In rows 3 and 4 nodes 24 occupies central area V1,
respecting the V1/V2 boundary; node 3 includes the peripheral representation of both area
V1 and V2. These observations drive home the point made previously that connectivity
based parcels and architectonic parcels can differ markedly because they reflect
fundamentally different aspects of cortical organization.

Figure 6B shows the 98 × 98 connectivity matrix that results from correlating the timeseries
of each ICA spatial component with one another (n=131 subjects). The full correlation
matrix is above the diagonal; below the diagonal is the partial correlation matrix, after
regressing out all common components. The components are clustered based on similarity of
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the full correlation values; the hierarchical cluster analysis shown on the right reveals 10
major networks in the geographical domains indicated. This type of group-based fcMRI
analysis can be extended to single-subject analyses that enable comparisons between
functional connectivity and behavioral measures; it can also be used to assess the heritability
of brain connectivity, given that the HCP subjects came from twins and nontwin siblings
(Smith et al., 2013b). Importantly, while the full correlation and partial correlation provide
quantitative values, neither provides a direct measure of anatomical connection strengths.
Given the indirect nature of neurovascular coupling and the complexity of the many analysis
steps, the correlation values that are expressed as ‘functional connectivity’ need to be
interpreted cautiously in terms of their neurobiological underpinnings.

On navigating the human brain—Returning to the analogy of earth maps, humans are
increasingly reliant in our daily lives on information based on GPS-based spatial coordinates
as we navigate our environment, yet most of us are blissfully ignorant of such basics as the
latitude and longitude of our home city. For the brain, spatial coordinates provide an
objective way to express precise locations in an individual or an atlas brain. Traditionally,
this has been done using stereotaxic (x,y,z) coordinates, such as the famous Talairach
coordinate system or the more commonly used MNI stereotaxic space. A decade ago
spherical coordinates of latitude and longitude were introduced for specifying locations in
cerebral cortex (Van Essen et al., 2001; Drury et al., 2009; Fischl et al., 2009). However,
spherical coordinates have not caught on widely, in part because it is not intuitive to think
about brain locations on a spherical map. An attractive alternative is to use the
aforementioned grayordinates as an efficient basis for describing gray-matter locations in
individuals and atlases. It allows a single machine-readable number (the CIFTI grayordinate
index) to specify brain locations accurately and objectively. That being said, the accuracy of
CIFTI-based analyses will depend heavily on the quality of the surface registration method
used to bring the data into standard grayordinates space. (Drury et al., 1999)

Concluding Remarks
The remainder of this essay touches on six ancillary topics that are relevant to the core
issues of cartography and connectomics: data sharing, the resurgence of neuroanatomy,
cortical development, brain disorders, cortical evolution, and computational neuroscience. I
have been active in each of these domains and comment on them from a distinctly personal
perspective.

Data sharing—A culture and practice of widespread data sharing has been vital for rapid
progress in many fields, from astronomy to genomics. This has been very slow to occur for
neuroscience in general, even though the potential benefits of data sharing are large. Efforts
to promote data sharing in neuroscience date back to the 1990's when the Human Brain
Project was launched. The impediments along the way have been both technical and
sociological (Koslow, 2002). My lab's contribution to the data sharing enterprise started with
the SumsDB database as a vehicle for sharing neuroimaging data (Dickson et al., 2001); Van
Essen et al., 2005), including stereotaxic neuroimaging coordinates (Van Essen, 2009). Our
experience and that of others (e.g., the BrainMap database - (Fox and Lancaster, 2002) was
that neuroscientists appreciate having data available in a public database, but relatively few
are motivated to contribute to a database if it entails significant effort on their part. In the
past several years the data sharing tide has begun to turn, driven by several factors (Akil et
al., 2011). The Neuroscience Information Framework (NIF, www.neuinfo.org/) has
demonstrated the breadth of currently available resources as well as the value of ‘one-stop-
shopping’ for exploring these resources (Gardner et al., 2008; Cachat et al., 2012).
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One domain that is especially well suited to data sharing involves large-scale projects such
as the Allen Institute for Brain Sciences (AIBS) and the HCP. The AIBS (http://
www.alleninstitute.org) has demonstrated the power of high-throughput, high quality
analyses of gene expression patterns in different species and different developmental stages,
especially when the data are freely shared through user-friendly interfaces for data
visualization and mining. Data sharing is also an integral part of the HCP mission, and our
experience in this process has driven home several lessons. One is the importance of well-
organized, systematically processed data in order to make the HPC data highly useful to the
community. This includes pipelines and a database structure that are systematically and
consistently organized in order to facilitate a wide variety of analyses (Glasser et al, 2013a,
Marcus et al., 2013). As of September, 2013, the HCP had released three large datasets, each
containing data acquired in an earlier quarter and then carefully processed and organized.
The unprocessed datasets are available for investigators who prefer to start from scratch.
However, the great majority of users have heeded our recommendation to download the
‘minimally preprocessed’ datasets, thereby capitalizing on many analysis steps that represent
improvements relative to conventional methods. Future HCP data releases will include
additional types of extensively processed data and will also support additional capabilities
for data mining. The various preprocessing and analysis pipeline scripts will also be made
available, along with the ConnectomeDB database infrastructure, so that investigators at
other institutions will have the option to apply HCP-like approaches to their own
neuroimaging projects.

A corollary observation is that most neuroscientists (myself included!) would benefit from
better data organization and management for the smaller-scale projects carried out in our
own labs, whether or not the data are later made freely available. If individual labs become
more efficient in managing their data, it will lower the practical barriers to data sharing. It is
encouraging that the need for data sharing is receiving attention from funding agencies and
also in the advisory report on the BRAIN Initiative (http://www.nih.gov/science/brain/).

The rebirth of neuroanatomy—During the 1990's, many of my neuroanatomy
colleagues bemoaned the decline of systems neuroanatomy. It was increasingly hard to get
funding and to recruit graduate students to the field. While I shared the concern, my instincts
were that a resurgence was essential for the vitality of neuroscience more broadly, and that
the pendulum would swing with the advent of more powerful and efficient neuroanatomical
methods. However, never in my wildest turn-of-the-century dreams did I countenance the
amazing explosion of interest in matters neuroanatomical that now engage a broad spectrum
of investigators, including hard-core molecular neuroscientists who now appreciate the
importance of delving into the intricacies of neuroanatomy. To paraphrase Mark Twain,
reports of the death of neuroanatomy were greatly exaggerated. The field has undergone an
amazing resurgence, fueled by advances on many fronts. In animal models, this includes
optogenetics and labeling of neuronal subtypes and their projections genetically tractable
species like mouse zebrafish and Drosophila (Schnitzer and Deisseroth, this issue). In
monkeys and humans, this includes the powerful neuroimaging methods discussed in this
essay.

Cortical development—My interests in neural development are deeply rooted but have
followed a circuitous trajectory that intersects with the cartography and connectomic themes
of this essay. While at Caltech, my lab pursued parallel, highly disparate lines of research on
synapse elimination at the neuromuscular junction and on the functional organization of
primate visual cortex. After moving to Washington University in 1992, my developmental
focus shifted to cerebral cortex. We used postmortem anatomical methods to show that
connections between macaque areas V1 and V2 initially form around the time that cortical
gyrification occurs (Coogan and Van Essen, 1996). This prompted me to think
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mechanistically about how cortical folding brings the retinotopic maps of areas V1 and V2
into register. In my favorite ‘light-bulb’ moment of an entire scientific career, it occurred to
me one evening that cortical folding might arise if axons generated mechanical tension that
pulled strongly connected locations closer to one another. This notion quickly generalized
into a theory of tension-based morphogenesis that can account for many other key features
of nervous system development (Van Essen, 1997). For example, mechanical tension in
apical dendrites may account for the sheet-like structure of cerebral and cerebellar cortex.
Given that neurites in vitro in fact exert mechanical tension (Lamoureux et al., 1989;
Heidemann and Buxbaum, 1990), the anisotropic orientation of neuronal and glial processes
in vivo are well positioned to have powerful morphogenetic influences that are distinctive
for each brain region. These ideas extend to the nervous system D'Arcy Thompson's classic
thesis that competing forces of tension and pressure drive the morphogenesis of plant and
animal forms in general (D'ArcyThompson, 1917)

Tension-based cortical folding is a very attractive hypothesis, but it has been devilishly
difficult to obtain incisive evidence in favor or against it. Like many major other
developmental phenomena, cortical folding likely arises from more than a single
mechanism. For example, regional differences in neuronal proliferation within the
subventricular zone (Kriegstein et al., 2006; Reillo et al., 2011) may contribute to early
stages of gyrification, but it seems very unlikely that this could account for the complexity
and variability of secondary and tertiary convolutions in humans (Van Essen, 2006, 2007).
Other hypotheses for cortical folding continue to be promulgated, including differential
tangential expansion (Ronan et al., 2013) and even a completely countervailing notion of
‘axonal pushing’ as a mechanism of gyrification (Nie et al., 2012). However, the empirical
evidence for these alternatives is tenuous in this author's opinion. Hence, on encountering
the statement “While the axonal-tension theory provides a description of how gyrification
arises, the evidence that it is incorrect, as previously discussed, is convincing” (Ronan et al.,
2013), my reaction is to again invoke Mark Twain and counter that reports of the death of
tension-based cortical folding are greatly exaggerated! (Reillo et al., 2011)

Studies of human twins provide an interesting perspective on cortical folding that is relevant
to these mechanistic considerations. A starting point is that the convolutions in identical
twins differ from one another almost as much as in unrelated individuals. I learned this
firsthand in a friendly competition among collaborators to predict twin status based on visual
inspection of cortical folding patterns (while blinded to the identity of 14 twin pairs). I lost
the competition (performing no better than chance!); the hands-down winner was a
computer algorithm that did the matching perfectly, suggesting that cortical folding patterns
are indeed heritable, but only to a modest degree (Botteron et al., 2008). These questions are
now amenable to a much more detailed analysis because the HCP is acquiring data from
twins and their nontwin siblings. Our initial analyses of the HCP data indicate that
functional connectivity is inherited to a significant degree (Smith et al, 2013b). It will be of
great interest to see whether future analyses using larger HCP datasets informs the debate
about the mechanisms of cortical folding.

Brain Disorders: A growing number of investigators who were trained as basic
neuroscientists have become engaged in projects that relate to specific brain diseases and
disorders. In part, this reflects pressure from NIH and other funding agencies to promote
research related to the core mission of improving health. However, I believe that first and
foremost this trend reflects the tremendous progress in the field that enables meaningful
attacks on key disease-related problems, using a variety of animal models as well as human
patient populations. In my case, I was drawn into disease-related research about a decade
ago when a serendipitous opportunity arose to collaborate in applying our cortical
cartography tools (Caret software) to a study of children with Williams Syndrome. We
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identified dozens of cortical folding abnormalities in Williams Syndrome and hypothesized
that these folding abnormalities might be caused by underlying circuit abnormalities via the
aforementioned tension-based folding hypothesis (Van Essen et al., 2006). Soon thereafter, I
struck up a collaboration with pediatric neurologists Terrie Inder and Jeff Neil to study
cortical development using structural MRI scans in infants, including those born
prematurely. This is extremely important clinically, because of the disturbingly high
incidence of various behavioral disorders in children born prematurely (Bos and Roze,
2011). It is also provides a fascinating window on a period of rapid development, when
gyrification is in full swing and the cortex is expanding rapidly. In comparing healthy term-
born infants to adults, we discovered that postnatal cortical expansion is strikingly
nonuniform, with the greatest expansion occurring in lateral temporal, prefrontal, and
parietal regions that are implicated in cognitive function (Hill et al., 2010).

Evolution: Earlier sections have already emphasized the importance of studying nonhuman
primates, especially the macaque, as model systems for better understanding the human
brain. However, human cerebral cortex is not only larger (by 10-fold) and far more
convoluted than the macaque, but it is far from being a scale model even after smoothing out
the wrinkles (see Fig. 2B, C). The need for objective and quantitative comparisons in the
face of large interspecies differences poses an interesting cartographer's challenge. Years
ago I realized that the surface-based registration methods we had developed for within-
species registration could be adapted to registration between species. By assigning
landmarks to areas known as suspected to be homologous in the macaque and human,
registration constrained by these landmarks indicates that lateral temporal, parietal regions
expanded 20-fold or more in the human lineage compared to the macaque, whereas early
sensory areas expanded far less (Van Essen and Dierker, 2007; see also (Chaplin et al.,
2013)). Intriguingly, the regions of high evolutionary expansion overlap strongly with the
aforementioned regions that expand the most in postnatal human maturation (Hill et al.,
2010).

Surface-based cartography also provides a window on our closest living relatives, the great
apes, whose cerebral cortex is about one-third that of human cortex. The cortical myelin
maps illustrated above for human cortex (Fig. 5C) have also been generated for chimpanzees
and macaques (Glasser et al., 2013c). In all three species, the early sensory and motor areas
are heavily myelinated, whereas lateral temporal, parietal, and prefrontal regions presumed
to be cognitive in function are lightly myelinated. Quantitative comparisons between the
three species may provide interesting insights about the way in which specializations for
cognitive function have evolved in the primate lineage.

Computational Connectomics: My scientific training was as a neuroanatomist and
neurophysiologist, but I became convinced in the 1980's that computational approaches were
essential in order to deepen our interpretation and understanding of brain function. It has
been heartening to see the once-small ‘fringe’ field of computational neuroscience blossom
in the ensuing decades, to the point that it is now a vibrant part of mainstream neuroscience.
In the context of this essay, it is interesting to consider the evolving relationships among
neural computation, cartography and connectomes.

A starting point is to acknowledge that connectivity data (be it of a micro-, meso-, or macro-
connectome flavor) while providing extremely important constraints on the nature of the
underlying computations, doesn't on its own explain what or how the brain and its
component networks actually compute. Insights can be greatly strengthened when
information about neural activity is available (be it macroscopic as derived from fMRI,
MEG, or EEG, or microscopic as derived from neurophysiological or optical methods).
Ambitious methodological advances may enable comprehensive mapping of brain activity at
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the single-neuron level in model organisms (Alivisatos et al., 2012). However, such ‘brain
activity maps’ on their own will not answer critical questions of how and what the brain
computes. Computational neuroscience comes into play by providing a framework for
generating and evaluating computational models that test our understanding of what is going
on ‘under the hood’.

Contemporary computational neuroscience includes a diversity of theoretical and
methodological approaches. This diversity will surely increase as new approaches emerge
that can make good use of massive datasets involving connectomic and/or brain activity data
at one or another spatial scale. Indeed, a new specialty of computational connectomics may
emerge, analogous to how computational genomics evolved to enable analysis of massive
genomic datasets. From my perspective, an important consideration for progress
computational neuroscience relates to the belief that nervous systems are exquisitely well-
engineered to carry out the computations that mediate species-specific behaviors, because
they are driven by intense evolutionary pressures. Accordingly, it is important that
computational models themselves be grounded in sound neural engineering principles that
impact how the models are framed, implemented, and interpreted (Eliasmith and Anderson,
2004; Eliasmith, 2013).
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Figure 1.
Volume and surface representations of mouse, macaque, and human brains. Top row:
Parasagittal slices of high-resolution T1w scans from 3 species. The mouse and macaque
data are described in Van Essen (2002a,b). The human individual and group average (120
subjects) are from HCP scans acquired at high spatial resolution (0.7 mm) rather than the 1
mm isotropic voxels conventionally used, Lower panels: Surface reconstructions are shown
as midthickness surfaces (all 3) and inflated surfaces (flatmaps for the mouse). Cortical
lobes are colored on the mouse surfaces; cerebellar lobules are colored for all 3 species. The
mouse surface includes the olfactory bulb. The HCP surface reconstructions benefitted from
refinements to standard FreeSurfer processing (Glasser et al., 2013b; Glasser et al., 2013c).
The human cerebellar surface is from the Colin individual MRI atlas (Van Essen, 2002b).
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Figure 2.
Parcellations of mouse, macaque, and human cortex. A. A 40-area parcellation of mouse
cortex illustrated on a cytochrome-oxidase stained tangential section of flattened mouse
cortex. (Reproduced, with permission, from Wang et al., 2012). B. A composite parcellation
of macaque cortex (Van Essen et al., 2012a) showing 130 areas of neocortex and transitional
cortex, based on architectonic schemes of Lewis and Van Essen (2000b), Ferry et al. (2000),
and Paxinos et al., (2000) and displayed on the inflated F99 atlas surface. C. A composite
parcellation of 52 cortical areas spanning ~1/3 of human neocortex, based on published
architectonic and retinotopic maps and displayed on the inflated Conte69 atlas surface (Van
Essen et al., 2012a).(Ferry et al., 2000; Paxinos et al., 2000; Lewis and Van Essen, 2000b)
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Figure 3.
Parcellated connectomes for the macaque and mouse. Left column: Top row: 91-area
parcellation of Markov et al. (2012). Row 2: 29 injected areas with each injected area
colored on a dot placed on the estimated injection site. Row 3: Connectivity profile for area
V2 (31 inputs). Row 4: Connectivity profile for area 8L (87 inputs). B. The 29×91 macaque
connectome based on retrograde tracer injections, with 1,615 pathways. Reproduced, with
permission, from Markov et al. (2012). C. The mouse connectome is based on anterograde
tracers and the 40 area parcellation shown in Fig. 2. Reproduced, with permission, from
Wang et al. (2012).
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Figure 4.
Diffusion MRI and probabilistic tractography results in an individual HCP subject. A.
Lateral view of the ‘gray/white’ surface, showing a seed location in the inferior frontal gyrus
(IFG, blue dot). B. Probabilistic streamlines in white matter on a coronal slice that intersects
the IFG seed point. C. Probabilistic trajectories from the IFG seed point viewed in a 3D
volume. D. Structural connectivity from the IFG seed point (large green dot) viewed on the
inflated cortical surface. Smaller green dots indicate the approximate centers of patches
showing high structural connectivity with the seed point. Red arrow indicates a likely false
positive patch in insular cortex. Adapted, with permission, from Van Essen et al., 2013).
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Figure 5.
Multimodal analysis of HCP data in individuals and group averages for functional
connectivity, myelin maps, and task-fMRI. A: Maps of cortical shape (FreeSurfer ‘sulc’
map) in an individual (top row) and a group average (bottom row, subjects) after FreeSurfer
shape-based registration. B: Functional connectivity maps from a seed (black spot, red
arrow) in parietal cortex, with hotspots in two patches in prefrontal cortex (arrows). C:
Myelin maps, demonstrating myelin hotspots at the parietal seed location, in the area MT+
complex, and in the frontal eye fields and a nearby prefrontal patch (arrows). D: task-fMRI
activation when viewing expressive faces in the HCP Emotion task, with activation foci that
overlap with the parietal and prefrontal foci from the preceding panels.
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Figure 6.
ICA-based analysis of group-average functional connectivity. A. Four ICA-based
components (“nodes”) from an analysis of 120 HCP subjects, registered using multimodal
surface matching (Robinson et al., 2013b; Smith et al., 2013b). Top row: node 7 in the
bilateral face representation of somato-motor cortex. Row 2: node 36, in the left hemisphere
hand representation. Black contours show boundaries of areas 4a, 4p. 3a, 3b, and 1 (Van
Essen et al., 2012b). Bottom panels: node 24 (bilateral central V1, row 3) and node 3
(bilateral peripheral V1, V2, row 4). B. Functional connectivity matrix for a 98 × 98 ICA
analysis of data from 131 HCP subjects. The full correlation is shown above the diagonal
and the partial correlation below the diagonal. Adapted, with permission, from Smith et al.
(2013b).
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