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Abstract
Objective—Traumatic joint injury can initiate early cartilage degeneration in the presence of
elevated inflammatory cytokines (e.g., TNF-α and IL-6). The positive/negative effects of post-
injury dynamic loading on cartilage degradation and repair in vivo is not well-understood. This
study examined the effects of dynamic strain on immature bovine cartilage in vitro challenged
with TNF-α + IL-6 and its soluble receptor (sIL-6R) with/without initial mechanical injury.

Methods—Groups of mechanically injured or non-injured explants were cultured in TNF-α +
IL-6/sIL-6R for 8 days. Intermittent dynamic compression was applied concurrently at 10%, 20%,
or 30% strain amplitude. Outcome measures included sGAG loss (DMMB), aggrecan biosynthesis
(35S-incorporation), aggrecanase activity (Western blot), chondrocyte viability (fluorescence
staining) and apoptosis (nuclear blebbing via light microscopy), and gene expression (qPCR).

Results—In bovine explants, cytokine-alone and injury-plus-cytokine treatments markedly
increased sGAG loss and aggrecanase activity, and induced chondrocyte apoptosis. These effects
were abolished by moderate 10% and 20% strains. However, 30% strain-amplitude greatly
increased apoptosis and had no inhibitory effect on aggrecanase activity. TNF+IL-6/sIL-6R
downregulated matrix gene expression and upregulated expression of inflammatory genes, effects
that were rescued by moderate dynamic strains but not by 30% strain.

Conclusions—Moderate dynamic compression inhibits the pro-catabolic response of cartilage
to mechanical injury and cytokine challenge, but there is a threshold strain-amplitude above which
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loading becomes detrimental to cartilage. Our findings support the concept of appropriate loading
for post-injury rehabilitation.
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INTRODUCTION
Joint injuries such as the anterior cruciate ligament (ACL) tear are a major risk factor for
osteoarthritis (OA) later in life. The initial joint trauma can be a single disruption of the
ligament, or accompanied by damage to cartilage, meniscus, synovium, and subchondral
bone. Post-injury evaluation of the synovial fluid from ACL-deficient patients has revealed
inflammation-associated biochemical changes including increased levels of pro-
inflammatory cytokines (e.g., TNF-α, IL-1, and IL-6) as well as matrix protein degradation
products generated by matrix metalloproteinases (MMPs) and ADAMTS aggrecanases (A
Disintegrin And Metalloproteinase with Thrombospondin Motifs)[1–4]. This inflammatory
response, which can be prolonged after the initial injury, is believed to act in conjunction
with abnormal mechanical loading to accelerate cartilage degeneration that eventually leads
to OA. Indeed, studies comparing OA patients with or without prior joint injury provided
strong evidence that ACL tears can significantly increase the risk for early OA[5–7].

In vivo, articular cartilage is subjected to a complex combination of shear, compressive, and
tensile stress under normal loading conditions. After joint injury, in addition to the
inflammatory response, trauma-induced joint instability also alters the contact mechanics
between articular surfaces[8]. In particular, Van de Velde[9, 10] used dual fluoroscopic and
MR imaging techniques to quantify tibiofemoral joint kinematics in both normal and ACL-
deficient human patients. Their results showed that cartilage contact deformation increased
significantly to ~20–30% in the ACL-deficient knee from ~15–20% in the contralateral
healthy knee during lunge motion with 0–30° flexion[10]; while surgical reconstruction
restored some of the in vivo contact biomechanics, the increased cartilage deformation was
not ameliorated[11]. These studies raise the question of whether post-injury joint loading
can cause additional damage to cartilage, and whether there exists a range of motion within
which rehabilitative loading can be beneficial in maintaining cartilage structure and
function.

Over the last two decades, in vitro injury models have been developed to facilitate
understanding of cartilage mechanical injury on the onset and progression of OA[12–14].
Consistently, injurious loading has been shown to result in loss of proteoglycans[15], tissue
swelling[14], collagen network damage[12], and reduced tissue stiffness[13]. In addition,
significantly increased chondrocyte apoptosis was observed[16, 17], especially in the
superficial zone[18], and the degree of cell damage was age-dependent[19]. Matrix
biosynthesis by remaining live cells was also suppressed by injury[13]. Furthermore, injury
potentiates proteoglycan catabolism induced by exogenous cytokines TNF-α and IL-6[20],
which were introduced to simulate the inflammatory environment seen in vivo after joint
injury. These studies have furthered our understanding of the immediate effects of
mechanical injury; however, the interplay between cytokines and post-injury mechanical
signals is less understood.

Dynamic compression can induce anabolic responses in normal cartilage which promote
matrix biosynthesis with a strong dependence on compression frequency, amplitude, and
loading duty cycle[21–24]. The spatial profiles of cell-mediated matrix biosynthesis have
been correlated with compression-induced interstitial fluid flow[25–27], and the mechano-
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transduction pathways involve MAPK activation, intracellular calcium and cyclic AMP[28,
29]. Additionally, dynamic compression can mitigate the catabolic responses of
chondrocytes to cytokines in tissue-engineered cultures[30]. However, little is known about
the effects of follow-on dynamic compression after injury/cytokine- challenge in intact
cartilage.

In the present study, we implemented a previously-characterized in vitro injury model
involving cytokines TNF-α and IL-6/sIL-6R with or without initial mechanical injury, and
investigated the effects of intermittent unconfined dynamic compression (10%–30% strain
amplitude) on immature bovine cartilage. We hypothesized that (1) dynamic compression
can maintain anabolic effects in an inflammatory environment by rescuing matrix
biosynthesis suppressed by cytokines[31]; (2) dynamic compression has an additional anti-
catabolic role in reducing cytokine-mediated cartilage degradation; (3) there is a range of
strain amplitudes within which dynamic compression is beneficial, while overload strain
amplitudes above a threshold can be deleterious.

MATERIALS AND METHODS
Bovine articular cartilage harvest and culture

Articular cartilage disks were harvested from the femoropatellar grooves of 1–2-week-old
calves, obtained on the day of slaughter (Research ‘87, Boylston, MA). A total of 19 joints
from 15 different animals were used. Full-thickness cartilage cylinders were cored using a 3-
mm dermal punch, and the top 1-mm disk containing intact superficial zone was harvested
with a blade. Disks were incubated in serum-free medium (low-glucose Dulbecco’s
Modified Eagle’s Medium [DMEM; 1g/L]) supplemented with 1% insulin–transferrin–
selenium (ITS, 10 g/ml, 5.5 g/ml, and 5 g/ml, respectively, Sigma, St. Louis, MO), 10 mM
HEPES buffer, 0.1 mM nonessential amino acids, 0.4 mM proline, 20 g/ml ascorbic acid,
100 units/ml penicillin G, 100 g/ml streptomycin, and 0.25 g/ml amphotericin B for 2–3
days (5% CO2; 37°C). Disks for each test were match for anatomic location on the joint
surface, and the thickness variation for those receiving dynamic compression was limited to
<5%.

Injurious compression and exogenous cytokines
After equilibration, groups of cartilage disks were injuriously compressed in a custom-
designed, incubator-housed loading apparatus (Figure 1A)[32]. As described previously[33],
each bovine disk was placed in a polysulfone chamber and subjected to radially unconfined
compression to 50% final strain at a strain rate of 100%/s, followed by immediate release at
the same rate (Figure 1B). After injury, disks were immediately placed in treatment medium
in the presence or absence of rhTNF-α (25 ng/ml), rhIL-6 (50 ng/ml), and sIL-6R (250 ng/
ml) (R&D Systems, Minneapolis, MN). Previous studies showed that this combination of
cytokines caused significantly greater sulfated glycosaminoglycan (sGAG) loss than either
cytokine alone[20, 34].

Dynamic compression
On Day 0 (Figure 1B), one disk was placed (with superficial surface facing upward) in each
well of a 12-well polysulfone loading chamber, with 0.3 ml treatment medium. The chamber
was then inserted into the loading apparatus (Figure 1A). Disks were statically compressed
to 10% strain to ensure contact, and unconfined dynamic compression was then
superimposed using a displacement-controlled haversine waveform (0.5 Hz, 40% duty
cycle) continuously for 1 hour, followed by 5 hours rest with the applied static and dynamic
load removed. This [1-hour load]—[5-hour-rest] cycle was repeated 4 times per day (Figure
1B). Dynamic compression at three different strain amplitudes (10%, 20%, and 30%) was
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applied to 3 different groups of 12 bovine explants simultaneously using three identical
loading instruments. Medium was changed every 2 days.

sGAG biosynthesis and biochemical analysis
On Day 6, culture medium was supplemented with 5 μCi/ml [35S]-sulfate (Perkin-Elmer,
Norwalk, CT). After 48-hour radiolabeling, disks were washed 4 times over 80 min with
cold PBS to completely remove the free label. Each disk was measured to determine its wet
weight and then was digested with proteinase K (Roche, Indianapolis, MN) overnight. The
sGAG content in the medium and digested explants was quantified using the
dimethylmethylene blue assay[35]. The amount of radiolabel in each digested sample and
the medium standard [35S]-sulfate were measured using a liquid scintillation counter[21].
Radiolabel concentration was calculated from the standard and then was normalized to DNA
(measured via Hoechst 33258 dye-binding)[36].

Histologic analysis
After 4 days of treatments, disks (N = 4 from each group) were fixed in 4%
paraformaldehyde overnight at 4°C. Next day, disks were cut in half and one of the halves
was embedded in paraffin. Serial cross-sections (3 mm-long × 1 mm-wide × 5 μm-thick)
were microtomed, immobilized on glass slides, and stained with Mayer’s hematoxylin. To
quantify cell apoptosis, 1–2 slices from each cross-section were evaluated by light
microscopy with a 40x objective. To exclude artifacts of cutting-induced cell death at
specimen edges, only cells 100 μm inward from the cut-edges were examined (the
superficial-most cells were examined). Nine optical fields (each 0.2 mm × 0.2 mm) were
examined for each slice, distributed evenly between left, central, and right positions of the
superficial, middle, and deep zones of the tissue. Chondrocytes with condensed and blebbed
nuclei were counted as apoptotic cells based on previously published methods and
analyses[19], and the rest were counted as normal cells (30–70 total cells/field).

Cell viability
To further study the effect of dynamic compression on chondrocyte viability, tested bovine
and human disks were cut into 100–200 μm-thick slices (3 mm-long × 1 mm-wide cross-
sections from superficial surface to 1-mm deep). Fluorescein diacetate (FDA; 4 μg/ml in
PBS) was used to stain viable cells green while propidium iodide (PI; 40 μg/ml in PBS)
(both from Sigma) stained non-viable cells red. Two slices from each explant were stained
for 2–3 minutes in the dark and then washed with PBS. Two separate images were taken for
each slice using a Nikon fluorescence microscope with a 4x objective.

Gene expression analyses
Bovine cartilage explants from 4 different animals (6 disks per condition per animal) were
treated for 48 hours and stored in −80°C after flash-freezing. On the extraction day, the 6
disks from each condition were pooled, pulverized, and lysed in TRIzol reagent (Invitrogen,
Carlsbad, CA) with a homogenizer, as previously described in detail [28, 37]. The extract
was then separated using phase-gel tubes (Eppendorf, Hamburg, Germany), and the
supernatant was purified following the Qiagen RNeasy mini kit protocol (Qiagen,
Chatsworth, CA). Reverse transcription was performed with equal amounts of RNA from
each condition using the AmpliTaq-Gold Reverse Transcription kit (Applied Biosystems,
Foster City, CA). Primer pairs used were previously reported [28, 37] except for the newly
designed primer: NF-κB (p65 unit; forward 5′-CGGGTGAATCGGAACTCTGG-3′, reverse
5′-TCGATGTCCTCTTTCTGCACC-3′). Real-time qPCR was performed via 384-well plate
format using the Applied Biosystems 7700HT instrument with SYBR Green Master Mix
(Applied Biosystems) and analyzed as described in detail previously[28, 37]. Gene
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expression levels were normalized to the housekeeping gene 18S, as previous studies with
this system have demonstrated the utility of this reference gene [28, 37].

Aggrecan degradation by western analysis
Explants were diced and extracted in 4M Guanidine for 48 hours at 4°C. The extracted
aggrecan was precipitated overnight at −20°C in 100% ethanol with 5 mM sodium acetate,
and then deglycosylated using chondroitinase ABC, keratanase II, and endo-β-galactosidases
(all from Seikagaku America, Rockville, MD). Equal amounts of sGAG were loaded on a 4–
12% Bis-Tris gradient gel (Invitrogen), and proteins were separated by electrophoresis.
Western blot analysis was performed using the monoclonal antibody anti-NITEGE (kindly
provided by Dr. Carl Flannery), which is specific to aggrecanase-generated NITEGE
neoepitope (Glu373-Ala374)[38].

Statistical analysis
To analyze the effects of dynamic compression on sGAG loss and biosynthesis in bovine
explants, a linear mixed effects model was used with animal as a random factor, followed by
Tukey’s post hoc comparison. Bovine chondrocyte apoptosis data from histological images
were analyzed using three-way analysis of variance (ANOVA), followed by Tukey’s post
hoc comparison. Bovine chondrocyte gene expression was log-transformed and analyzed by
the linear mixed effect model with animal as a random factor, followed by Bonferroni’s test
for pair-wise comparisons. Human explant studies were all evaluated using two-way
ANOVA with Tukey’s post hoc comparison. Statistical analysis was performed using Systat
12 software (Richmond, CA).

RESULTS
Effects of dynamic compression on sGAG loss, sGAG biosynthesis, and aggrecanase
activity in cytokine-treated bovine explants with or without injury

In the absence of initial injury, cytokine treatment alone induced significantly higher sGAG
loss to the medium compared to untreated controls during an 8-day experiment (38.1 ± 6.1%
vs. 9.3 ± 0.4%, mean ± 95% confidence interval, p < 0.0001, n = 18 from 3 different
animals) (Figure 2A). The addition of 10% dynamic strain significantly reduced sGAG loss
to 25.9 ± 4.2% (p = 0.0001 vs. cytokines alone), and there was a further reduction to 21.6 ±
2.6% when 20% dynamic strain was applied. 30% dynamic strain also caused a decrease in
sGAG loss similar to the more moderate 10% and 20% strain.

In the presence of injury, the initial injurious compression produced peak stresses of 18.5 ±
0.4 MPa (n = 96 disks from 4 different animals). Without dynamic compression, the
combined injury plus 8-day-cytokine treatment induced 51.4 ± 8.8% sGAG loss (Figure 2B)
which was significantly greater than the 7.8 ± 0.2% sGAG loss from untreated controls (p <
0.0001), consistent with previous findings[20]. Similar to the case without initial injury, the
addition of moderate dynamic compression at 10% and 20% strain amplitude reduced this
51.4 ± 8.8% sGAG loss to 39.4 ± 5.5% (p = 0.007) and 35.1 ± 5.9% (p < 0.0001),
respectively (Figure 2A). In contrast to Figure 2A, however, the largest inhibitory effect of
dynamic compression was at 30% strain amplitude (22.9 ± 2.5%), which was a significant
decrease even from the 20% strain amplitude (p = 0.003).

35S-sulfate incorporation during the last 2 days of culture was used to assess sGAG
biosynthesis. Compared to controls (103.1 ± 7.4 pmoles/hour/μg DNA), cytokine treatment
alone significantly reduced biosynthesis (p < 0.0001, Figure 2C). There was a significant
increase in biosynthesis (rescuing effect) with increased dynamic strain up to 20%; 30%
dynamic strain also showed a significantly higher biosynthesis rate than cytokines alone (p =
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0.0012). Similarly, in the presence of initial injury, injury-plus-cytokine treatment
significantly reduced biosynthesis compared to untreated controls (p < 0.0001, Figure 2D).
Addition of 10% and 20% dynamic compressive strains did not alter this result (p = 0.946
and p = 0.434, respectively); however, 30% dynamic strain caused a further decrease in
biosynthesis rate compared to 20% strain amplitude (p = 0.015).

Effects of dynamic compression on aggrecan cleavage
Aggrecan core protein neoepitope NITEGE373-A374 generated by aggrecanases
(ADAMTS-4/5) was assessed on Days 2, 4, and 8 after treatments. No detectable NITEGE
fragments were found in any conditions on Day 2 or Day 4 (data not shown), consistent with
a previous study[39]. However, by Day 8, NITEGE-positive fragments were detected
following cytokines treatment alone (Figure 3A) and injury-plus-cytokine treatment (Figure
3B). In the absence of injury, 10% and 20% dynamic strain strongly reduced NITEGE
bands. However, 30% dynamic strain showed increased signal compared to the moderate
dynamic strain (Figure 3A). This effect was even more obvious when initial injury was
present (Figure 3B): while the abundance of NITEGE neoepitopes was markedly reduced by
10% dynamic strain amplitude and essentially abolished by 20%, NITEGE was unaffected
by 30% strain. This experiment was repeated using two additional animals with similar
results (data not shown).

Effects of dynamic compression on cytokine-induced apoptosis in bovine cartilage
Since mechanical injury is known to induce chondrocyte apoptosis [19], we hypothesized
that high-magnitude dynamic compression can act in a similar manner and induce cell
apoptosis. In order to test this hypothesis and to parse out the individual effects of dynamic
compression versus injury, chondrocyte apoptosis was first assessed 4 days after treatment
in the presence of cytokines but without initial injury; injury-plus-cytokine treatment then
served as a positive control. Compared to normal cells (Figure 4A), apoptotic chondrocytes
exhibited condensed cytoplasm and chromatin, as well as nuclear blebbing (Figure 4B).
Treatment with cytokines alone significantly increased cell apoptosis compared to untreated
controls (p = 0.011, Figure 4C), consistent with the consensus that TNF-α signals through
apoptotic pathways[40]. Interestingly, 20% dynamic strain reduced apoptosis to levels not
different than controls (p = 0.879). But at 30% strain amplitude, apoptosis dramatically
increased (p < 0.0001 compared to cytokines-alone), reaching levels not different from
treatment by injurious compression plus cytokines (p = 0.232), which is significant from
cytokines-alone treatment (p = 0.002).

Chondrocyte viability in bovine cartilage
To examine whether the presence of initial injury can alter the effects of dynamic
compression on chondrocyte viability shown in Figure 4, cell viability in the explants after
2, 4, and 8 days treatments was further assessed via live-dead fluorescence. Representative
images (Figure 5) showed minimal cell death in control samples over 8 days. In contrast,
injury-plus-cytokines caused marked cell death throughout tissue cross-sections, especially
in the superficial zone (cell death in the radial periphery was caused by cutting-induced
damage). Qualitatively, dynamic compression at 10% or 20% strain amplitude had little or
no additional effect, consistent with the absence of additional apoptosis (Figure 4C).
However, addition of 30% dynamic strain to injury-plus-cytokines (Figure 5, right most
column) resulted in a further marked loss of cell viability by Day 4, and more so by Day 8.
This is also consistent with Figure 4C, where 30% dynamic strain + cytokines treatment in
the absence of injury already showed a dramatic increase in cell apoptosis, similar to the
injury-plus-cytokine treatment.
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Bovine chondrocyte gene expression
To elucidate the mechanism of action of dynamic compression, qPCR was used to examine
gene expression after 48-hour treatments in the absence of injury. Aggrecan gene expression
was markedly suppressed by cytokines-alone (p < 0.0001, Figure 6), consistent with
previous findings[34]. Dynamic compression partially rescued this decrease regardless of
the strain amplitude (p < 0.0001 for all 3 strains). Collagen II expression showed a similar
overall response, except that 30% dynamic strain did not rescue the cytokine-induced
decrease in collagen II expression (p = 0.21). Cytokine treatment markedly upregulated
expression of ADAMTS-4 and -5 compared to controls (p < 0.0001 for both). While
dynamic compression had no effect on ADAMTS-4 expression (p > 0.1), 30% dynamic
strain amplitude increased ADAMTS-5 expression by more than two fold (p = 0.012)
compared to cytokine treatment alone. Cytokine treatment increased IL-6 mRNA levels (p <
0.0001) but dynamic compression reduced this response to control levels (p = 0.001 for 10%
and p < 0.0001 for both 20% and 30% amplitude). Dynamic strain also significantly
countered the increase in NF-κB expression caused by cytokines alone (p = 0.027 for 10%, p
= 0.02 for 20%, and p = 0.002 for 30%). While cytokine-plus-dynamic compression at 10%
or 20% strain increased COX-2 expression by 3–4 fold compared to cytokines-alone (p =
0.01 and p = 0.002, respectively), 30% strain caused a further increase to >40 fold compared
to cytokines alone (p < 0.0001). Cytokines increased iNOS mRNA levels by more than 200
fold (p < 0.0001), but 30% strain significantly suppressed this increase in expression (p =
0.001).

DISCUSSION
Using in vitro models of joint injury, we demonstrated that moderate, intermittent dynamic
compression (i.e., 10%–20% strain amplitude) has significant anti-catabolic effects on
cartilage homeostasis. Moderate dynamic compression of bovine cartilage rescued cell
apoptosis caused by cytokine challenge and upregulated cytokine-suppressed matrix gene
expression. In contrast, high compression amplitude (30%) caused severe loss of cell
viability and increased matrix degradation, and decreased matrix gene expression and
biosynthesis. Consistent with these results, Torzilli[41] reported that load-controlled
confined cyclic compression (0.5 Hz) with 0.5 MPa (but not 0.2) peak stress counteracted
IL-1α-induced sGAG loss in mature bovine explants. While their loading configuration was
different than that of Fig. 1B, their reported inhibitory effect of cyclic loading on sGAG loss
is consistent with that demonstrated here for moderate dynamic compression in immature
bovine, which sustained a comparable peak stress of 0.55 ± 0.20 MPa at 10% strain
amplitude (mean ± 95% CI, 4 animals).

Interestingly, high (30%) dynamic strain resulted in the greatest inhibition of sGAG loss
compared to moderate strains in immature cartilage, especially in the presence of injury
(Figure 2A&B). However, high dynamic strain caused significant apoptosis (Figure 4C, as
high as injurious compression), and loss of cell viability (Figure 5). Such nonviable cells
cannot respond to catabolic cytokines and upregulate aggrecanases that cause sGAG loss.
Consistent with this interpretation, 30% dynamic strain also suppressed chondrocyte
biosynthesis (Figure 2C&D). In contrast, 20% strain inhibited apoptosis (Figure 4C), further
suggesting that moderate dynamic compression may transduce anti-apoptotic signals, though
the mechano-transduction pathways remain to be elucidated. In addition, the increased
abundance in NITEGE neoepitope at 30% strain (Figure 3) indicated elevated aggrecanase
activity in the tissue, again contrary to the anti-catabolic effects of moderate dynamic
compression. Together, these results lead to our hypothesis that high-magnitude dynamic
compression is pro-inflammatory, and the suppression of sGAG loss by 30% strain resulted
from load-induced reduction in cell viability, resulting in a slower rate of live-cell-dependent
matrix degradation mediated by cytokines.
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Preliminary studies have been performed using adult human cartilage to extend the findings
from bovine experiments. 30% dynamic strain increased sGAG loss compared to 10%
strain, and lower NITEGE abundance was seen at 30% strain compared to 20%(Data not
shown). Moderate dynamic at 10% appeared to exert beneficial effects, rather than 20% in
immature bovine cartilage. These differences are likely age-related, associated with
differences in matrix composition and distribution[42], matrix maturity[19], mechanical
properties[43], and cell density[44, 45]. The immature bovine tissue is more vulnerable[46],
especially the soft superficial zone, which receives the most local strain during
compression[46], likely causing more cell damage at higher strain amplitudes than in human
cartilage. Ongoing studies focus on adult human cartilage as additional tissue becomes
available. Although immature bovine cartilage may not completely capture the behavior of
normal adult cartilage, it is useful to note that chondrocytes in adult osteoarthritic cartilage
also have higher metabolic and biosynthetic activity than normal adult cartilage. And
importantly, chondral lesions have been reported to be the most common injury to immature
human knees (more prevalent than ACL or meniscal injuries)[47].

Certain mechanisms by which dynamic compression may regulate cytokine-induced
cartilage degradation and biosynthesis were revealed at the gene transcription level.
Consistent with previous reports that moderate dynamic compression is an anabolic stimulus
for cartilage matrix biosynthesis[21], we observed that 10% and 20% strain amplitude
significantly upregulated aggrecan and type II collagen mRNA levels even in the presence
of cytokines. This suggests that the anabolic nature of moderate dynamic compression is
preserved in an inflammatory environment. Although moderate dynamic compression did
not significantly suppress cytokine-induced upregulation of ADAMTS-4 and -5 genes,
western analyses showed strong reduction in aggrecanase activity (Figure 3). These
differences between signals at the gene and protein levels may be due to (1) the time-
dependence of gene activation, which we evaluated only at the 48-hour time point, and/or
(2) the effects of dynamic compression on post-transcriptional processes such as
aggrecanase activation by proprotein convertases[48]. Therefore, further studies should
examine the effects of dynamic compression at the protein level associated with post-
transcriptional regulation of protease activation.

Inflammatory genes cyclo-oxygenase (COX-2) and inducible nitric oxide synthase (iNOS)
were activated by cytokines at 48-hour; however, moderate dynamic compression had no
inhibitory effects on either gene. Consistent with these results, Chowdhury[30] showed
significant inhibition of IL-1β-induced COX-2 and iNOS expression by 15% dynamic
compression (1 Hz) at 6 and 12 hours but not 48 hours using chondrocyte-seeded agarose
gels, further emphasizing the time-dependence of gene transcription of mechanical signals.
Dynamic compression of bovine explants suppressed cytokine-induced upregulation of IL-6
and NF-κB transcription (Figure 6). Interestingly, Agarwal[49] reported a magnitude-
dependent mechanism through which cyclic tensile strain transduced signals via the NF-κB
pathway in isolated chondrocytes. Lastly, 30% strain significantly increased ADAMTS-5
and COX-2 expression and had no stimulatory effect on type II collagen expression, further
strengthening our hypothesis that high-magnitude dynamic compression is pro-
inflammatory.

In the present study, we demonstrated the anti-catabolic effects of moderate dynamic
compression on injury/TNF + IL-6/sIL-6R-challenged immature bovine and adult human
cartilage. Importantly, we discovered that there exists a threshold strain amplitude above
which dynamic compression becomes detrimental to cell viability as well as upregulation of
inflammatory genes and aggrecanase activity in the remaining viable cells. Together, these
results provide evidence to support the concept that appropriate loading-rehabilitation post-
joint injury can be beneficial at the cell level, but above threshold dynamic loading may
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further contribute to loss of cell and tissue function. Further studies exploring the effects of
frequency and loading type (e.g., continuous vs. intermittent) are suggested to optimize the
beneficial effects of dynamic loading.
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Figure 1.
A, Schematic of custom-designed, incubator-housed loading apparatus [32] used to perform
injurious and dynamic compression. B, Experimental design: Injurious compression was
applied to cartilage explants on Day 0, followed by immediate incubation in TNF-α + IL-6/
sIL-6R. Intermittent dynamic compression started on Day 0 (10%, 20% or 30% applied
strain amplitude) and continued up through Day 8. Representative waveforms shown for a
10% dynamic strain amplitude applied to a group of 12 disks within the loading chamber,
and the corresponding measured total compressive load.
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Figure 2.
A&B, Cumulative sGAG loss from bovine cartilage to the medium in response to 8-day
treatments without or with initial mechanical injury. C&D, Bovine chondrocyte biosynthesis
measured during day 6–8 as 35S-sulfate incorporation rate for the same cartilage disks as in
A&B, respectively. Values are mean ±95% confidence interval; A&C: N = 3 animals (6
disks/animal); B&D: N = 4 animals (4–6 disks/animal); * = P < 0.001.
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Figure 3.
Western analysis of aggrecan fragments using the antibody to the aggrecanase-generated
neoepitope, NITEGE, with aggrecan extracted from the bovine explants 8 days after
treatments without (A) or with (B) initial mechanical injury.
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Figure 4.
Bovine chondrocyte apoptosis within the explants in response to 4-day treatments. A,
Representative image (40X objective) of histological sections from untreated control disks
using hematoxylin staining for the nucleus. The superficial-most surface is visualized in the
upper right corner (arrow). B, Histological section from explant treated with the
combination of cytokines (TNF-α + IL-6/sIL-6R) plus intermittent 30% dynamic strain
amplitude. Image (40X objective) was taken from middle zone cartilage: apoptotic cells
displayed nuclear blebbing, a morphological marker of apoptosis [19]. Insert: Higher
magnification of nuclear blebbing. C, Percentage of chondrocytes in histological sections
that underwent apoptosis, quantified as the ratio of cells showing nuclear blebbing to total
cell count; n = 4 disks per condition (see Methods). Values are mean ± 95% confidence
interval; * = P < 0.001.
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Figure 5.
Fluorescently stained bovine explants after treatments for 2, 4, and 8 days. A single injurious
compression was applied on Day 0, followed by culture in exogenous cytokines. Intermittent
dynamic compression (10%, 20%, or 30% strain amplitude) was applied and continued
throughout the entire 2–8 day culture period (Figure 1B). Cartilage disks were stained
immediately upon termination of culture with fluorescein diacetate (FDA, green) for viable
cells and propidium iodide (PI, red) for non-viable cells. Images were taken with a 4X
objective. The superficial-most surface is at the top of each image (arrow), while a cut at the
middle/deep zone is at the bottom. The left edge of each disk was created when a dermal
punch was used to harvest the cartilage disks, each having dimensions 3 mm diameter by 1
mm thick. Inj: injurious compression; Cyt: cytokines TNF-α + IL-6/sIL-6R; Dyn: dynamic
compression. Bar = 400 μm.
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Figure 6.
The effects of dynamic compression on bovine chondrocyte gene expression after 48 hours
of treatment with exogenous cytokines. For each condition, 6 cartilage disks from the same
animal were pooled for mRNA extraction; n = 4 animals. Gene expression levels were
normalized to that of the 18S gene and then normalized to the no-cytokine, no-compression
control condition which had an expression level = 1. Data are presented as mean ± 95%
confidence interval, * = P < 0.001 compared with untreated control; # = P < 0.001 compared
with cytokines-alone treatment.
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