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Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and
gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become
increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial
overview of Bayesian methods and their representative applications in neural spike train analysis, at both single neuron and
population levels. On the theoretical side, we focus on various approximate Bayesian inference techniques as applied to latent
state and parameter estimation. On the application side, the topics include spike sorting, tuning curve estimation, neural encoding
and decoding, deconvolution of spike trains from calcium imaging signals, and inference of neuronal functional connectivity and
synchrony. Some research challenges and opportunities for neural spike train analysis are discussed.

1. Introduction

Neuronal action potentials or spikes are the basic lan-
guage that neurons use to represent and transmit informa-
tion. Understanding neuronal representations of spike trains
remains a fundamental task in computational neuroscience
[1, 2]. With the advancement of multielectrode array and
imaging technologies, neuroscientists have been able to
record a large population of neurons at a fine temporal and
spatial resolution [3]. To extract (“read out”) information
from or inject/restore (“write in”) signals to neural circuits
[4], there are emerging needs for modeling and analyzing
neural spike trains recorded directly or extracted indirectly
from neural signals, as well as building closed-loop brain-
machine interfaces (BMIs). Many good examples and appli-
cations can be found in the volumes of the current or other
special issues [5, 6].

In recent years, cutting-edge Bayesian methods have
gained increasing attention in the analysis of neural data and
neural spike trains. Despite its well-established theoretic
principle since the inception of Bayes’ rule [7], Bayesian ma-
chinery has not been widely used in large-scaled data analysis

until very recently. This was partially ascribed to two facts:
first, the development of new methodologies and effective
algorithms; second, the ever-increasing computing power.
Themajor theoretic ormethodological development has been
reported in the field of statistics, and numerous algorithms
were developed in applied statistics andmachine learning for
successful real-world applications [8]. It is time to push this
research frontier to neural data analysis. With this purpose
in mind, this paper provides a tutorial review on the basic
theory and the state-of-the-art Bayesian methods for neural
spike train analysis.

The rest of the paper is organized as follows. Section 2
presents the background information about statistical infer-
ence and estimation, Bayes’ theory, and statistical characteri-
zation of neural spike trains. Section 3 reviews several impor-
tant Bayesian modeling and inference methods in light of
different approximation techniques. Section 4 reviews a few
representative applications of Bayesian methods for neural
spike train analysis. Finally, Section 5 concludes the paper
with discussions on a few challenging research topics in
neural spike train analysis.
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2. Background

2.1. Estimation and Inference: Statistic versus Dynamic.
Throughout this paper, we denote by 𝑌 the observed vari-
ables, by𝑋 the hidden variables and by 𝜃 an unknown param-
eter vector, and by ⊤ the transpose operator for vector or
matrix. We assume that 𝑝(𝑌 | 𝑋, 𝜃) has a regular and well-
defined form of the likelihood function. For neural spike
train analysis, 𝑌 typically consists of time series of single or
multiple spike trains. Given a fixed time interval (0, 𝑇], by
time discretization we have 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝐾
} (where 𝐾 =

𝑇/Δ andΔ denotes the temporal bin size). A general statistical
inference problem is stated as follows: given observations 𝑌,
estimate the unknown hidden variable 𝑋 with a known 𝜃, or
estimate 𝜃 alone, or jointly estimate 𝜃 and 𝑋. The unknown
variables 𝜃 and 𝑋 can be either static or dynamic (e.g., time-
varying with a Markovian structure). We will review the
approaches that tackle these scenarios in this paper.

There are two fundamental approaches to solve the infer-
ence problem: likelihood approach and Bayesian approach.
The likelihood approach [9] computes a point estimate
by maximizing the likelihood function and represents the
uncertainty of estimate via confidence intervals. The maxi-
mum likelihood estimate (m.l.e.) is asymptotically consistent,
normal, and efficient, and it is invariant to reparameterization
(i.e., functional invariance). However, the m.l.e. is known
to suffer from overfitting, and therefore model selection is
required in statistical data analysis. In contrast, the Bayesian
philosophy lets data speak for themselves and models the
unknowns (parameters, latent variables, and missing data)
and uncertainties (which are not necessarily random) with
probabilities or probability densities. The Bayesian approach
computes the full posterior of the unknowns based on the
rules of probability theory; the Bayesian approach can resolve
the overfitting problem in a principled way [7, 8].

2.2. Bayesian Inference. The foundation of Bayesian inference
is given by Bayes’ rule, which consists of two rules: product
rule and sum rule. Bayes’ rule provides a way to compute
the conditional, joint, andmarginal probabilities. Specifically,
let 𝑋 and 𝑌 be two continuous random variables (r.v.); the
conditional probability 𝑝(𝑋 | 𝑌) is given by

𝑝 (𝑋 | 𝑌) =
𝑝 (𝑋, 𝑌)

𝑝 (𝑌)
=

𝑝 (𝑌 | 𝑋) 𝑝 (𝑋)

∫𝑝 (𝑌 | 𝑋) 𝑝 (𝑋) 𝑑𝑋

. (1)

If𝑋 = {𝑋
𝑖
} is discrete, then (1) is rewritten as

𝑝 (𝑋
𝑖
| 𝑌) =

𝑝 (𝑋
𝑖
, 𝑌)

𝑝 (𝑌)
=

𝑝 (𝑌 | 𝑋
𝑖
) 𝑝 (𝑋

𝑖
)

∑
𝑗
𝑝 (𝑌 | 𝑋

𝑗
) 𝑝 (𝑋

𝑗
)

. (2)

In Bayesian language, 𝑝(𝑌 | 𝑋), 𝑝(𝑋), and 𝑝(𝑋 | 𝑌) are
referred to as the likelihood, prior and posterior, respectively.
The Bayesian machinery consists of three types of basic oper-
ations: normalization, marginalization, and expectation, all
of which involve integration. And the optimization problem
consists in maximizing the posterior 𝑝(𝑋 | 𝑌) and find-
ing the maximum a posteriori (MAP) estimate 𝑋MAP =

arg
𝑋
max𝑝(𝑋 | 𝑌). Notably, except for very few scenarios

(i.e., Gaussianity), most integrations are computationally
intractable or costly when dealing with high-dimensional
problems. Therefore, for the sake of computational tractabil-
ity, various types of approximations are often assumed at dif-
ferent stages of the inference procedure.

More specifically, for the state and parameter estimation
problem, Bayesian inference aims to infer the joint posterior
of the state and the parameter using Bayes’ rule

𝑝 (𝑋, 𝜃 | 𝑌) ≈ 𝑝 (𝑋 | 𝑌) 𝑝 (𝜃 | 𝑌)

=
𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃)

𝑝 (𝑌)

=
𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃)

∬𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃) 𝑑𝑋𝑑𝜃

,

(3)

where the first equation assumes a factorial form of the
posterior for the state and the parameter (first-stage approx-
imation) and 𝑝(𝑋) and 𝑝(𝜃) denote the prior distributions
for the state and parameter, respectively. The denominator of
(3) is a normalizing constant known as the partition function.
When dealing with a prediction problem for unseen data 𝑌∗,
we compute the posterior predictive distribution

𝑝 (𝑌
∗
| 𝑌) = ∬𝑝 (𝑌

∗
| 𝑌, 𝜃, 𝑋) 𝑝 (𝑋 | 𝑌) 𝑝 (𝜃 | 𝑌) 𝑑𝑋𝑑𝜃

(4)

or its expected mean 𝑌̂∗ = E
𝑝(𝑌
∗
|𝑌)
[𝑌
∗
] = ∭𝑌

∗
𝑝(𝑌
∗
| 𝑌,

𝜃, 𝑋)𝑝(𝑋 | 𝑌)𝑝(𝜃 | 𝑌)𝑑𝑋𝑑𝜃 𝑑𝑌
∗.

Sometimes, instead ofmaximizing the posterior, Bayesian
inference attempts to maximize the marginal likelihood (also
known as “evidence”) 𝑝(𝑌) as follows:

𝑝 (𝑌) = ∬𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃) 𝑑𝑋𝑑𝜃. (5)

The second-stage approximation in approximate Bayesian
inference deals with the integration in computing (3), (4), or
(5), which will be reviewed in Section 3.

Note. Maximum likelihood inference can be viewed as a
special case of Bayesian inference, in which 𝜃 is represented
by a Dirac-delta function centered at the point estimate
𝜃m.l.e.; namely, 𝑝(𝜃) = 𝛿(𝜃 − 𝜃m.l.e.). Nevertheless, Bayesian
inference can still be embedded into likelihood inference to
estimate 𝑝(𝑋) given a point estimate of 𝜃. The 𝑝(𝑋) can
either have an analytic form (with finite natural parameters)
or be represented byMonteCarlo samples; the latter approach
may be viewed as a specific case of Monte Carlo expectation-
maximization (EM) methods.

2.3. Characterization of Neural Spike Trains. Neural spike
trains can be modeled as a simple (temporal) point process
[10]. For a single neural spike train observed in (0, 𝑇], we
often discretize it with a small bin size Δ such that each bin
contains no more than one spike. The conditional intensity
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Table 1: Probability distributions for modeling neuronal spike count observations.

Distribution Mean statistic Variance Note for observations 𝑌
Binomial (𝑝) E[𝑌] = 𝑝 𝑝(1 − 𝑝) 𝑌 ∈ {0, 1}

Poisson (𝜆) E[𝑌] = 𝜆 𝜆 𝑌 ≥ 0, 𝑌 ∈ Z+

Negative binomial (𝑟, 𝑝) E[𝑌] = 𝑝𝑟/(1 − 𝑝) 𝑝𝑟/(1 − 𝑝)
2

𝑌 ≥ 0, 𝑌 ∈ Z+ (overdispersed Poisson)
Skellam (𝜇

1
, 𝜇
2
) E[𝑌] = 𝜇

1
− 𝜇
2

𝜇
1
+ 𝜇
2

𝑌 ∈ Z (difference between two Poissons)

function (CIF), denoted as 𝜆(𝑡 | 𝐻
𝑡
), is used to characterize

the spiking probability of a neural point process as follows:

𝜆 (𝑡 | 𝐻
𝑡
) = lim
Δ→0

Pr {spike in (𝑡, 𝑡 + Δ] | 𝐻
𝑡
}

Δ
, (6)

where𝐻
𝑡
denotes all history information available up to time

𝑡 (that may include spike history, stimulus covariate, etc.).
When 𝜆(𝑡 | 𝐻

𝑡
) is history independent, then the stochastic

process is an inhomogeneous Poisson process. For notation
simplicity, we sometimes use 𝜆

𝑡
to replace 𝜆(𝑡 | 𝐻

𝑡
) when no

confusion occurs. When Δ is sufficiently small, the product
𝜆(𝑡 | 𝐻

𝑡
)Δ is approximately equal to the probability of

observing a spike within the interval ((𝑡−1)Δ, 𝑡Δ]. Assuming
that the CIF 𝜆

𝑡
is characterized by a parameter 𝜃 and

an observed or latent variable 𝑋, then the point process
likelihood function is given as [11–13]

𝑝 (𝑌 | 𝑋, 𝜃) = exp{∫
𝑇

0

log 𝜆 (𝜏 | 𝜃, 𝑋) 𝑑𝑦 (𝜏)

− ∫

𝑇

0

𝜆 (𝜏 | 𝜃, 𝑋) 𝑑𝜏} ,

(7)

where 𝑑𝑦(𝑡) is an indicator function of the spike presence
within the interval ((𝑡 − 1)Δ, 𝑡Δ]. In the presence of multiple
spike trains from𝐶neurons, assuming thatmultivariate point
process observations are conditionally independent at any
time 𝑡 given a new parameter 𝜃, one then has

𝑝 (Y
1:𝐶
| 𝑋, 𝜃) =

𝐶

∏

𝑐=1

𝑝 (𝑌
𝑐
| 𝑋, 𝜃)

=

𝐶

∏

𝑐=1

exp{∫
𝑇

0

log 𝜆
𝑐
(𝜏 | 𝜃, 𝑋) 𝑑𝑦

𝑐
(𝜏)

−∫

𝑇

0

𝜆
𝑐
(𝜏 | 𝜃, 𝑋) 𝑑𝜏} .

(8)

Since neural spike trains are fully characterized by the
CIF, themodeling goal is then turned tomodel the CIF, which
can have a parametric or nonparametric form. Identifying
the CIF and its associated parameters is essentially a neural
encoding problem (Section 4.2). A convenient modeling
framework is the generalized linear model (GLM) [14, 15],
which can model the binary (0/1) or spike count measure-
ments. Within the exponential family, one can use the logit
link function tomodel the binomial distribution, which has a
generic form of log(𝑝

𝑡
/(1 − 𝑝

𝑡
)) = 𝜃

⊤
𝑋; one can also use the

log link function to model the Poisson distribution, which
has a generic form of log(𝜆

𝑡
) = 𝜃
⊤
𝑋.

In addition, researchers have used the negative binomial
distribution to model spike count observations to capture the
overdispersion phenomenon (where the variance is greater
than the mean statistic). In many cases, for the purpose of
computational tractability, researchers often use a Gaussian
approximation for Poisson spike counts through a variance
stabilization transformation. Table 1 lists a few population
probability distributions for modeling spike count observa-
tions.

Another popular statistical model for characterizing pop-
ulation spike trains is themaximum entropy (MaxEnt)model
with a log-linear form [16, 17]. Given an ensemble of 𝐶
neurons, the ensemble spike activity can be characterized by
the following form:

𝑝 (𝑋) =
1

Z (𝑋)
exp(

𝐶

∑

𝑖=1

𝜃
𝑐
⟨𝑥
𝑐
⟩ +

𝐶

∑

𝑖,𝑗

𝜃
𝑖𝑗
⟨𝑥
𝑖
𝑥
𝑗
⟩)

≡
1

Z (𝑋)
exp(

𝐶+𝐶
2

∑

𝑖=1

𝜃
𝑖
𝑓
𝑖
(𝑋)) ,

(9)

where 𝑥
𝑖
∈ {−1, +1}, ⟨⋅⟩ denotes the sample average, ⟨𝑥

𝑐
⟩

denotes the mean firing rate of the 𝑐th neuron, 𝑓
𝑖
(𝑋) denotes

a generic function of 𝑋 (where the couplings 𝜃
𝑖
have to

match the measured expectation values ⟨𝑓
𝑖
(𝑋)⟩), and Z(𝑋)

denotes the partition function. The basic MaxEnt model (9)
assumes the stationarity of the data and includes the first- and
second-order moment statistics but no stimulus component,
but these assumptions can be relaxed to further derive an
extended model.

An important issue for characterizing neural spike trains
is model selection and the associated goodness-of-fit assess-
ment. For goodness-of-fit assessment of spike train models,
the reader is referred to [11, 18]. In addition, standard statis-
tical techniques such as cross-validation, leave-one-out, and
the receiver-operating-characteristic (ROC) curve may be
considered. The model selection issue can be resolved by the
likelihood principle based on well-established criteria (such
as the Bayesian information criterion or Akaike’s information
criterion) [9, 11] or resolved by the Bayesian principle.
Bayesian model selection and variable selection will be
reviewed in Section 3.4.

3. Bayesian Modeling and Inference Methods

The common strategy of Bayesian modeling is to start with
specific prior distributions for the unknowns. The prior
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distributions are characterized by some hyperparameters,
which can be directly optimized or modeled by the second-
level hyperpriors. If the prior is conjugate to the likelihood,
then the posterior has the same form as the prior [8]. Hier-
archical Bayesian modeling characterizes the uncertainties of
all unknowns at different levels.

In this section, we will review some, either exact or
approximate, Bayesian inference methods. The approximate
Bayesian inference methods aim to compute or evaluate
the integration by approximation. There are two types of
approaches to accomplish this goal: deterministic approx-
imation and stochastic approximation. The deterministic
approximation can rely on Gaussian approximation, deter-
ministic sampling (e.g., sigma-point approximation [19, 20])
or variational approximation [21–23]. The stochastic approx-
imation uses Monte Carlo sampling to achieve a point mass
representation of the probability distribution. These two
approaches have been employed to approximate the likeli-
hood or posterior function inmany inference problems, such
as model selection, filtering and smoothing, and state and
parameter joint estimation. Detailed coverage of these topics
can be found in many excellent books (e.g., [24–28]).

3.1. Variational Bayes (VB). VB is based on the idea of vari-
ational approximation [21–23] and is also referred to as
ensemble learning [24]. To avoid overfitting in maximum
likelihood estimation,VB aims tomaximize themarginal log-
likelihood or its lower bound as follows:

log𝑝 (𝑌) = log∫𝑑𝜃∫𝑑𝑋𝑝 (𝜃) 𝑝 (𝑋, 𝑌 | 𝜃)

= log∫𝑑𝜃∫𝑑𝑋𝑞 (𝑋, 𝜃)
𝑝 (𝜃) 𝑝 (𝑋, 𝑌 | 𝜃)

𝑞 (𝑋, 𝜃)

≥ ∫𝑑𝜃∫𝑑𝑋𝑞 (𝑋, 𝜃) log
𝑝 (𝜃) 𝑝 (𝑋, 𝑌 | 𝜃)

𝑞 (𝑋, 𝜃)

= ⟨log𝑝 (𝑋, 𝑌, 𝜃)⟩
𝑞
+H
𝑞
(𝑋, 𝜃) ≡ F (𝑞 (𝑋, 𝜃)) ,

(10)

where𝑝(𝜃) denotes the parameter prior distribution,𝑝(𝑋, 𝑌 |
𝜃) defines the complete data likelihood, and 𝑞(𝑋, 𝜃) is called
the variational posterior distribution which approximates the
joint posterior of the unknown state and parameter 𝑝(𝑋, 𝜃 |
𝑌). The term H

𝑞
represents the entropy of the variational

posterior distribution 𝑞, and F(𝑞(𝑋, 𝜃)) is referred to as the
free energy. The lower bound is derived based on the Jensen’s
inequality [29]. Maximizing the free energy F(𝑞(𝑋, 𝜃)) is
equivalent to minimizing the Kullback-Leibler (KL) diver-
gence [29] between the variational posterior and true pos-
terior (denoted by KL(𝑞 ‖ 𝑝)); since the KL divergence is
nonnegative, we have F(𝑞) = log𝑝(𝑌) − KL(𝑞 ‖ 𝑝) ≤

log𝑝(𝑌).The optimization problem in (10) can be resorted to
theVB-EMalgorithm [23] in a similar fashion as the standard
EM algorithm [30].

A common (but not necessary) VB assumption is a facto-
rial form of the posterior 𝑞(𝑋, 𝜃) = 𝑞(𝑋)𝑞(𝜃), although one
can further impose certain structure within the parameter
space. In the case of mean-field approximation, we have

𝑞(𝑋, 𝜃) = 𝑞(𝑋)∏
𝑖
𝑞(𝜃
𝑖
). With selected priors 𝑝(𝑋) and 𝑝(𝜃),

one canmaximize the free energy by alternatively solving two
equations: 𝜕F/𝜕𝑋 = 0 and 𝜕F/𝜕𝜃 = 0. Specifically, VB-
EM inference can be viewed as a natural extension of the EM
algorithm, which consists of the following two steps.

(i) VB-E step: given the available information of 𝑞(𝜃),
maximize the free energyF with respect to the func-
tion 𝑞(𝑋) and update the posterior 𝑞(𝑋).

(ii) VB-M step: given the available information of 𝑞(𝑋),
maximize the free energyF with respect to the func-
tion 𝑞(𝜃) and update the posterior 𝑞(𝜃). The posterior
update will have an analytic form provided that the
prior 𝑝(𝜃) is conjugate to the complete-data likeli-
hood function (the conjugate-exponential family).

These two steps are alternated repeatedly until the VB
algorithm reaches the convergence (say, the incremental
change ofF value is below a small threshold). Similar to the
iterative EM algorithm, the VB-EM inference has local max-
ima in optimization. To resolve this issue, one may use multi-
ple random initializations or employ a deterministic anneal-
ing procedure [31]. The EM algorithm can be viewed as a
variant of theVB algorithm in that theVB-Mstep replaces the
point estimate (i.e., 𝑞(𝜃) = 𝛿(𝜃 − 𝜃MAP)) from the traditional
M-step with a full posterior estimate. Another counterpart of
the VB-EM is the maximization-expectation (ME) algorithm
[32], in which the VB-E step uses the MAP point estimate
𝑞(𝑋) = 𝛿(𝑋 − 𝑋MAP), while the VB-M step updates the full
posterior.

It is noted that when the latent variables and parameters
are intrinsically coupled or statistically correlated, the mean-
field approximation will not be accurate, and consequently
the VB estimate will be strongly biased. To alleviate this
problem, the latent-space VB (LSVB) method [33, 34] aims
to maximize a tighter lower bound of the marginal log-
likelihood from (10) as follows:

log𝑝 (𝑌) ≥ ∫𝑑𝑋𝑞 (𝑋) log
𝑝 (𝑋, 𝑌)

𝑞 (𝑋)

= ∫𝑑𝑋𝑞 (𝑋) log
∫𝑑𝜃𝑝 (𝑋, 𝑌, 𝜃) 𝑝 (𝜃)

𝑞 (𝑋)

≡ F (𝑞 (𝑋)) ≥ max
𝑞(𝜃)

F (𝑞 (𝑋) 𝑞 (𝜃)) .

(11)

The reader is referred to [33, 34] for more details and algo-
rithmic implementation.

Note. (i) Depending on specific problems, the optimization
bound of VB methods may not be tight, which may cause
a large estimate bias or underestimated variance [35]. Desir-
ably, a data-dependent lower bound is often tighter (such as
the one used in Bayesian logistic regression [25]). (ii) It was
shown in [36] that the VB method for statistical models
with latent variables can be viewed as a special case of local
variational approximation, where the log-sum-exp function
is used to form the lower bound of the log-likelihood. (iii)
TheVB-EM inferencewas originally developed for the proba-
bilistic models in the conjugate-exponential family, but it can
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be extended to more general models based on approximation
[37].

3.2. Expectation Propagation (EP). EP is a message-passing
algorithm that allows approximate Bayesian inference for
factor graphs (one type of probabilistic graphical model that
shows how a function of several variables can be factored into
a product of simple functions and can be used to represent
a posterior distribution) [38]. For a specific r.v. 𝑋 (either
continuous or discrete), the probability distribution 𝑝(𝑋) is
represented as a product of factors as follows:

𝑝 (𝑋) = ∏

𝑎

𝑓
𝑎
(𝑋) . (12)

The basic idea of EP is to “divide-and-conquer” by approxi-
mating the factors one by one as follows:

𝑓
𝑎
(𝑋) 󳨀→ 𝑓

𝑎
(𝑋) (13)

and then use the product of approximated term as the final
approximation as follows:

𝑞 (𝑋) = ∏

𝑎

𝑓
𝑎
(𝑋) . (14)

As a result, EP replaces the global divergence KL(𝑝(𝑋) ‖

𝑞(𝑋)) by the local divergence between two product chains as
follows:

KL (𝑝 (𝑋) ‖ 𝑞 (𝑋))

= KL(𝑓
𝑎
(𝑋)∏

𝑏 ̸= 𝑎

𝑓
𝑏
(𝑋) ‖ 𝑓

𝑎
(𝑋)∏

𝑏 ̸= 𝑎

𝑓
𝑏
(𝑋))

≈ KL(𝑓
𝑎
(𝑋)∏

𝑏 ̸= 𝑎

𝑓
𝑏
(𝑋) ‖ 𝑓

𝑎
(𝑋)∏

𝑏 ̸= 𝑎

𝑓
𝑏
(𝑋)) .

(15)

To minimize (15), the EP inference procedure is planned
as follows.

Step 1. Use message-passing algorithms to pass messages
𝑓
𝑎
(𝑋) between factors.

Step 2. Given the received message 𝑓
𝑏
(𝑋) for factor 𝑎 (for

all 𝑏 ̸= 𝑎), minimize the local divergence to obtain 𝑓
𝑎
(𝑋), and

send it to other factors.

Step 3. Repeat the procedure until convergence.

Note. (i) EP aims to find the closest approximation 𝑞 such
that KL(𝑝 ‖ 𝑞) is minimized, whereas VB aims to find the
variational distribution to minimize KL(𝑞 ‖ 𝑝) (note that the
KL divergence is asymmetric, and KL(𝑝 ‖ 𝑞) and KL(𝑞 ‖ 𝑝)
have different geometric interpretations [39]). (ii) Unlike the
global approximation technique (e.g., momentmatching), EP
uses a local approximation strategy to minimize a series of
local divergence.

3.3. Markov Chain Monte Carlo (MCMC). MCMC methods
are referred to as a class of algorithms for drawing random
samples from probability distributions by constructing a
Markov chain that has the equilibrium distribution as the
desired distribution [40]. The designed Markov chain is
reversible and has detailed balance. For example, given a tran-
sition probability 𝑃, the detailed balance holds between each
pair of state 𝑖 and 𝑗 in the state space if and only if𝜋

𝑖
𝑃
𝑖𝑗
= 𝜋
𝑗
𝑃
𝑗𝑖

(where 𝜋
𝑖
= Pr(𝑋

𝑡−1
= 𝑖) and 𝑃

𝑖𝑗
= Pr(𝑋

𝑡−1
= 𝑖, 𝑋

𝑡
= 𝑗)). The

appealing use of MCMC methods for Bayesian inference is
to numerically calculate high-dimensional integrals based on
the samples drawn from the equilibrium distribution [41].

Themost commonMCMCmethods are the randomwalk
algorithms, such as theMetropolis-Hastings (MH) algorithm
[42, 43] and Gibbs sampling [44]. The MH algorithm is the
simplest yet the most generic MCMC method to generate
samples using a random walk and then to accept them with a
certain acceptance probability. For example, given a random-
walk proposal distribution 𝑔(𝑍 → 𝑍

󸀠
) (which defines a

conditional probability of moving state 𝑍 to 𝑍󸀠), the MH
acceptance probabilityA(𝑍 → 𝑍

󸀠
) is

A (𝑍 󳨀→ 𝑍
󸀠
) = min(1,

𝑝 (𝑍
󸀠
) 𝑔 (𝑍

󸀠
󳨀→ 𝑍)

𝑝 (𝑍) 𝑔 (𝑍 󳨀→ 𝑍󸀠)
) , (16)

which gives a simple MCMC implementation. Gibbs sam-
pling is another popular MCMC method that requires no
parameter tuning. Given a high-dimensional joint distribu-
tion 𝑝(𝑍) = 𝑝(𝑧

1
, . . . , 𝑧

𝑛
), Gibbs sampler draws samples

from the individual conditional distribution 𝑝(𝑧
𝑖
| 𝑍
−𝑖
) in

turn while holding others fixed (where 𝑍
−𝑖
denote the 𝑛 − 1

variables in 𝑍 except for 𝑧
𝑖
).

For high-dimensional sampling problems, the random-
walk behavior of the proposal distribution may not be effi-
cient. Imagine that there are two directions (increase or
decrease in the likelihood space) for a one-dimensional
search; there will be 2𝑛 search directions in an 𝑛-dimensional
space. On average, it will take about 2𝑛/𝑛 steps to hit the exact
search direction. Notably, some sophisticated MCMC algo-
rithms employ side information to improve the efficiency of
the sampler (i.e., the “mixing” of the Markov chain). Exam-
ples of non-random-walk methods include successive over-
relaxation, hybrid Monte Carlo, gradient-based Langevin
MCMC, and Hessian-based MCMC [24, 45–47].

Many statistical estimation problems (e.g., change point
detection, clustering, and segmentation) consist in identify-
ing the unknown number of statistical objects (e.g., change
points, clusters, and boundaries), which are categorized as
the variable-dimensional statistical inference problem. For
this kind of inference problem, the so-called reversible jump
MCMC(RJ-MCMC)methodhas been developed [48], which
can be viewed as a variant of MH algorithm that allows
proposals to change the dimensionality of the space while
satisfying the detailed balance of the Markov chain.

Note. As discussed in Section 2.2, since the fundamental
operations of Bayesian statistics involve integration, the
MCMC methods appear naturally as the most generic tech-
niques for Bayesian inference. On the one hand, the recent
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decades have witnessed an exponential growth in theMCMC
literature for its own theoretic and algorithmic developments.
On the other hand, there has been also an increasing trend
in applying MCMCmethods to neural data analysis, ranging
from spike sorting, tuning curve estimation, and neural
decoding to functional connectivity analysis, some of which
will be briefly reviewed in Section 4.

3.4. Bayesian Model Selection and Variable Selection. Statisti-
cal model comparison can be carried on by Bayesian infer-
ence. From Bayes’ rule, the model posterior probability is
expressed by

𝑝 (M
𝑖
| 𝐷) ∝ 𝑝 (𝐷 |M

𝑖
) 𝑝 (M

𝑖
) . (17)

Under the assumption of equal model priors, maximizing
the model posterior is equivalent to maximizing the model
evidence (or marginal likelihood) as follows:

𝑝 (𝐷 |M
𝑖
) = ∫
𝜃

𝑝 (𝐷, 𝜃 |M
𝑖
) 𝑑𝜃

= ∫
𝜃

𝑝 (𝐷 | 𝜃,M
𝑖
) 𝑝 (𝜃 |M

𝑖
) 𝑑𝜃.

(18)

The Bayes factor (BF), defined as the ratio of evidence
between two models, can be computed as [49]

BF =
𝑝 (𝐷 |M

1
)

𝑝 (𝐷 |M
2
)
=

∫𝑝 (𝐷, 𝜃
1
|M
1
) 𝑑𝜃
1

∫𝑝 (𝐷, 𝜃
2
|M
2
) 𝑑𝜃
2

=

∫𝑝 (𝜃
1
|M
1
) 𝑝 (𝐷 | 𝜃

1
,M
1
) 𝑑𝜃
1

∫𝑝 (𝜃
2
|M
2
) 𝑝 (𝐷 | 𝜃

2
,M
2
) 𝑑𝜃
2

.

(19)

Specifically, the BF is treated as the Bayesian alternative to
𝑃 values for testing hypotheses (in model selection) and for
quantifying the degree the observed data support or conflict
with a hypothesis [50]. As discussed previously in Section 3.1,
the marginal likelihood may be intractable for a large class of
probabilistic models. In practice, the BF is often computed
based on numerical approximation, such as the Laplace-
Metropolis Estimator [51] or sequential Monte Carlo meth-
ods [52]. In addition, for a large sample size, the logarithm of
the BF can be roughly approximated by the Bayesian informa-
tion criterion (BIC) [9], whose computation is much simpler
without involving numerical integration.

Bayesian model selection can also be directly imple-
mented via the so-called MCMCmodel composition (MC3).
The basic idea of MC3 is to simulate a Markov chain {M(𝑡)}

with an equilibrium distribution as 𝑝(M
𝑖
| 𝐷). For each

model M, define a neighborhood nbd(M) and a transition
matrix 𝑞 by setting 𝑞(M → M󸀠) = 0 for allM󸀠 ∉ nbd(M).
Draw a new sample M󸀠 from 𝑞(M → M󸀠) and accept the
new sample with a probability

min{1,
𝑝 (M󸀠 | 𝐷)

𝑝 (M | 𝐷)
} . (20)

Otherwise the chain remains unchanged. Once the Markov
chain converges to the equilibrium, one can construct the
model posterior based on Monte Carlo samples.

Within a fixed model class, it is often desirable to have
a compact or sparse representation of the model to alleviate
overfitting. Namely, many coefficients of the model parame-
ters are zeros. A very useful approach for variable selection
is the so-called automatic relevance determination (ARD)
that encourages sparse Bayesian learning [24, 26, 53]. More
specifically, ARD provides a way to infer hyperparameters in
hierarchical Bayesian modeling. Given the likelihood 𝑝(𝑌 |

𝜃) and the parameter prior 𝑝(𝜃 | 𝜔) (where 𝜔 denotes the
hyperparameters), one can assign a hyperprior 𝑝(𝜔 | 𝜂) for 𝜔
such that the marginal distribution 𝑝(𝜃) = ∫𝑝(𝜃 | 𝜔)𝑝(𝜔)𝑑𝜔
is peaked and long-tailed (thereby favoring a sparse solution).
The hyperprior 𝑝(𝜔) can be either identical or different for
each element in 𝜃. In the most general form, we can write

𝑝 (𝜃) = ∏

𝑖

𝑝 (𝜃
𝑖
) = ∏

𝑖

∫𝑝 (𝜃
𝑖
| 𝜔
𝑖
) 𝑝 (𝜔

𝑖
| 𝜂
𝑖
) 𝑑𝜔
𝑖
. (21)

The hyperprior parameters 𝜂 = {𝜂
𝑖
} can be fixed or optimized

from data. Upon completing Bayesian inference, the esti-
matedmean and variance statistics of some coefficients 𝜃

𝑖
will

be close to zero (i.e., with the least relevance) and therefore
can be truncated. The ARD principle has been widely used
in various statistical models, such as linear regression, GLM,
and the relevance vector machine (RVM) [26].

3.5. Bayesian Model Averaging (BMA). BMA is a statistical
technique aiming to account for the uncertainty in the model
selection process [54]. By averaging many different com-
peting statistical models (e.g., linear or Cox regression and
GLM), BMA incorporates model uncertainties into parame-
ter inference and data prediction.

Consider an example of GLM involving choosing inde-
pendent variables and the link function. Every possible
combination of choices defines a different model, say
{M
0
,M
1
, . . . ,M

𝐾
} (where M

0
denotes the null model).

Upon computing 𝐾 Bayes factors BF
10
= 𝑝(𝐷 | M

1
)/𝑝(𝐷 |

M
0
), BF
20
= 𝑝(𝐷 | M

2
)/𝑝(𝐷 | M

0
), . . ., and BF

𝐾0
= 𝑝(𝐷 |

M
𝐾
)/𝑝(𝐷 | M

0
), the posterior probability 𝑝(M

𝑘
| 𝐷) is

computed as [54]

𝑝 (M
𝑘
| 𝐷) =

𝜋
𝑘
BF
𝑘0

∑
𝐾

𝑖=0
𝜋
𝑖
BF
𝑖0

, (22)

where 𝜋
𝑘
= 𝑝(M

𝑘
)/𝑝(M

0
) denotes the prior odds for model

M
𝑘
againstM

0
. In the case of GLM, the marginal likelihood

can be approximated by the Laplace method [55].

3.6. Bayesian Filtering: Kalman Filter, Point Process Filter, and
Particle Filter. Bayesian filtering aims to infer a filtered or
predictive posterior distribution of temporal data in a
sequential fashion, which is often cast within the framework
of state space model (SSM) [13, 56, 57]. Without loss of
generality, let x

𝑡
denote the state at discrete time 𝑡 and let y

0:𝑡

denote the cumulative observations up to time 𝑡. The filtered
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posterior distribution of the state, conditional on the obser-
vations y

0:𝑡
, bears a form of recursive Bayesian estimation as

follows:

𝑝 (x
𝑡
| y
0:𝑡
) =

𝑝 (x
𝑡
) 𝑝 (y
0:𝑡
| x
𝑡
)

𝑝 (y
0:𝑡
)

=
𝑝 (x
𝑡
) 𝑝 (y
𝑡
, y
0:𝑡−1

| x
𝑡
)

𝑝 (y
𝑡
, y
0:𝑡−1

)

=
𝑝 (x
𝑡
) 𝑝 (y
𝑡
| x
𝑡
, y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

| x
𝑡
)

𝑝 (y
𝑡
| y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

)

=
𝑝 (x
𝑡
) 𝑝 (y
𝑡
| x
𝑡
, y
0:𝑡−1

) 𝑝 (x
𝑡
| y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

)

𝑝 (y
𝑡
| y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

) 𝑝 (x
𝑡
)

=
𝑝 (y
𝑡
| x
𝑡
, y
0:𝑡−1

) 𝑝 (x
𝑡
| y
0:𝑡−1

)

𝑝 (y
𝑡
| y
0:𝑡−1

)

=
𝑝 (y
𝑡
| x
𝑡
) 𝑝 (x
𝑡
| y
0:𝑡−1

)

𝑝 (y
𝑡
| y
0:𝑡−1

)
,

(23)

where the first four steps are derived from Bayes’ rule and the
last equality of (23) assumes the conditional independence
between the observations. The one-step state prediction, also
known as theChapman-Kolmogorov equation [58], is given by

𝑝 (x
𝑡
| y
0:𝑡−1

) = ∫𝑝 (x
𝑡
| x
𝑡−1
) 𝑝 (x
𝑡−1
| y
0:𝑡−1

) 𝑑x
𝑡−1
, (24)

where the probability distribution (or density) 𝑝(x
𝑡
| x
𝑡−1
)

describes a state transition equation and the probability dis-
tribution (or density) 𝑝(y

𝑡
| x
𝑡
) is the observation equation.

Together (23) and (24) provide the fundamental relations
to conduct state space analyses. The above formulation of
recursive Bayesian estimation holds for both continuous and
discrete variables, for either x or y or both. When the state
variable is discrete and countable (in which we use 𝑆

𝑡
to

replace x
𝑡
), the SSM is also referred to as a hidden Markov

model (HMM), with associated 𝑝(𝑆
𝑡
| 𝑆
𝑡−1
) and 𝑝(y

𝑡
| 𝑆
𝑡
).

Various approximate Bayesian methods for the HMM have
been reported [23, 59, 60]. When the hidden state consists of
both continuous and discrete variables, the SSM is referred
to as a switching SSM, with associated 𝑝(x

𝑡
| x
𝑡−1
, 𝑆
𝑡
) and

𝑝(y
𝑡
| x
𝑡
, 𝑆
𝑡
) [27, 61]. In this case, the inference and prediction

involve multiple integrals or summations. For example, the
prediction equation (24) will be rewritten as

𝑝 (x
𝑡
| y
0:𝑡−1

, 𝑆
0:𝑡−1

) = ∫∑

𝑆
𝑡−1

𝑝 (x
𝑡
| x
𝑡−1
, 𝑆
𝑡
) 𝑝 (𝑆
𝑡
| 𝑆
𝑡−1
)

× 𝑝 (x
𝑡−1
| y
0:𝑡−1

, 𝑆
0:𝑡−1

) 𝑑x
𝑡−1

(25)

whose exact or naive implementation can be computationally
prohibitive given a large discrete state space.

When the state and observation equations are both con-
tinuous and Gaussian, the Bayesian filtering solution yields
the celebratedKalman filter [62], in which the posteriormean

and posterior variance are updated recursively. In fact, based
on a Gaussian approximation of nonnegative spike count
observations, the Kalman filter has been long used in spike
train analysis [63, 64]. However, such a naive Gaussian
approximation does not consider the point process nature of
neural spike trains. Brown and his colleagues [65–67] have
proposed a point process filter to recursively estimate the state
or parameter in a dynamic fashion.Without loss of generality,
assume that the CIF (6) is characterized by a parameter 𝜃 via
an exponential form, namely, 𝜆

𝑡
≡ 𝜆(𝑡 | 𝜃

𝑡
) = exp(𝜃⊤

𝑡
𝑋
𝑡
), and

assume that the parameter follows a random-walk equation
𝜃
𝑡
= 𝜃
𝑡−1
+𝑤
𝑡
(where𝑤

𝑡
denotes randomGaussian noise with

zero mean and variance 𝜎2); then one can use a point process
filter to estimate the time-varying parameter 𝜃 at arbitrarily
fine temporal resolution (i.e., the bin size can be as small as
possible for the discrete-time index 𝑡) as follows:

𝜃
𝑡+1|𝑡

= 𝜃
𝑡|𝑡
(one-step mean prediction) , (26)

𝑉
𝑡+1|𝑡

(𝜃) = 𝑉
𝑡+1|𝑡

(𝜃) + 𝜎
2
(one-step variance prediction) ,

(27)

𝜃
𝑡+1|𝑡+1

= 𝜃
𝑡+1|𝑡

+ 𝑉
𝑡+1|𝑡

(𝜃)
∇
𝜃
𝜆 (𝜃
𝑡+1|𝑡

)

𝜆 (𝜃
𝑡+1|𝑡

)

× [𝑑𝑦
𝑡+1
− 𝜆 (𝜃

𝑡+1|𝑡+1
) Δ]

= 𝜃
𝑡+1|𝑡

+ 𝑉
𝑡+1|𝑡

(𝜃)𝑋
𝑡+1

× [𝑑𝑦
𝑡+1
− 𝜆 (𝜃

𝑡+1|𝑡+1
) Δ] (posterior mode) ,

(28)

𝑉
𝑡+1|𝑡+1

(𝜃) = [(𝑉
𝑡+1|𝑡

(𝜃))
−1

+ 𝑋
𝑡+1
𝑋
⊤

𝑡+1
𝜆 (𝜃
𝑡+1|𝑡

) Δ]
−1

(posterior variance) ,
(29)

where 𝜃
𝑡+1|𝑡+1

and 𝑉
𝑡+1|𝑡+1

(𝜃) denote the posterior mode
and posterior variance for the parameter 𝜃, respectively.
Equations (26)–(29) are reminiscent of Kalman filtering.
Equations (26) and (27) for one-step mean and variance
predictions are the same as Kalman filtering, but (28) and
(29) are different fromKalman filtering due to the presence of
non-Gaussian observations and nonlinear operation in (28).
In (28), [𝑑𝑦

𝑡+1
− 𝜆(𝜃

𝑡+1|𝑡+1
)Δ] is viewed as the innovations

term, and 𝑉
𝑡+1|𝑡

𝑋
𝑡+1

may be interpreted as a “Kalman gain.”
The quantity of the Kalman gain determines the “step size”
in error correction. In (29), the posterior state variance is
derived by inverting the secondderivative of the log-posterior
probability density log𝑝(𝜃

𝑡
| 𝑌) based on a Gaussian approx-

imation of the posterior distribution around the posterior
mode [65–67]. For this simple example, we have

log𝑝 (𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)

∝ −
1

2
(𝜃
𝑡
− 𝜃
𝑡−1|𝑡−1

)
⊤

𝑉
−1

𝑡+1|𝑡
(𝜃
𝑡
− 𝜃
𝑡−1|𝑡−1

)

+ [log 𝜆
𝑡
𝑑𝑦
𝑡
− 𝜆
𝑡
Δ] ,
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𝜕 log𝑝 (𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)

𝜕𝜃
𝑡

= −(𝜃
𝑡
− 𝜃
𝑡−1|𝑡−1

)
⊤

𝑉
−1

𝑡+1|𝑡

+
1

𝜆
𝑡

∇
𝜃
𝜆
𝑡
[𝑑𝑦
𝑡
− 𝜆
𝑡
Δ] ,

𝜕
2 log𝑝 (𝜃

𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)

𝜕𝜃
𝑡
𝜕𝜃
⊤

𝑡

= −𝑉
−1

𝑡+1|𝑡
+ [(

𝜕
2
𝜆
𝑡

𝜕𝜃
𝑡
𝜕𝜃
⊤

𝑡

1

𝜆
𝑡

− (
𝜕𝜆
𝑡

𝜕𝜃
𝑡

)

2

1

𝜆
2

𝑡

)

× [𝑑𝑦
𝑡
− 𝜆
𝑡
Δ] − (

𝜕𝜆
𝑡

𝜕𝜃
𝑡

)

2

1

𝜆
𝑡

Δ] .

(30)

Setting the first-order derivative 𝜕 log𝑝(𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)/𝜕𝜃
𝑡

to zero and rearranging terms yield (28), and setting
𝑉
𝑡+1|𝑡+1

(𝜃) = −[𝜕
2 log𝑝(𝜃

𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)/(𝜕𝜃
𝑡
𝜕𝜃
⊤

𝑡
)]
−1 yields (29).

The Gaussian approximation is based on the first-order
Laplace method. In theory one can also use a second-
ordermethod to further improve the approximation accuracy
[68]. However, in practice the performance gain is relatively
small in the presence of noise and model uncertainty while
analyzing real experimental data sets. Although the above
example only considers a univariate point process (i.e., a
single neuronal spike train), it is straightforward to extend the
analysis to multivariate point processes (multiple neuronal
spike trains). When the number of the neurons increases,
the accuracy of Gaussian approximation of log-posterior also
improves due to the Law of large numbers.

An alternative way for estimating a non-Gaussian poste-
rior is to use a particle filter [69]. Several reports have been
published in the context of neural spike train analysis [70, 71].
The basic idea of particle filtering is to employ sequential
Monte Carlo (importance sampling and resampling) meth-
ods and draw a set of independent and identically distributed
(i.i.d.) samples (i.e., “particles”) from a proposal distribution;
the samples are propagated through the likelihood function,
weighted, and reweighted after each iteration update. In the
end, one can use Monte Carlo samples (or their importance
weights) to represent the posterior. For example, to evaluate
the expectation of a function 𝑓(x

𝑡
) with respect to the

posterior 𝑝(x
𝑡
| y
0:𝑡
), we have

E [𝑓 (x
𝑡
)] = ∫𝑓 (x

𝑡
)
𝑝 (x
𝑡
| y
0:𝑡
)

𝑞 (x
𝑡
| y
0:𝑡
)
𝑞 (x
𝑡
| y
0:𝑡
) 𝑑x
𝑡

= ∫𝑓 (x
𝑡
)𝑊 (x

𝑡
) 𝑞 (x
𝑡
| y
0:𝑡
) 𝑑x
𝑡

≈

∑
𝑁
𝑐

𝑖=1
𝑓 (x(𝑖)
𝑡
)𝑊(x(𝑖)

𝑡
)

∑
𝑁
𝑐

𝑖=1
𝑊(x(𝑖)
𝑡
)

= 𝑓 (x
𝑡
) ,

(31)

where 𝑊(x
𝑡
) = 𝑝(x

𝑡
| y
0:𝑡
)/𝑞(x
𝑡
| y
0:𝑡
) denotes the impor-

tance weight function and {x(𝑖)
𝑡
}
𝑁
𝑐

𝑖=1
denotes the 𝑁

𝑐
particles

drawn from the proposal distribution 𝑞(x
𝑡
| y
0:𝑡
). When

the sample size 𝑁
𝑐
is sufficiently large (depending on the

dimensionality of x), the estimate 𝑓(x
𝑡
) will be an unbiased

estimate ofE[𝑓(x
𝑡
)]. Based on sequential important sampling

(SIS), the importance weights of each sample can be recur-
sively updated as follows [69]:

𝑊(x(𝑖)
𝑡
) = 𝑊(x(𝑖)

𝑡−1
)

𝑝 (y
𝑡
| x(𝑖)
𝑡
) 𝑝 (x(𝑖)

𝑡
| x(𝑖)
𝑡−1
)

𝑞 (x(𝑖)
𝑡
| x(𝑖)
0:𝑡−1

, y
𝑡
)

. (32)

In practice, choosing a proper proposal distribution 𝑞(x
𝑡
|

x
0:𝑡−1

, y
𝑡
) is crucial (see [69] for detailed discussions). In the

neuroscience literature, Brockwell et al. [70] used a transition
prior 𝑝(x

𝑡
| x
𝑡−1
) as the proposal distribution, which yields a

simple form of update from (32) as follows:

𝑊(x(𝑖)
𝑡
) = 𝑊(x(𝑖)

𝑡−1
) 𝑝 (y

𝑡
| x(𝑖)
𝑡
) . (33)

That is, the importance weights 𝑊(x(𝑖)
𝑡
) are only scaled by

the instantaneous likelihood value. Despite its simplicity,
the transition prior proposal distribution completely ignores
the information of current observation y

𝑡
. To overcome

this limitation, Ergun et al. [71] used a filtered (Gaussian)
posterior density derived from the point process filter as the
proposal distribution, and they reported a significant perfor-
mance gain in estimation while maintaining the algorithmic
simplicity (i.e., sampling from a Gaussian distribution). In
addition, the VB approach can be integrated with particle
filtering to obtain a variational Bayesian filtering algorithm
[72].

Note. (i) If the online operation is not required, we can esti-
mate a smoothed posterior distribution 𝑝(x

𝑡
| y
0:𝑇
) to obtain

a more accurate estimate. The above Bayesian filters can be
extended to the fixed-lag Kalman smoother, point process
smoother, and particle smoother [63, 66, 69]. (ii) For neural
spike train analysis, the formulation of Bayesian filtering is
applicable not only to simple point processes but also to
marked point processes [73] or even spatiotemporal point
processes.

3.7. Bayesian Nonparametrics. The contrasting methodolog-
ical pairs “frequentist versus Bayes” and “parametric versus
nonparametric” are two examples of dichotomy in modern
statistics [74]. The historical roots of Bayesian nonparamet-
rics are dated back to the late 1960s and 1970s. Despite its
theoretic development over the past few decades, successful
applications of nonparametric Bayesian inference have not
been widespread until recently, especially in the field of
machine learning [75]. Since nonparametric Bayesianmodels
accommodate a large number of degrees of freedom (infinite-
dimensional parameter space) to exhibit a rich class of proba-
bilistic structure, such approaches are very powerful in terms
of data representation. The fundamental building blocks
are two stochastic processes: Dirichlet process (DP) and
Gaussian process (GP). Although detailed technical reviews
of these topics are far beyond the scope of this paper, we
would like to point out the strengths of these methods in two
aspects of statistical data analysis.

(i) Data clustering, partitioning, and segmentation:
unlike the finite mixture models, nonparametric
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Bayesian models define a prior distribution over the
set of all possible partitions, in which the number
of clusters or partitions may grow as the increase
of the data samples in both static and dynamic set-
tings, including the infinite Gaussian mixture model,
Dirichlet process mixtures, Chinese restaurant pro-
cess, and infinite HMM [74–76]. The model selection
issue is resolved implicitly in the process of infinite
mixture modeling.

(ii) Prediction and smoothing: unlike the fixed finite-
dimensional parametric models, the GP defines pri-
ors for the mean function and covariance function,
where the covariance kernel function determines
the smoothness and stationarity between the data
points. Since the predictive posterior is Gaussian, the
prediction uncertainty can be computed analytically
[28, 77].

Therefore, Bayesian nonparametrics offer greater flexi-
bility for modeling complex data structures. Unfortunately,
most inference algorithms for Bayesian nonparametric mod-
els involve MCMC methods, which can be computationally
prohibitive for large-scale neural data analysis. Therefore,
exploiting the sparsity structure of specific neural data and
designing efficient inference algorithms are two important
directions in practical applications [78].

4. Bayesian Methods for Neural Spike
Train Analysis

In this section, we review some representative applications of
Bayesianmethods for neural spike train analysis, with specific
emphases on the real experimental data. Nevertheless, the list
of the references is by no means complete, and some other
complementary references can be found in [79, 80]. Specifi-
cally, the strengths of the Bayesian methods are highlighted
in comparison with other standard methods; the potentially
issues arising from these methods are also discussed.

4.1. Spike Sorting and Tuning Curve Estimation. To charac-
terize the firing property of single neurons, it is necessary to
first identify and sort the spikes from the recorded multiunit
activity (MUA) (which is referred to as the discrete ensemble
spikes passing the threshold criterion) [81–83]. However,
spike sorting is often a difficult and error-prone process. Tra-
ditionally, spike sorting is formulated as a clustering problem
based on spike waveform features [84]. Parametric and
nonparametric Bayesian inference methods have been devel-
oped for mixture modeling and inference (e.g., [25, 26]),
especially for determining the model size [85, 86]. Unlike
the maximum likelihood estimation (which produces a hard
label for each identified spike), Bayesian approaches produce
a soft label (posterior probability) for individual spike; such
uncertaintiesmay be considered in subsequent analyses (such
as tuning curve estimation and decoding). Spike sorting can
also be formulated as a dynamic model inference problem, in
the context of state space analysis [87] or in the presence of
nonstationarity [88]. Recent studies have suggested that spike
sorting should take into account not only spike waveform

features but also the neuronal tuning property [89, 90],
suggesting that these two processes shall be integrated.

At the single neuron level, a Poisson neuronal firing
response is completely characterized by its tuning curve or
receptive field (RF).Naturally, estimating the neuronal tuning
curve is the second step following spike sorting. Standard
tuning curve or RF estimation methods include the spike-
triggered average (STA) and spike-triggered covariance
(STC). The Bayesian versions of the STA and STC have been
proposed [91, 92]. Binning and smoothing are two important
issues in firing rate estimation Bayesian methods provide
a principled way to estimate the peristimulus time histogram
(PSTH) [93]. For estimating a time-varying firing rate profile
similar to PSTH, the Bayesian adaptive regression splines
(BARS) method offers a principled solution for bin size selec-
tion and smoothing based on the RJ-MCMC method [94].
Notably, BARS ismore computationally intensive. For similar
estimation performance (validated on simulated data), a
more computationally efficient approach has been developed
using Bayesian filtering-based state space analysis [95]. In
addition, Metropolis-type MCMC approaches have been
proposed for high-dimensional tuning curve estimation [96,
97].

4.2. Neural Encoding and Decoding. The goal of neural
encoding is to establish a statistical mapping (which can
be either a biophysical or data-driven model) between the
stimulus input and neuronal responses, and the goal of neural
decoding is to extract or reconstruct information of the
stimulus given the observed neural signals. For instance, the
encoded and decoded variables of interest can be a rodent’s
position during spatial navigation, the monkey’s movement
kinematics in a reach-to-grasp task, or specific visual/audi-
tory/olfactory stimuli during neuroscience experiments.

Without loss of generality, let {𝑋, 𝑌̃} denote the observed
stimuli and neuronal responses, respectively, at the encoding
stage, and let 𝜃 denote the model parameter of a specific
encoding model M; then the posterior distribution of the
model (and model parameters) is written as

𝑝 (𝜃,M | 𝑋, 𝑌̃) ∝ 𝑝 (𝑋, 𝑌̃ | 𝜃,M) 𝑝 (𝜃 |M) 𝑝 (M) . (34)

Once the modelM is determined, one can infer the posterior
mean by 𝜃 = ∫ 𝜃𝑝(𝜃 | 𝑋, 𝑌̃,M)𝑑𝜃. Depending on the selected
likelihood or prior, variations of Bayesian neural encoding
methods have been developed [98–100].

Given the parameter posterior 𝑝(𝜃 | 𝑋, 𝑌̃,M) from
the encoding analysis, decoding analysis aims to infer the
latent variable 𝑋 given new data 𝑌 at the decoding stage
(with preselected M). Within the Bayesian framework, it is
equivalent to finding the𝑋MAP [101] as follows:

𝑋MAP = argmax
𝑋

𝑝 (𝑋 | 𝜃, 𝑌,M)

= argmax
𝑋

∫𝑝 (𝑌 | 𝑋, 𝜃,M) 𝑝 (𝜃 | 𝑋, 𝑌̃,M) 𝑝 (𝑋) 𝑑𝜃

≈ argmax
𝑋

𝑝 (𝑌 | 𝑋, 𝜃,M) 𝑝 (𝑋) ,

(35)
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which consists of two numerical problems:maximization and
integration. In the approximation in the last step of (35), we
have used 𝑝(𝜃 | 𝑋, 𝑌̃,M) ≈ 𝛿(𝜃 − 𝜃), where 𝜃 denotes the
estimated mean or mode statistic from 𝑝(𝜃 | 𝑋, 𝑌̃,M). The
optimization problem is more conveniently written in the log
domain as follows:

log𝑝 (𝑋 | 𝑌, 𝜃) ∝ log𝑝 (𝑌 | 𝑋, 𝜃) + log𝑝 (𝑋) . (36)

If 𝑋 follows a Markovian process, this can be solved by
recursive Bayesian filtering [65, 67] (Section 3.6). When 𝑋
is non-Markovian but 𝑝(𝑋) and the likelihood are both log-
concave, this can be resorted to a global optimization problem
[57, 102]. Imposing prior information and structure (e.g.,
sparsity, spatiotemporal correlation) onto 𝑝(𝑋) is important
for obtaining either a meaningful solution or a significant
optimization speedup [103, 104]. In contrast, when 𝑝(𝑋) is
flat or noninformative, the MAP solution will be similar to
the m.l.e.

In the literature, the majority of neural encoding or
decoding models fall within two parametric families: linear
model (e.g., [63, 105]) andGLM (e.g., [64, 106, 107]), although
nonparametric encoding models have also been considered
[108, 109]. Methods for Bayesian neural decoding include (i)
Kalman filtering [63], (ii) point process filtering [65–67, 110,
111], (iii) particle filtering [70, 71], and (iv) MCMC methods
[112]. The areas of experimental neuroscience data include
the retina, primary visual cortex, primary somatosensory
cortex, auditory periphery (auditory nerves and midbrain
auditory neurons), primary auditory cortex, primary motor
cortex, premotor cortex, hippocampus, and the olfactory
bulb.

It is important to point out thatmost spike-count or point
process based decoding algorithms rely on the assumptions
that neural spikes have been properly sorted (some neural
decoding algorithms (e.g., [113]) are based on detected MUA
instead of sorted single unit activity). Recently, there have
been a few efforts in developing spike-sorting-free decoding
algorithms, by either estimating the cell identities as missing
variables [114] or modeling the spike identities by their
proxy based on a spatiotemporal point process [115, 116].
Although this work has been carried out using likelihood
inference, it is straightforward to extend it to the Bayesian
framework. In the example of decoding the rat’s position from
recorded ensemble hippocampal spike activity [115, 116], we
used a model-free (without 𝜃) and data-driven Bayes’ rule as
follows:

𝑝 (𝑋 | 𝑌,𝑋, 𝑌̃) ∝ 𝑝 (𝑌 | 𝑋,𝑋, 𝑌̃) 𝑝 (𝑋) , (37)

in which 𝑝(𝑋) denotes the prior and the likelihood 𝑝(𝑌 | 𝑋,
𝑋, 𝑌̃) is evaluated nonparametrically (namely, nonparamet-
ric neural decoding). By assuming that the joint/marginal/
conditional distributions (𝑝(𝑋, 𝑌) and 𝑝(𝑋, 𝑌̃), 𝑝(𝑋) and
𝑝(𝑋), and 𝑝(𝑌 | 𝑋) and 𝑝(𝑌̃ | 𝑋)) are stationary during

both encoding and decoding phases, the MAP estimate of
decoding analysis is obtained by

𝑋MAP

= arg
𝑋

max𝑝 (𝑌 | 𝑋,𝑋, 𝑌̃) 𝑝 (𝑋)

≈ arg
𝑋

max𝑓 (𝑌 󵄨󵄨󵄨󵄨󵄨𝑝 (𝑋 | 𝑋) , 𝑝 (𝑋, 𝑌 | 𝑋, 𝑌̃)) 𝑝 (𝑋) ,

(38)

where 𝑓 is a nonlinear function that involves the marginal
and joint pdf ’s in the argument [115, 116], in which the pdf ’s
are constructed based on a kernel density estimator (KDE).
Alternatively, the nonparametric pdf in (38) can be replaced
by a parametric form [115] as follows:

𝑋MAP ≈ arg
𝑋

max𝑓 (𝑌 󵄨󵄨󵄨󵄨𝑝 (𝑋 | 𝜃) , 𝑝 (𝑋, 𝑌 | 𝜃) ) 𝑝 (𝑋) , (39)

where 𝑝(𝑋 | 𝜃) = ∫𝑝(𝑋, 𝑌 | 𝜃)𝑑𝑌 is the parametric marginal
and 𝜃 is the point estimate obtained from the training samples
{𝑋, 𝑌̃}.

Note. (i) Neural encoding and decoding analyses are estab-
lished upon the assumption that the neural codes are well
understood—namely, how neuronal spikes represent and
transmit the information of the external world. Whether
being a rate code, a timing code, a latency code, or an inde-
pendent or correlated population code, Bayesian approach
provides a universal strategy to test the coding hypothesis
or extract the information [117]. (ii) The sensitivity of spike
trains to noise may affect the effectiveness to the encoding-
decoding process. From an information-theoretic perspec-
tive, various sources of spike noise, such as misclassified
spikes (false positives) and misdetected, or misclassified
spikes (false negatives), may affect differently the mutual
information between the input (stimulus) and output (spikes)
channel [118, 119]. In designing a Bayesian decoder, it is
important to take into account the noise issue. A decoding
strategy that is robust to the noise assumption will presum-
ably yield the best performance [115, 116].

4.3. Deconvolution of Neural Spike Trains. Fluorescent cal-
cium imaging tools have become increasingly popular for
observing the spiking activity of large neuronal populations.
However, extracting or deconvolving neural spike trains from
the raw fluorescence movie or video sequences remains a
challenging estimation problem. The standard 𝑑𝐹/𝐹 or
Wiener filtering approaches do not capture the true statistics
of neural spike trains and are sensitive to the noise statistics
[120].

A principled approach is to formulate the deconvolution
problem of a filtered point process via state space analysis
and Bayesian inference [121, 122] (see also [123] for another
type of Bayesian deconvolution approach using MCMC).
Let 𝐹

𝑡
denote the measured univariate fluorescence time

series, which is modeled as a linear Gaussian function of the
intracellular calcium concentration ([Ca2+]) as follows:

𝐹
𝑡
= 𝛼[Ca2+]

𝑡
+ 𝛽 + 𝜖

𝑡
, (40)
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where 𝛽 denotes a constant baseline and 𝜖
𝑡
∼ N(0, 𝜎

2
)

denotes the Gaussian noise with zero mean and variance 𝜎2.
The calcium concentration can be modeled as a first-order
autoregressive (AR) process corrupted by Poisson noise as
follows:

𝛼[Ca2+]
𝑡
= 𝛼[Ca2+]

𝑡−1
+ 𝑛
𝑡
, (41)

where 𝑛
𝑡
∼ Poisson (𝜆Δ) and the bin size Δ is chosen to

assure that themean firing rate is independent of the imaging
frame rate.

Let 𝜃 = {𝛼, 𝛽, 𝛾, 𝜎
2
, 𝜆}; given the above generative bio-

physical model, Bayesian deconvolution aims to seek the
MAP estimate of spike train as follows:

n̂ = arg max
𝑛
𝑡
∈N
0

𝑝 (n | F, 𝜃)

= arg max
𝑛
𝑡
∈N
0

𝑝 (F | n, 𝜃) 𝑝 (n | 𝜃)

= arg max
𝑛
𝑡
∈N
0

𝑇

∏

𝑡=1

𝑝 (𝐹
𝑡
| Ca2+
𝑡
, 𝜃)

𝑇

∏

𝑡=1

𝑝 (𝑛
𝑡
| 𝜃) .

(42)

Within the state space framework, Vogelstein and colleagues
[121] proposed a particle filtering method to infer the pos-
terior probability of spikes at each imaging frame, given
the entire fluorescence traces. However, the Monte Carlo
approach is computationally expensive and may not be suit-
able for analyses of a large population of neurons. To meet
the real-time processing requirement, they further proposed
an approximate yet fast solution by replacing the Poisson
distribution by an exponential distribution with the same
mean (therefore relaxing the nonnegative integer constraint
to the nonnegative real number) [122]. And the approximate
solution is given by the following optimization problem:

n̂ = argmax
𝑛
𝑡
≥0

𝑇

∑

𝑡=1

−
1

2𝜎2
(𝐹
𝑡
− 𝛼Ca2+

𝑡
− 𝛽)
2

− 𝑛
𝑡
𝜆Δ

= arg max
Ca2+
𝑡
−𝛾Ca2+
𝑡−1
≥0

𝑇

∑

𝑡=1

−
1

2𝜎2
(𝐹
𝑡
− 𝛼Ca2+

𝑡
− 𝛽)
2

− (Ca2+
𝑡
− 𝛾Ca2+

𝑡−1
) 𝜆Δ.

(43)

The approximation of exponential form makes the optimiza-
tion problem concave with respect to Ca2+, from which the
global optimum can be obtained using constrained convex
optimization [102]. Once the estimate of the calcium trace is
obtained, the MAP spike train can be simply inferred by a
linear transformation.

In a parallel fashion, the parameter 𝜃 can be similarly
estimated by Bayesian inference as follows:

𝜃MAP = argmax
𝜃

∫𝑝 (F | Ca2+, 𝜃) 𝑝 (Ca2+ | 𝜃) 𝑑Ca2+

≈ argmax
𝜃

𝑝 (F | n̂, 𝜃) 𝑝 (n̂ | 𝜃) ,
(44)

where the approximation in the second step assumes that the
major mass in the integral is around the MAP sequence n̂

(or equivalently the Ca2+ traces).Therefore, the joint estimate
(n̂, 𝜃MAP) can be computed iteratively from (43) and (44) until
convergence.

Note. The output of Bayesian deconvolution yields a proba-
bility vector between 0 and 1 of having a spike in a given time
frame. Selection of different thresholds on the probability
vector leads to different detection errors (a tradeoff between
the false positives and false negatives). Nevertheless, the
Bayesian solution is much more superior to the standard
least-squares method. It is noteworthy that a new fast decon-
volution method has recently been proposed based on finite
rate of innovation (FRI) theory, with reported performance
better than the approximate Bayesian solution [124].

4.4. Inference of Neuronal Functional Connectivity and Syn-
chrony. Identifying the functional connectivity of simultane-
ously recorded neuronal ensembles is an important research
objective in computational neuroscience. This analysis has
many functional applications such as in neural decoding [125]
and in understanding the collective dynamics of coordinated
spiking cortical networks [126]. Compared to the stan-
dard nonparametric approaches such as cross-correlogram
and joint peristimulus time histogram (JPSTH), parametric
model-based statistical approaches offer several advantages
in neural data interpretation [127].

To model the spike train point process data, without loss
of generality we use the following logistic regression model
with a logit link function. Specifically, let 𝑐 be the index
of a target neuron, and let 𝑖 = 1, . . . 𝐶 be the indices of
triggered neurons (whose spike activity is assumed to trigger
the firing of the target neuron). The Bernoulli (binomial)
logistic regression GLM is written as

logit (𝜋
𝑡
) = 𝜃
⊤

𝑐
𝑋
𝑡
= 𝜃
𝑐

0
+

𝐽

∑

𝑗=1

𝜃
𝑐

𝑗
𝑥
𝑗,𝑡

= 𝜃
𝑐

0
+

𝐶

∑

𝑖=1

𝐾

∑

𝑘=1

𝜃
𝑐

𝑖,𝑘
𝑥
𝑖,𝑡−𝑘

,

(45)

where dim(𝜃
𝑐
) = 𝐽+1 = 𝐶×𝐾+1 for the augmented param-

eter vector 𝜃
𝑐
= {𝜃
𝑐

0
, 𝜃
𝑐

𝑖,𝑘
} and 𝑋

𝑡
= {𝑥
0
, 𝑥
𝑖,𝑡−𝑘

}. Here, 𝑥
0
≡ 1,

and 𝑥
𝑖,𝑡−𝑘

denotes the raw spike count from neuron 𝑖 at the
𝑘th time-lag history window (or a predefined smooth basis
function such as in [125]). The spike count is nonnegative;
therefore 𝑥

𝑖,𝑡−𝑘
≥ 0. Alternatively, (45) can be rewritten as

𝜋
𝑡
=

exp (𝜃⊤
𝑐
𝑋
𝑡
)

1 + exp (𝜃⊤
𝑐
𝑋
𝑡
)
=

exp (𝜃𝑐
0
+ ∑
𝐽

𝑗=1
𝜃
𝑐

𝑗
𝑥
𝑗,𝑡
)

1 + exp (𝜃𝑐
0
+ ∑
𝐽

𝑗=1
𝜃
𝑐

𝑗
𝑥
𝑗,𝑡
)

, (46)

which yields the probability of a spiking event at time 𝑡.
Equation (46) defines a spiking probability model for neuron
𝑐 based on its own spiking history and that of the other
neurons in the ensemble. Here, exp(𝜃𝑐

0
) can be interpreted

as the baseline firing probability of neuron 𝑐. Depending on
the algebraic (positive or negative) sign of coefficient 𝜃𝑐

𝑖,𝑘
,

exp(𝜃𝑐
𝑖,𝑘
) can be viewed as a “gain” factor (dimensionless,>1 or

<1) that influences the relative firing probability of neuron 𝑐
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from another neuron 𝑖 at the previous 𝑘th time lag.Therefore,
a negative value of 𝜃𝑐

𝑖,𝑘
will strengthen the inhibitory effect; a

positive value of 𝜃𝑐
𝑖,𝑘

will enhance the excitatory effect. Two
neurons are said to be functionally connected if any of their
pairwise connections is nonzero (or the statistical estimate is
significantly nonzero).

For inferring the functional connectivity of neural
ensembles, in addition to the standard likelihood approaches
[127, 128], various forms of Bayesian inference have been
developed for the MaxEnt model, GLM, and Bayesian net-
work [129–132]. In a similar context, a Bayesian method has
been developed based on the deconvolved neuronal spike
trains from calcium imaging data [133].

Bayesian methods also proved useful in detecting higher-
order correlations among neural assemblies [134, 135].
Higher-order correlations are often characterized by synchro-
nous neuronal firing at a timescale of 5–10ms.These findings
have been reported in experimental data from prefrontal
cortex, somatosensory cortex, and visual cortex across many
species and animals. Consider a set of 𝐶 neurons. Each
neuron is represented by two states: 1 (firing) or 0 (silent).
At any time instant, the state of the 𝐶 neurons is represented
by the vector 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐶
) (the time index is omitted

for simplicity), and in total there are 2𝐶 neuronal states. For
instance, a general joint distribution of three neurons can be
expressed by a log-linear model [134]

𝑝 (𝑥
1
, 𝑥
2
, 𝑥
3
) = exp (𝜃

0
+ 𝜃
1
𝑥
1
+ 𝜃
2
𝑥
2
+ 𝜃
3
𝑥
3

+ 𝜃
12
𝑥
1
𝑥
2
+ 𝜃
13
𝑥
1
𝑥
3

+𝜃
23
𝑥
2
𝑥
3
+ 𝜃
123
𝑥
1
𝑥
2
𝑥
3
) ,

(47)

which is a natural extension of the MaxEnt model described
in (9). A nonzero coefficient of 𝜃

123
would imply the presence

of third-order correlation among the three neurons. In
experimental data, the number of synchronous events may
be scarce in single trials, and the interaction coefficients
may also be time-varying. State space analysis and Bayesian
filtering offer a principled framework to address these issues
[135]. However, the computational bottleneck is the curse of
dimensionality when the value of𝐶 is moderately large (220 ≈
10
6). In the presence of finite data sample size, it is reasonable

to impose certain structural priors onto the parameter space
for the Bayesian solution.

5. Discussion

We have presented an overview of Bayesian inference meth-
ods and their applications to neural spike train analysis.
Although the focus of current paper is on neural spike trains,
the Bayesian principle is also applicable to other modalities
of neural data (e.g., [136]). Due to space limitation, we only
cover representative methods and applications in this paper,
and the references are reflective of our personal choices from
the humongous literature.

In comparison with the standard methods, Bayesian
methods provide a flexible framework to address many fun-
damental estimation problems at different stages of neural
data analysis. Regardless of the specific Bayesian approach to

be employed, the common goal of Bayesian solutions consists
in replacing a single point estimate (or hard decision label)
with a full posterior distribution (or soft decision label). As a
tradeoff, Bayesian practioners have to encounter the increas-
ing cost of computational complexity (especially while using
MCMC), which may be prohibitive for large-scale spike train
data sets. Furthermore, special attention shall be paid to select
the optimal technique among different Bayesian methods
that ultimately lead to quantitatively different approximate
Bayesian solutions.

Despite the significant progresses made to date, there
remain many research challenges and opportunities for
applying Bayesian machinery to neural spike trains, and we
will mention a few of them below.

5.1. Nonstationarity. Neural spiking activity is highly non-
stationary at various timescales. Sources that account for
such nonstationarity may include the animal’s behavioral
variability across trials, top-down attention, learning,motiva-
tion, or emotional effects across time. These effects are time-
varying across behaviors. In addition, individual neuronal
firing may be affected by other unobserved neural activity,
such as throughmodulatory or presynaptic inputs from other
nonrecorded neurons. Therefore, it may be important to
consider these latent variables while analyzing neural spike
trains [137]. Bayesianmethods are a natural solution tomodel
and infer such latent variables. Traditional mixed-effects
models can be adapted to a hierarchical Bayesian model to
capture various sources of randomness.

5.2. Characterization of Neuronal Dependencies. Neural
responses may appear correlated or synchronous at different
timescales. It is important to characterize such neuronal
dependencies in order to fully understand the nature of neu-
ral codes. It is also equally important to associate the neu-
ral responses to other measurements, such as behavioral
responses, learning performance, or local field potentials.
Commonly, correlation statistics or information-theoretic
measures have been used (e.g., [138]). Other advanced sta-
tistical measures have also been proposed, such as the log-
linear model [139], Granger causality [140], transfer entropy
[141], or copula model [142]. Specifically, the copula offers
a universal framework to model statistical dependencies
among continuous, discrete, or mixed-valued r.v., and it has
an intrinsic link to themutual information; Bayesianmethods
may prove useful for selecting the copula class or the copula
mixtures [143]. However, because of the nonstationary nature
of neural codes (Section 5.1), it remains a challenge to identify
the “true” dependencies among the observed neural spike
trains, and it remains important to rule out and rule in neural
codes under specific conditions.

5.3. Characterization and Abstraction of Neuronal Ensemble
Representation. Since individual neuronal spike activity is
known to be stochastic and noisy, in the single-trial analysis
it is anticipated that the information extracted from neuronal
populations is more robust than that from a single neuron.
How to uncover the neural representation of population
codes in a single-trial analysis has been an active research
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topic in neuroscience. This is important not only for abstrac-
tion, interpretation, and visualization of population codes
but also for discovering invariant neural representations and
their links to behavior. Standard dimensionality reduction
techniques (e.g., principle component analysis, multidimen-
sional scaling, or locally linear embedding) have been widely
used for such analyses. However, thesemethods have ignored
the temporal component of neural codes. In addition, no
explicit behavioral correlate may become available in certain
modeling tasks. Recently, Bayesian dynamic models, such as
the Gaussian process factor analysis (GPFA) [144] and VB-
HMM [145–147], have been proposed to visualize population
codes recorded from large neural ensembles across different
experimental conditions. To learn the highly complex struc-
ture of spatiotemporal neural population codes, it may be
beneficial to borrow the ideas from the machine learning
community and to integrate the state-of-the-art unsupervised
and supervised deep Bayesian learning techniques.

5.4. Translational Neuroscience Applications. Finally in the
long run, it is crucial to apply basic neuroscience knowledge
derived from quantitative analyses of neural data to trans-
lational neuroscience research. Many clinical research areas
may benefit from the statistical analyses reviewed here, such
as design of neural prosthetics for patients with tetraplegia
[107], detection and control of epileptic seizures, optical
control of neuronal firing in behaving animals, or simulation
of neural firing patterns to achieve optimal electrotherapeutic
effect [148]. Bridging the gap between neural data analysis
and their translational applications (such as treating neuro-
logical or neuropsychiatric disorders) would continue to be
a prominent mission accompanying the journey of scientific
discovery.
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