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Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures
present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience
to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of
ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT
image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response
of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image,
from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously.The thin-plate spline
interpolationmethod is employed to transform the simulation image between polar and rectangular coordinate systems.TheKaiser
window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results
show that the developedmethod is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed
method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

1. Introduction

The imaging principle behind an ultrasound is that the
ultrasound wave generates a different amount of reflection
or refraction when accounting for different tissues inside the
human body. Given that the shape, density, and structure
of different organs vary, the amounts of wavelets that are
reflected or refracted can be used to reconstruct the anatom-
ical structure of human tissues. Based on the wave pattern
and image features, combined with personal anatomical and
pathological knowledge, the texture and pathological char-
acteristics of a specific organ can be quantified for medical
professionals.

Over the past decades, the ultrasound imaging technique
has played increasingly important role in clinical diagnosis.
As a fast and safe method of imaging, ultrasound is the
most ideal imaging modality for real-time image-guided
navigation in minimally intrusive surgery [1–3]. However,
the ultrasound image is usually mixed with a high level of
noise and the anatomical structure is not as clear as that in
CT and MRI [4]. Hence, a successful ultrasound doctor has

to possess a huge amount of anatomical knowledge, as well
as considerable clinical experience. Currently, ultrasound
clinical training is usually done under the guidance of experts
who operate on real patients. Such training is time consuming
and costly. Moreover, for some operations requiring careful
manipulations, such as abscess drainage and tissue biopsy,
incorrectly performed operations can cause great suffering
to the patient or even lead to a number of complications.
Comparably, the ultrasound simulation technique provides
an economic and efficient way of observing and acquiring
ultrasound images [5–7].

Currently, two categories of ultrasound simulation
methods exist. The first involves the 3D ultrasound volume
generated by a series of 2D ultrasound images, wherein the
section slices of ultrasound images are generated from the
location and direction of the ultrasound detector. Henry et al.
[8] constructed the ultrasound volume from real images of a
typical patient in offline preprocessing.The ultrasound image
is then generated by considering both the position of the
virtual probe and the pressure applied by this probe on the
body. The system was successfully used to train physicians
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to detect deep venous thrombosis of the lower limbs.
Weidenbach et al. [9] calculated a 2D echocardiographic
image from preobtained 3D echocardiographic datasets that
are registered with the heart model to achieve spatial and
temporal congruency. The displayed 2D echocardiographic
image is defined and controlled by the orientation of the
virtual scan plane. Such a simulation method requires the
3D ultrasound volume data to be acquired in advance, thus
guaranteeing good image quality and high-speed scanning
of the image slice. However, this method cannot simulate the
image outside the 3D volume data and 3D ultrasound images
are also quite difficult to obtain using general ultrasound
devices.

The second method involves the ultrasound being simu-
lated from volume data, such as CT or MRI images. Shams
et al. [10] simulated ultrasound images from 3D CT scans
by breaking down computations into a preprocessing and
a run-time phase. The preprocessing phase generates fixed-
view 3D scattering images, whereas the run-time phase
calculates view-dependent ultrasonic artifacts for a given
aperture geometry and position within a volume of interest.
Based on the method of Shams, Kutter et al. [11] used a
ray-based model combined with speckle patterns derived
from a preprocessed CT image to generate view-dependent
ultrasonic effects, such as occlusions, large-scale reflections,
and attenuation. In his method, Graphics Processing Unit
(GPU) was introduced for speed acceleration. Reichl et al.
[12] estimated ultrasound reflection properties of tissues and
modified them into a more computationally efficient form.
In addition, they provided a physically plausible simulation
of ultrasound reflection, shadowing artifacts, speckle noise,
and radial blurring. Compared with the ultrasound volume-
based method, the source image is easy to obtain and the
calculation is comparably robust for the CT- and MRI-based
method [13]. However, given that the imaging principles are
totally different for CT, MRI, and ultrasound, such kind of
simulation is more complicated than the ultrasound volume-
based method. Moreover, the method is time consuming
during preprocessing and intensity calculations. On the other
hand, the CT- and MRI-based method can conveniently
obtain the ultrasound image at any angle and position and
the simulated ultrasound can also be fused with the CT or
MRI. Hence, the CT- and MRI-based method can provide a
more comprehensive understanding of diseases.

In this paper, a novel method is developed for the
simulation of an ultrasound image from CT volume datasets.
A multiscale method is proposed to simulate blood flow and
to enhance tubular structures in the CT image [14]. The
thin-plate spline [15–17] interpolation method is utilized to
transform images between the sector and rectangle diagram.
Differences of adjacent regions in terms of radiation are
subjected to weighted integration in the CT image to obtain
a realistic simulation of the acoustic response of common
tissues. Finally, based on reflection and attenuation principles
of ultrasound, the Kaiser window function [18] is used to
overlay simulated images from different transducer elements
and the rectangular diagram is mapped into the sector
diagram to guarantee a simulated ultrasound imagewith high
validity and calculation speed.

The advantages of our algorithm are towfold: first, as
the tubular structures in the CT image are strengthened by
the multiscale enhancement method, the simulated vessel in
the ultrasound is more realistic than the commonly used
method. Second, as the response coefficient of ultrasound
is calculated by the intensity differences of adjacent regions
in the ultrasound propagation path, the complexity of the
simulation procedure is greatly reduced.

2. Method

The developed method comprises the following four main
parts.

(1) Multiscale Vascular Enhancement. In this part, a
multiscale method is employed to enhance tubular
structures in the CT volume data. Through this pro-
cess, the intensities unlikely to belong to vascular trees
are effectively removed. The output image then used
for following processing is a weighted integration of
the source and the enhanced images.

(2) Thin-Plate Spline Mapping. As ultrasound is generally
presented as a sector diagram with a coordinate
system that is different from the rectangular coor-
dinate used for CT images, the thin-plate spline
interpolation method is used for the transformation
between sector and rectangular diagrams to achieve
smooth mapping of both the diagrams.

(3) Acoustic Model Construction. In this part, the acoustic
model is constructed via the weighted function of
adjacent regions on the ultrasound propagation path.

(4) Kaiser Window Analysis. The ultrasound emitter is
generally composed of multiple transducer elements.
TheKaiser windowfilter is utilized to obtain a realistic
simulation effect and to simulate fusion effects of
all independent elements. In order to guarantee the
clarity of the simulated ultrasound, a linear scaling
method is applied to the final results to stretch the
ultrasound intensity to a scale level of 256. The
processing flow diagram is shown in Figure 1.

(1) Multiscale Vascular Enhancement. When there is relative
motion between the ultrasound source and the receiving
body, the received signal frequency will be changed from
the actual frequency transmitted from the source. Therefore,
the vessels can be clearly imaged in ultrasound. For any CT
image, the difference of CT values for vasculature and its
neighboring tissues is almost negligible as no material is
perfused in the focused part of the vasculature to enhance its
visibility and subside the neighboring vessels as background
during the whole procedure. Thus, it causes great difficulty
in distinguishing the vasculature to be focused on and
the neighboring tissues to be removed. Therefore, direct
simulation of an ultrasound sector from a CT image cannot
achieve realistic blood vessel visualization. In this paper,
we utilize the multiscale enhancement method developed
in [19] to strengthen vasculatures and then, by calculating
intensify difference between adjacent voxels in the ultrasound
propagation path, the response coefficient can be quantified.
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Figure 1: Simulation procedures and calculation modules.

The multiscale enhancement approach basically filters
the tube like geometrical structures. Since there is a large
variation in size of the vessels, so we need to define a
measurement scale with a certain range. Basically to examine
the local behavior of an image, 𝐿, its Taylor expansion in the
neighborhood of a point 𝑥

0
can be shown as

𝐿 (𝑥
0
+ 𝛿𝑥
0
, 𝑠) ≈ 𝐿 (𝑥

0
, 𝑠) + 𝛿𝑥

𝑇

0
∇
0,𝑠

+ 𝛿𝑥
𝑇

0
𝐻
0,𝑠

𝛿𝑥
0
, (1)

where∇
0,𝑠
and𝐻

0,𝑠
are the gradient vector andHessianmatrix

of the image computed in 𝑥
0
at scale 𝑠. To calculate these

differential operators of 𝐿, we use the concepts of linear
scale space theory. Here the differentiation is defined as a
convolution with derivatives of Gaussians as

𝜕
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where the𝐷-dimensional Gaussian is defined as
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1
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The parameter 𝛾 defines a family of normalized deriva-
tives and helps in unbiased comparison of response of
differential operators at various scales.

The idea behind eigenvalue evaluation of the Hessian
is to extract the principal directions in which the local
second order structure of the image can be decomposed.
Three orthonormal directions are extracted by eigenvalue
decomposition that is invariant up to a scaling factor when
mapped by the Hessian matrix. Let 𝜆

𝑘
be the eigenvalue with

the 𝑘th smallest magnitude. In particular, a pixel belonging
to a vessel region will be denoted by 𝜆

1
being small (ideally

zero),𝜆
2
and𝜆

3
for a largemagnitude and equal sign (the sign

states the brightness or darkness of the pixel). To conclude, for
an ideal tubular structure in a 3D image as
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2
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3
. In regions

with high contrast compared to the background, the norm
will become larger since at least one of the eigenvalues will

be large. The following combination of the components can
define a vesselness function:
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where 𝛼, 𝛽, and 𝑐 are thresholds which control the sensitivity
of the line filter to themeasuresR

𝐴
,R
𝐵
, and 𝑠.The vesselness

measure is analyzed at different scales, 𝑠. For 2D images, we
propose the following vesselnessmeasure which follows from
the same reasoning as in 3D:
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where R
𝐵

= 𝜆
1
/𝜆
2
is the boldness measure in 2D and

accounts for the eccentricity of the second-order ellipse.

(2) Thin-Plate Spline Mapping. As ultrasound and CT images
are present as polar and rectangular coordinate systems,
respectively, transformation between these two diagrams is
necessary for the simulation processing. In this paper, the
thin-plate spline interpolation method is utilized to achieve
these transformations.

The basic idea of the thin-plate spline is that a space
transformation can be decomposed into a global affine
transformation and a local nonaffine warping component
[20]. Assuming that we have two sets of corresponding points
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𝑝
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plate spline can be defined as
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(7)

where 𝑓 is mapping function between point sets 𝑝
𝑖
and 𝑞

𝑖
.

The first term in the previous equation is the approaching
probability between these two point sets, whereas the second
term is a smoothness constraint, while 𝜆 indicates a different
degree of warping. When 𝜆 is close to zero, corresponding
points are matched exactly. For this energy function, a
minimizing term 𝑓(𝑞), 𝑞 ∈ 𝑅

2 exists for any fixed 𝜆, which
can be formulated as:

𝑓 (𝑞) = 𝑞 ⋅ 𝐴 + 𝜑 (𝑞) ⋅ 𝑊, (8)

where 𝐴 is a 3 × 3 affine transformation matrix and 𝜑(𝑞) is a
1 × 𝑛 vector decided by the spline kernel, while 𝑊 is a 𝑛 × 3

non-affinewarpingmatrix.Whenwe combine (7) and (8), we
have

𝐸TPS (𝐴,𝑊) = ‖𝑈 − 𝑉 ⋅ 𝐴 − Ψ𝑊‖
2

+ 𝜆 trace (𝑊𝑇Ψ𝑊)𝑑𝑥𝑑𝑦,

(9)

where𝑈 and𝑉 are concatenated point sets of𝑝 and 𝑞 andΨ is
a 𝑛×𝑛matrix formed from the 𝜑(𝑞).Thus,𝑄𝑅 decomposition
can be utilized to separate the affine and non-affine warping
space as follows:
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final solution for 𝐴 and 𝑊 can be obtained as
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Through thin-plate spline interpolation, the transforma-
tion between the polar and rectangular coordinate systems
can be achieved. Although the thin-plate spline method is,
to an extent, time consuming compared to the commonly
used bilinear or trilinear interpolation methods, however,
it guarantees comparative homogeneity in both radial and
tangential directions.One commonproblem for the nonpara-
metric mapping between polar and rectangular coordinate
systems is that the resolution in tangential direction is
homogeneous while it is reducing gradually radial direction

from the center to the out part of the sector. The main merit
of the proposed thin-plate spine mapping method is that it
can keep maximum uniformity of the whole diagram.

Figure 2 shows themapping principle between sector and
rectangle. The ultrasound image is generally presented as
sector, as shown in Figure 2(a), and the intersection angle
𝜙 is defined as Field of View (FOV) which is usually set
as constant once the device is calibrated. The penetration
depth of the ultrasound can be defined as the indepth
distance between inner and outer circles with radius of 𝑟

𝑙

and 𝑟
𝑠
, which is determined by the strength of acoustic

wave. Figure 2(b) shows the rectangle image section extracted
from the CT image. In this figure, {𝑎

1,2
, 𝑎
2,2

, . . . , 𝑎
𝑚,2

} and
{𝐴
1,2

, 𝐴
2,2

, . . . , 𝐴
𝑚,2

} are the constructed correspondences
and 𝑚 and 𝑛 represent the number of sampling along radial
and tangential directions. It is obvious that resolution of the
simulated ultrasound is determined by 𝑚 × 𝑛.

(3) Acoustic Model for Construction. Large differences are
observed in the acoustic resistances between different tissues.
Thus, an ultrasound at interfaces of different tissues usually
results in the occurrence of reflection, refraction, and absorp-
tion. If the resistance difference between two tissues is greater
than 0.1%, the reflection will be produced [21]. The acoustic
resistance 𝑍 of a certain organ can be calculated as 𝑍 = 𝜌𝑐,
where 𝜌 is density and 𝑐 represents propagation speed of the
ultrasound.

The reflection coefficient 𝛼ref and transmission coefficient
𝛼tran on the interface of two organs with acoustic resistance of
𝑍
1
and 𝑍

2
can be calculated by the following equations [22]:

𝛼ref (𝑍1, 𝑍2) =
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2

,
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2
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1
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2
)
2
= 1 − 𝛼ref (𝑍1, 𝑍2) ,

(12)

where 𝑈, 𝑈ref, and 𝑈tran are wave intensities of input ultra-
sound, reflected ultrasound, and transmitted ultrasound,
respectively.

The reflection is generally produced on the interfaces
of two organs. Hence, edge detection is imperative for
acquiring boundary information. Currently, several stable
edge detectionmethods exist, such as Roberts, Sobel, Prewitt,
and LOG operators, which have been widely used in medical
image processing. For these methods, the detection of the
edge is based on the analysis of the intensity relationship
of neighboring points. Moreover, if a certain angle exists
between the propagation and edge directions, reflection
will occur. If the propagation direction is parallel to the
edge direction, the ultrasound will transmit directly, and
no reflection occurs. Hence, the propagation angle must be
considered in the calculation of the acoustic response.

However, a considerable amount of random speckles
occur in the ultrasound image, and the correct noise gener-
ation is important for the realistic simulation of ultrasound
images. When the scatter phenomenon of ultrasound is pro-
duced inside the human body, the backwaves with different
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Figure 2: Relationship between sector and rectangle mapping.

phases generally interfere with one another. Hence, speckles
are generated [23, 24]. Random noises are generated and
superimposed onto the simulated image. As for theCT image,
several factors, including amount of radiation, performance
of data acquisition unit, and image reconstruction proce-
dure, can also introduce noise in the simulated ultrasound
[24].

Intensity differences of adjacent regions are used for the
calculation of the response coefficient to obtain a realistic
simulation of ultrasound. Specifically, the response coefficient
of a certain region is determined by consecutive regions on
the ultrasound propagation direction. The following three
conditions have to be considered.

(1) Adjacent regions are not on the interface. For such a
condition, the calculation sample point is inside the
same organ. Hence, the difference in the CT values of
these two regions is small, yielding a small response
coefficient.

(2) Adjacent regions are on the edge of the interface.
If the propagation direction is parallel to the edge
direction, the adjacent regions will both be located
on the edge, thus yielding small CT value varia-
tions. If the angle between the propagation and edge
directions increases gradually, the CT value variation
will increase and consequently increase the response
coefficient. By this method, the interface effect of
the response coefficient can be calculated only by
adjacent regions, and the imaging angle between edge
and ultrasound propagation directions need not be
calculated.

(3) Adjacent regions are on the noise area. In such situa-
tions, the difference in the CT values is usually large,
thus yielding a large response coefficient. Therefore,
the noises of the ultrasound can be simulated by the
intensity difference in the CT image.

Acoustic resistance is generally known to be proportional
to the CT value [25]. Hence, the weight 𝛼ref of adjacent
regions 𝐼(𝑥

1
) and 𝐼(𝑥

2
) can be written as

𝛼ref = (
𝐼 (𝑥
2
) − 𝐼 (𝑥

1
)

𝐼 (𝑥
2
) + 𝐼(𝑥

1
)
1

)

2

. (13)

However, bone-tissue interfaces reflect 43% and air-tissue
interfaces reflect 99% of the incident beam [26]. Hence, (13)
cannot be applied to tissues like bone and air.

(4) KaiserWindowAnalysis. For the acoustic responsemodel,
the strength of sound wave increases with the decrease of the
angle 𝜃 between incident sound wave and surface normal at
the interface, as can be shown by the Lambert cosine law [27]
as follows:

𝑈out (𝜃) = 𝛼ref × 𝑈in × cos (𝜃) , (14)

where 𝑈in and 𝑈out represent acoustic intensities before and
after refraction at the medium interface. 𝛼ref represents the
refection coefficient and 𝜃 represents the intersection angle
between input ultrasound and normal vector of the interface.
When ultrasound is transmitted in the media, its energy
decreases with the propagation distance. Such phenomenon
is called ultrasound attenuation. As for ultrasound wave with
given frequency, its energy attenuation follows the power law
principle, which can be formulated as [28]

𝑈 (𝛼ref, 𝑑) = 𝑈in × 𝑒
−2𝛼ref𝑑, (15)

where 𝑑 is the propagation distance, while 𝑈(𝛼ref, 𝑑) repre-
sents the acoustic intensity after it has been propagated in the
medium for a distance of 𝑑. According to the Lambert cosine
law, the intensity of the acoustic response can be calculated as

𝑈out (𝜃) = 𝛼ref × 𝑈in × cos (𝜃) = 𝛼ref × 𝑈in ×


⇀
𝑟 (𝑥) ⋅

⇀
𝑛 (𝑥)


,

(16)
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where ⇀
𝑟 (𝑥) is the unit vector in the direction of the ultra-

sound beam, ⇀𝑛 (𝑥) is the surface normal at the interface, | ⋅ |
is the absolute value operator. Then, the attenuation of the
ultrasound can be obtained by the following equation:

𝑈out (𝛼ref, 𝑑, 𝜃) = 𝛼ref × 𝑈in ×


⇀
𝑟 (𝑥) ⋅

⇀
𝑛 (𝑥)


× 𝑒
−2𝛼ref𝑑. (17)

Suppose that multiple independent transducer elements
are observed and the strength of each ultrasound is 𝑈

0
.

The summary of the received ultrasound strength can be
calculated as follows:

𝑈total =
𝑛

∑

𝑖=1

𝑈
𝑖
=

𝑛

∑

𝑖=1

𝛼ref × 𝑈in × |𝑟 (𝑥) ⋅ 𝑛 (𝑥)| × 𝑒
−2𝛼ref𝑑

=

𝑛

∑

𝑖=1

𝛼ref × 𝑈in × cos (𝜃
𝑖
) × 𝑒
−2𝛼ref(𝑑0/ cos(𝜃𝑖)),

(18)

where 𝑑
0
is the minimum distance among all the transducer

element and sampling region 𝑥
𝑖
and 𝑑 is the distance interval

of adjacent transducer elements. Meanwhile, 𝜃
𝑖
is the angle

between transducer element and the sampling region 𝑥
𝑖
,

which can be written as

𝜃
𝑖
= arctan(

𝑛 × 𝑑

𝑑
0

) , (19)

where 𝑛 is the number of active elements of transducer and𝜔
𝑖

can be parameterized as 𝜔
𝑖
= cos(𝜃

𝑖
) × 𝑒
−2𝛼ref(𝑑0/ cos(𝜃𝑖)), which

can be calculated by Kaiser window. The discrete probability
density of Kaiser Window can be written as

𝜔 (𝑚) =

{{{

{{{

{

𝐼
0
× (𝜋𝛼√1 − (

2𝑚

𝑀
− 1)

2

) , 0 ≤ 𝑚 ≤ 𝑀

0, otherwise,
(20)

where 𝑈
0
represents the first zero-order modified Bessel

function and 𝛼 is the parameter to determine shape of the
window, while 𝑀 is an integer with length of (𝑁 + 1).

3. Experimental Results

The developed method is applied to a series of CT images
obtained from PLA General Hospital to investigate the
performance and accuracy of the proposed simulation algo-
rithm. The images were acquired from a 64-slice CT scanner
by Philips, and the resolution is 512× 512× 394.The algorithm
is implemented in the C++ programming language.

3.1. Evaluation of Multiscale Enhancement. Figure 3 shows
the effectiveness of the ultrasound simulation withmultiscale
enhancement, which is compared with the direct simulation
of the CT image. Figure 3(a1) is the volume rendering of
the original image. The gray scales of vascular trees are very
close to their surrounding tissues, especially for small vessel
segments and bones. If ultrasound is directly simulated from
this image, vessels will mix with the neighboring tissues

and will be difficult to detect visually. Figure 3(b1) is the
volume rendering of the vascular structure processed by
the multiscale enhancement method.The vascular structures
are effectively extracted from which small vessel segments
can be visually inspected. Figure 3(c1) is the superimposing
of the original image and the enhanced vascular structure.
Evidently, the vascular trees are effectively strengthened, and
they can easily be separated from the surrounding tissues.
Moreover, the vascular structures can be distinguished from
bones.

Figures 3(a2), 3(b2), and 3(c2) are selected section slices
in the transverse direction of the original CT image, which
correspond to Figures 3(a1), 3(b1), and 3(c1), respectively.
Figure 3(a3) is the direct simulation result of Figure 3(a1),
whereas Figure 3(c3) is the simulation result of the enhanced
image in Figure 3(c1). Based on Figure 3(a2), large vascular
segments and the liver have comparatively higher gray scales
than their neighboring tissues, and small vessels in the liver
boundaries mix with liver tissues. If the ultrasound image
is directly simulated from this image, such an intensity
distribution can result in a large deviation the blood flow.
In Figure 3(c2), the vasculatures are filled with low intensity
values, which are shown as back circle areas compared with
Figure 3(c1). Figures 3(a3) and 3(c3) show the simulated
results of Figures 3(a2) and 3(c2), respectively, whereas
Figures 3(a3)(1), 3(c3)(1), 3(a3)(2), and 3(c3)(2) show two
magnified regions of interest corresponding to the same
location in Figures 3(a2) and 3(c2). Evidently, blood vessels
are effectively enhanced in Figure 3(c3), which are very close
to the real ultrasound images.

Figure 4 shows a comparison of simulated ultrasound
images of direct simulation and multiscale enhanced
simulation. Figure 4(a) is the direct simulated ultrasound,
whereas Figure 4(b) is the simulated result with multiscale
enhancement. Vascular structures are clearly enhanced
in Figure 4(b), which are presented as a black hole in the
image, and the size of the hole indicates the dimension of the
vasculature. The details of the enhanced ultrasound image
are also clearer than those of the direct simulated image.
Figures 4(a1) and 4(b1) show the magnified details of the
rectangle strip in Figures 4(a) and 4(b), respectively. Based on
the ellipse areas shown in this figure, the differences between
these two figures can be clearly observed. Figure 4(c) shows
the intensity distribution of the selected strips of Figures 4(a)
and 4(b) in the horizontal direction. The intensity difference
of these two images reaches nearly 35 gray scale levels, and
the location of the maximum exactly corresponds to that of
the vascular structures on the 𝑥-axis. Clearly, direct use of the
CT image as a scattering map results in a repetitive scattering
pattern throughwhich hardly any structures are recognizable.
However, the tubular structure enhancement method can
effectively strengthen vascular structures, and a realistic
acoustic transmission pattern is simulated and visualized.

3.2. Multiple Transducer Elements Simulation. The reflected
signals of ultrasound are integrated along the active
wavefront at a specified depth controlled by the Kaiser
window function, which results in a more realistic reflection.
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Figure 3: Comparison of different ultrasound simulation methods. The first row shows volume rendering of the original CT image, the
extracted vascular structure, and the enhanced image, respectively. The second row shows selected liver section in transverse direction of
the original CT image, the extracted vascular structure, and the enhanced image, respectively. (a3) and (c3) in the third row show simulated
results of (a2) and (c2), respectively, while the middle image in the third row shows two magnified regions of interest corresponding to the
same locations in (a2) and (c2).

Figure 5 shows the evaluation results of the multiple
transducer element simulation. Figure 5(a) shows an
extracted sector section of theCT image, Figure 5(b) gives the
rectangle section image transformed by the thin-plate spline,
and Figure 5(c) is the simulated ultrasound with one active
element based on the acoustic transmission model, whereas
Figure 5(d) is the simulated result with multiple active
elements using the Kaiser window function. Figures 5(e1) and
5(e2) show two magnified regions of interest in Figure 5(e).

The thin-plate spline is very effective for the transfor-
mation of images between sector and rectangular shapes,

for which smooth warping is achieved. Moreover, the highly
reflective areas in the ultrasound are located around the
boundary of tissues. The vasculatures can be easily identified
in booth ultrasounds with single Figure 5(c) and multiple
Figure 5(d) transducer elements. The difference between
Figures 5(c) and 5(d) is that the edges between tissue
boundaries of Figure 5(c) are significantly clearer than those
of Figure 5(d). The realistic ultrasound is achieved by mul-
tiple transducer element simulation. From Figures 5(e1) and
5(e2), the vascular structures in the liver can be identified
explicitly.



8 Computational and Mathematical Methods in Medicine

G
ra

y 
va

lu
e o

f i
nt

en
sit

y

Source image
Enhanced image
Image differences

60

45

30

15

0

100 150 200 250 300

Sampling pixels along axis X

(a) (b)

(c)

(a1)

(b1)

Figure 4: Comparison of simulated ultrasound images using direct simulation and multiscale enhancement method. (a) is the directly
simulated ultrasound; (b) is the simulated result with multiscale enhancement. (a1) and (b1) show the magnified details of the rectangle
strip in (a) and (b), respectively. (c) shows the intensity distribution in horizontal direction.

3.3. Evaluation of Ultrasound Simulation. Although a series
of calculations has been applied for the simulation of ultra-
sound, image generation is still very efficient in terms of
computation. The calculation complexity of the proposed
method is decided by the sampling rate along radial and tan-
gential directions, and it is not correlated to the FOV and the
penetration depth. In order to evaluate the efficiency of the
proposed method, three low cost personal PCs with different
processing capacity are employed to simulate ultrasoundwith
different sampling rates. The sampling rates are taken as 150
× 100, 200 × 150, 300 × 200, 350 × 250, 400 × 300, 450 × 350,
500 × 400, 550 × 450, and 600 × 500, while the processing
platforms are as follows:

(a) Intel Core i5-2410 4 × 2.3 GHz, 8G RAM, Ubuntu
12.10 (64-bit),

(b) Intel Core i7-860 4× 2.8GHz, 8GRAM,Ubuntu 12.10
(64-bit),

(c) Intel Core i7-2600 4 × 3.4GHz, 8G RAM, Ubuntu
12.10 (64-bit).

Figure 6 compares the calculation of the frame rate of the
abovementioned platforms and sampling rates. It can be seen
that the calculation efficiency is reducing gradually with the
increase in the sampling rate for all the platforms. When the
sampling rate is 200 × 100, the calculation frame rates reaches
about 42.2, 37.9, and 33.8 fps; however, when the sampling rate
is about 600 × 500, the calculation frame rates are about 11.4,
10.5, and 9.6 fps. It is obvious that high performance PC can
obtain fast simulation speeds.

In order to investigate the performance of the proposed
ultrasound simulation algorithm, it is applied to the realistic
brain phantom created from polyvinyl alcohol cryogel (PVA-
C) by Chen et al. [28]. PVA-C is a material widely used in
validation of image processing methods for segmentation,
reconstruction, registration, and denoising for its mechanical
similarities to soft tissues. The phantom was cast into a
mold designed using the left hemisphere of the Colin27
brain dataset and contains deep sulci, a complete insular
region, and an anatomically accurate left ventricle.The author
released the CT,MRI, and ultrasound images of the phantom.
All the volume data is with the size of 339 × 299 × 115, and
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Figure 5: Evaluation results ofmultiple transducer elements simulation. (a) is the extracted sector section of the CT image. (b) is the rectangle
mapping of (a). (c) is the simulated ultrasound of single transducer element. (d) is the simulated ultrasound of multiple transducer elements.
(e) is the sector mapping of (d). (e1) and (e2) are the magnified regions of interest in (e).
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Figure 6: Comparison of the simulation speeds on different pro-
cessing platforms.

corresponding imaging angles of ultrasound. As ultrasound
and the CT images from the same imaging view can be
obtained simultaneously, the fidelity of the proposed algo-
rithmcanbe effectively evaluated by comparing the simulated

ultrasound with the corresponding phantom. Figure 7(a)
provides photos of the elastic Colin27 based brain phantom
mold and the PVA-C phantom. Figure 7(b) gives the volume
rendering of the CT image of the phantom. Figures 7(c1) to
7(c4) give the CT image slice from two different angles, while
Figures 7(d1)–7(d4) provide the realistic ultrasound image of
the phantom corresponding to the CT image slices. Figures
7(e1)–7(e4) give the simulation results of the CT slices by
the algorithm proposed in this paper. It can be seen that our
method is very effective, which obtained realistic simulation
of the ultrasound image.

3.4. Visualization System. In this paper, an application system
is developed for displaying the simulated ultrasound in 2D
and 3D using different visualization techniques. Figure 8
shows the screen shot of the visualization area of the devel-
oped system.The three leftmost images in this figure illustrate
the axial plane in Figure 8(a), coronal plane in Figure 8(b),
and sagittal plane in Figure 8(c) on the normal direction of
the ultrasound transducer. The top right figure shows the
volume rendering of the original CT image in Figure 8(d),
whereas Figure 8(e) shows the extracted section plane of
the CT image, and Figure 8(f) is the simulated ultrasound.
Based on this system, the ultrasound image is generated
according to the location and direction of the transducer.
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Figure 7: Evaluation of simulated ultrasound on phantom images. (a) Photos of the phantom. (b) Volume rendering of the CT image.
((c1)–(c4)) CT slices. ((d1)–(d4)) Ultrasound slices. ((e1)–(e4)) Simulated ultrasound sections corresponding to the CT slices.

The ultrasound and volume rendering of the CT image can be
displayed with the three orthographic views of the CT image.
Based on this system, the ultrasound image is fast generated,
and the parameters, including ultrasound simulation and
visualization, can be adjusted from user interface interaction.

The developed simulation system comprises four main
visualization function modules, as follows. (1) The position

and orientation of the virtual probe can be interactively set
by dragging the mouse in the 3D or the three orthogonal
views, whereas the FOV,minimum, andmaximumPD can be
adjusted in the control panel. (2) The transparency and color
mapping of volume rendering can be adjusted by controlling
the multipoint thresholds on the histogram distribution. (3)
The window level and window width for the CT slice in
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Figure 8: Screen-shot of the simulation system. (a), (b), and (c) are the axial plane, coronal plane and sagittal plane of CT image, respectively.
(d) is the volume rendering of the CT image blended with the extracted image section on the direction and location of the virtual transducer.
(e) is the extracted section of CT image. (f) is the simulated ultrasound image.

different views can be adjusted simultaneously using the
slider bar. (4) Each view in the display window can be
maximized to full screen model and reset to its default.

Figure 9 gives the final simulation results of three sections
of abdominal CT images. The first row shows the extracted
sector CT image, while the second row gives the correspond-
ing simulated ultrasound. It can be seen that the internal
structure of the liver can be visualized clearly. In the CT slices,
the spines can be visually detected in the left bottom parts,
as marked in the circles. In the simulated images, it can be
seen that lower parts away from the spines are displayed as
black empty areas. Obviously, the acoustic wave is absorbed
by the bones and cannot be transmitted to the lower parts of

the simulated images. Our algorithm effectively simulated the
ultrasonic propagation phenomenon.

4. Conclusion and Discussion

The ultrasound simulation technique not only provides a
cheap and efficient way of training doctors in the study
of the anatomic structure of human body but can also be
used to validate the registration efficiency of the ultrasound
navigation system. In this paper, a novel framework is
proposed for fast ultrasound simulation and visualization. A
multiscalemethod is utilized to enhance the tubular structure



12 Computational and Mathematical Methods in Medicine

Bone

(a1)

(b2) (c2)

(b1) (c1)

(a2)

Figure 9: Simulation results of the proposed algorithm. The first row is the sector area of the CT slice. The second row is the simulated
ultrasound.

of the CT image and to obtain a realistic simulation of
the vascular structure. Seamless transformations between
sector and rectangle shapes are then achieved using the
thin-plate spline interpolation method. The parameters of
acoustic response are based on the intensity difference ratio of
adjacent regions for acoustic wave propagation in a piecewise
homogenous medium and are fast calculated. Moreover, the
detected edge information on different tissues is combined
with random noises to simulate the acoustic response rate
of the interesting region. Speckle noise and blurring are also
added to the simulated ultrasound, resulting in an image that
can be fast updated according to the user-defined parameters.
Finally, the Kaiser window function is employed to simulate
integration effects of multiple transducer elements. Based
on the experimental results, realistic simulation results are
obtained. Aside from soft tissues and bones, vasculatures can
be clearly observed in the simulated ultrasound. Based on the
efficiency evaluation experiments, the proposed simulation
method is also very fast. The average frame rate of the
proposed ultrasound simulator is approximately 20 fps (SM
= 300, FOV = 75∘), which is better than the 16 fps rate com-
monly used in clinical radiology. However, the quantitative
evaluation of the ultrasound simulation techniques is very
difficult so far because of three main reasons: first, it is
difficult to obtain the accurate imaging angle of the handheld
ultrasound probe. Second, it is very difficult to control the
pressure degree on soft tissues during the imaging proce-
dures, for which a different pressure will lead to a different
imaging depth. Third, the imaging quality of the ultrasound
is strictly correlated with the adjustable parameters of the
transducer elements. Hence, it is very difficult to obtain
the ultrasound with predefined imaging parameters, which

hence can be evaluated from the anatomic structures in CT
image. Up to now, the commonly used evaluationmethod for
ultrasound simulation is the visual comparison by physicians
in clinical practice. In this paper, the effectiveness of the
developed method is quantified on realistic brain phantoms.
And the experimental results are assessed by experts from
the ultrasonic department at the General Hospital of People’s
Liberation Army, China.

The interesting application of the proposed method is
its use in training for different ultrasound examinations or
ultrasound-guided procedures. During a training session, the
simulated ultrasound can be displayed with the model con-
structed from the CT image to provide an anatomical context
to the trainee. Vascular enhancement and scattering image
simulation are time consuming and require a cluster of CPUs
to be practical. Hence, GPU implementation of the algorithm
will considerably accelerate the simulation speed, which will
meet the higher requirements of fine-resolution simulation.
In this paper, all acquisition parameters can be interactively
adjusted during simulation processing, including ultrasound
frequency, ultrasound intensity, FOV, PD, as well as speckle
noise size. Hence, the proposed simulation method is highly
convenient for the simulation of different imaging conditions.
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