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The precise mechanisms underlying contrast-induced acute kidney injury (CI-AKI) are not well understood. Intracellular Ca2+
overload is considered to be a key factor in CI-AKI. Voltage-dependent Ca2+ channel (VDC) and Na+/Ca2+ exchanger (NCX)
system are the main pathways of intracellular Ca2+ overload in pathological conditions. Here, we review the potential underlying
mechanisms involved in CI-AKI and discuss the role of NCX-mediated intracellular Ca2+ overload in the contrast media-induced
renal tubular cell injury and renal hemodynamic disorder.

1. Pathogenesis of CI-AKI

Contrast-induced acute kidney injury (CI-AKI) is the
third leading cause of hospital-acquired acute renal failure
accounting for 10–12% of all causes of hospital-acquired
renal failure [1]. In general population, the incidence is
1–6%. In some special populations, such as patients with
underlying hypertension, cardiovascular diseases, diabetes
mellitus, or preexisting renal insufficiency, the incidence is
higher and may be as high as 20–50% [2–4]. In patients
undergoing coronary angiography in China, the incidence
of CI-AKI is 8.7%–23.5% [5, 6]. The precise mechanisms
underlying CI-AKI are not fully understood, especially its
cellular and molecular mechanism. But, it is clear that
disturbance of renal hemodynamics and direct toxic action
on renal tubular cells are main factors responsible for CI-
AKI. Previous investigations [7, 8] have shown that contrast
media administration can result in initial renal vasodilatation
(about 20 minutes), followed by prolonged vasoconstriction
(about 20 minutes to several hours). Subsequent studies [9,
10] demonstrated that there were regional differences in the
vascular response to contrast media, with a greater reduction
in flow to the outer medulla. And now, it has been verified

that contrast-induced selective reduction in renal medullary
blood flow and the secondary hypoxia in this region is amajor
underlying cause of CI-AKI [10]. It has been reported that
calcium channel blockers (CCB) can reverse the acute hemo-
dynamic alterations induced by contrast administration and
alleviated CI-AKI [11–13]. Furthermore, our experimental
animal investigation [14] also verified that tail vein injection
of an inhibitor of reversemode ofNa+/Ca2+ exchanger (NCX)
can suppress the contrast-induced ET-1 overproduction and
renal vasoconstriction. These findings suggested that intra-
cellular Ca2+ overload plays an important role in contrast-
induced renal hemodynamic disorder. Besides changes in
calciumphysiology, contrast-induced vasoconstrictionmight
also be a result of a direct effect on vascular smooth muscle
[15] or from a local increase in adenosine [16] and endothelin
[17] production.

It must be pointed out that, under normal circumstances,
the contrast-induced renal hemodynamic disorder was not
enough to induce CI-AKI based on the facts that humans
as well as experimental animals without risk factors do not
usually exhibit CI-AKI following contrast media injection.
This is because, under physiological state, the renal cir-
culation is subjected to autoregulation which is associated
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with neural, hormonal, paracrine, and autocrine influences.
Injured autoregulation ofmicrocirculationmight be the cause
that all kinds of risk factors such as preexisting renal
impairment, diabetes mellitus, and hypercholesterolemia,
make the kidney vulnerable to iodinated contrast media.

Renal tubular cells apoptosis is a key mechanism of CI-
AKI. Studies have shown that contrast media can induce
renal tubular epithelial cell apoptosis via ROS (reactive
oxygen species) pathway, JNK/p38 stress kinase pathway,
and intrinsic apoptotic pathways [18–20] and can also result
in renal tubular epithelial cell injury by dephosphorylation
(inactivation) of the kinase Akt [21]. But it is still unclear
why contrast media can cause ROS overproduction and why
contrast media can activate p38 Mitogen-Activated Protein
Kinases (MAPK). Our recent studies showed that contrast-
induced ROS overproduction, p38 activation, and tubular
cell apoptosis might be associated with intracellular calcium
overload [19, 22, 23].

2. The Role of Intracellular Ca2+ in
the Pathogenesis of Contrast-Induced Acute
Kidney Injury

Intracellular calcium overload is considered to be a key
factor in ischemic cell injury and CI-AKI [12]. Studies have
shown that both renal vasoconstriction and renal tubular
apoptosis induced by contrast media are associated with
changes in calcium physiology [11, 13, 22, 23]. Although
physiological and pathophysiological mechanisms of Ca2+
overload in ischemic kidney and CI-AKI have not been
fully elucidated, there is evidence indicating that increased
cytosolic Ca2+ may be an important mediator of epithelial
cell apoptosis and necrosis [24]. So, theoretically, CCB would
have protective effects on CI-AKI. In clinical practice, CCB
can reverse the acute hemodynamic alterations induced by
radiocontrast administration and alleviated CI-AKI [11–13].
However, acute administration of CCB before contrast media
administration is not enough to prevent CI-AKI [25]. Only
one small trial demonstrated any valuewithCCB [13]whereas
other studies showed no beneficial effects [26, 27]. The fact
that acute administration of CCB before contrast media
administration was not enough to prevent CI-AKI suggested
that the intracellular Ca2+ overload induced by contrast
media might not be completely suppressed by CCB. So we
cannot conclude based on these clinical data that intracellular
calcium overload was not associated with CI-AKI because
VDC is not the only pathway that induces Ca2+ influx.
There is the possibility that other channels besides VDC
may also be involved in the contrast-induced intracellular
calcium overload. Our recent study [22] has shown that
contrast media resulted in NRK-52E cell apoptosis via the
induction of an increase in intracellular Ca2+ and reactive
oxygen species and KB-R7943, inhibitor of the reverse mode
of NCX, attenuated the contrast media-induced renal tubular
epithelial cell apoptosis by suppressing the intracellular Ca2+
overload and reducing oxidative stress, which suggested
that intracellular Ca2+ overload via the NCX system is also
involved in contrast-induced renal tubular apoptosis.

3. The Role of Na+/Ca2+ Exchanger System in
the Pathogenesis of CI-AKI

NCX is a bidirectional plasma membrane transporter that
catalyzes the exchange of 3 or 4 Na+ for 1 Ca2+, depending
on the electrochemical gradients of the substrate ions [28,
29] and is encoded by a multigene family comprising 3
NCX isoforms: NCX1, which is expressed in various organs
including the kidney [30]; and NCX2 and NCX3, which are
expressed mainly in the brain and skeletal muscle [31, 32].
Under physiological conditions, NCX can pump the Ca2+
outside the cell using the Na+ concentration gradient across
the cell membrane to keep a low intracellular Ca2+ level,
which is referred to as the forward-mode operation of the
exchanger. In pathological conditions, NCX can reversely
extrude Na+ for Ca2+ influx and result in intracellular Ca2+
overload, which is referred to as the reverse mode or calcium
influx mode of NCX. In the normal kidney, NCX plays
an important role in the active calcium transport in distal
convoluted tubules [33]. In the ischemia-reperfusion kidney
and in the hypoxia-reoxygenation renal tubular epithelial
cells, NCX reversely extrudes Na+ for Ca2+ influx and results
in intracellular Ca2+ overload and tubular epithelial cell
injury [34, 35].

It has been verified that contrast media can induce renal
tubular epithelial cell apoptosis via ROS pathway, JNK/p38
pathway, and intrinsic apoptosis pathway [18, 20]. Our recent
in vitro studies [19, 36] demonstrated that contrast-induced
ROS overproduction, p38 activation, and apoptosis in renal
tubular cell were associated with the increase of intracellular
Ca2+. The inhibitor of reverse mode of NCX, KB-R7943, can
alleviate contrast-induced renal tubular apoptosis through
suppressing the increase of intracellular Ca2+ and subsequent
ROS overproduction and p38 activation. These data demon-
strate that intracellular Ca2+ overload via the reverse mode
of NCX system is involved in contrast-induced renal tubular
epithelial cell apoptosis.

Recent animal model experiments [14, 37] also showed
that pretreatment with tail vein injection of KB-R7943
markedly and dose-dependently suppressed the increase in
renal ET-1 production and the reduction in renal blood flow
induced by contrast medium administration and prevented
contrast-induced acute renal failure, which suggested that
Ca2+ overload via the reverse mode of NCX, followed by
renal ET-1 overproduction and renal vasoconstriction, plays
an important role in the pathogenesis of CI-AKI.

4. Hypothesis about the Molecular
Mechanism of CI-AKI

Based on the findings [19, 22, 36] that inhibition of the reverse
mode of NCX alleviated contrast-induced renal tubular cell
apoptosis through suppressing the increase of intracellu-
lar Ca2+, ROS overproduction, p38 MAPK activation, and
Caspase-3 overexpression and the findings [14, 37] that tail
vein injection of inhibitor of reverse mode of NCX can exert
protective effects on CI-AKI in rats through suppressing
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Figure 1: The diagram shows the proposed molecular mechanism of CI-AKI. CI-AKI, contrast-induced acute renal injury; NCX, Na+/Ca2+
exchanger; VDC, the voltage-dependentCa2+ channel; NHE,Na+/H+ exchange; [Ca++]i , intracellular Ca

2+ concentration; [Na+]i , intracellular
Na+ concentration; p38 MAPK (p38 Mitogen-Activated Protein Kinases); ROS, reactive oxygen species. ET-1, endothelin-1; ATP, adenosine
triphosphate.

contrast-induced renal ET-1 overproduction and renal vaso-
constriction, we propose the following hypothesis regarding
the molecular mechanism of CI-AKI. Contrast medium
exposure activates the reverse mode of NCX1 expressed in
renal tubular epithelial cells; NCX reversely extrudes Na+ for
Ca2+ influx and results in increased intracellular Ca2+. The
increased intracellular Ca2+ can stimulate Ca2+ release from
the mitochondrial and endoplasmic reticulum and result
in intracellular Ca2+ overload [38]. The intracellular Ca2+
overload via the reverse mode of NCX and VDC induced
by contrast media in the renal tubular epithelial cell can
result in ROS overproduction and oxidative stress. Increased
ROS and intracellular Ca2+ can induce upregulation of p38

and p-p38 MAPK expression [36] and subsequently acti-
vate intrinsic apoptotic pathways such as bcl-2, bax, and
caspase-3 and result in renal tubular epithelial cell apoptosis,
which is the underlying cause of contrast-induced direct
renal tubular toxicity. p38 MAPK activation via the reverse
mode of NCX and VDC could also result in renal ET-
1 overproduction, followed by renal vasoconstriction and
renal ischemia, which is one of the underlying causes of
contrast-induced renal hemodynamic abnormalities. ET-1
overproduction and renal ischemia can cause depletion of
adenosine triphosphate (ATP) and development of intracel-
lular acidosis. The accumulation of intracellular Na+, which
is caused by inhibition of Na+/K+-ATPase activity because of
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decreased ATP production [39] and activation of the Na+/H+
exchange because of intracellular acidosis [40], can also
activate the reversion of the mode of NCX and subsequently
cause calcium overload and ET-1 overproduction, forming
a vicious cycle. The diagram of the hypothesis about the
molecular mechanism of CI-AKI is seen in Figure 1. Contrast
media exposure activates VDC and the reverse mode of NCX
expressed in the renal tubular epithelial cell and induces
Ca2+ influx. The increased intracellular Ca2+ stimulates Ca2+
release from the mitochondrial and endoplasmic reticulum
and results in intracellular Ca2+ overload, which induced
ROS overproduction and oxidative stress. Increased ROS and
intracellular Ca2+ activate p38 MAPK. On one hand, p38
MAPK activates intrinsic apoptotic pathways such as bcl-2,
bax, and caspase-3 and induces renal tubular epithelial cell
apoptosis, which is the underlying cause of contrast-induced
direct renal tubular toxicity. On the other hand, activated p38
MAPK also results in renal ET-1 overproduction, followed by
renal vasoconstriction and renal ischemia, which is one of the
underlying causes of contrast-induced renal hemodynamic
abnormalities. ET-1 overproduction and renal ischemia can
cause depletion of ATP and development of intracellular
acidosis, which can result in accumulation of intracellular
Na+ and further activate the reversion of the mode of NCX
and subsequently cause Ca2+ influx and ET-1 overproduction,
forming a vicious cycle.

5. Conclusion

In summary, Ca2+ overload via the reverse mode of NCX1
and VDC, followed by ROS overproduction, p38 MAPK
activation, and ET-1 overproduction, plays an important role
in the contrast-induced renal hemodynamic disorder and
renal tubular epithelial cell apoptosis, which suggests that, in
clinical practice, CCB should be recommended to patients
with hypertension who are undergoing radiographic exami-
nation or therapy requiring contrast media and that selective
inhibitors of NCX1 may be beneficial in the prevention and
treatment of CI-AKI in humans.
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