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The simplestway todescribe the influence of the relative diffusionof
the reactants on the time course of bimolecular reactions is tomodify
or renormalize the phenomenological rate constants that enter into
the rate equations of conventional chemical kinetics. However, for
macromolecules with multiple inequivalent reactive sites, this is no
longer sufficient, even in the low concentration limit. The physical
reason is that an enzyme (or a ligand) that has just modified (or
dissociated from) one site can bind to a neighboring site rather than
diffuse away. This process is not described by the conventional
chemical kinetics, which is only valid in the limit that diffusion is fast
compared with reaction. Using an exactly solvable many-particle
reaction-diffusionmodel, we show that the influence of diffusion on
the kinetics ofmultisite binding and catalysis can beaccounted for by
not only scaling the rates, but also by introducing new connections
into the kinetic scheme. The rate constants that describe these new
transitions or reaction channels turn out to have a transparent
physical interpretation: The chemical rates are scaled by the appro-
priate probabilities that a pair of reactants, which are initially in
contact, bind rather than diffuse apart. The theory is illustrated by
application to phosphorylation of a multisite substrate.

multisite phosphorylation | escape and capture probabilities | splitting
probability | diffusion-influenced rate constants | ultrasensitivity

For bimolecular reactions in solution, the formalism of chemical
kinetics is valid only in the limit that the reactants come to-

gether many times before reacting. This means that the intrinsic
reaction rate must be slower than the rate at which the partners
diffuse together. Starting with the seminal work of Smoluchowski
(1), it has been shown that the relative diffusion of the reactants,
even in a macroscopically homogeneous solution, can lead to
deviations from the predictions of conventional chemical kinetics.
For example, for reversible reactions, the concentrations decay to
their equilibrium values not exponentially, but rather as a power
law (2, 3). However, for biochemically relevant concentrations,
such effects are small. Even in the crowded environment of a cell,
although the total concentration of all macromolecules is of course
high, the concentrations of specific molecules that can react with
each other are typically low. Although it is interesting and chal-
lenging to develop a theory of reversible diffusion-influenced
reactions that is accurate at all times and concentrations, in
many cases the concentrations are so low that all one has to do is to
replace the phenomenological rate constants by their diffusion-
influenced values.
In this paper we consider a class of reactions involving macro-

molecules with multiple sites where, even at low concentrations, it
is not enough to replace the rate constants with diffusion-influ-
enced ones. Our interest in such problems was stimulated by the
important work of Takahashi et al. (4) on the role of diffusion in
a dual phosphorylation–dephosphorylation cycle that can exhibit
ultrasensitive (5) and bistable behavior (6). Based onmany-particle
stochastic simulations, it was shown that slowing down diffusion
can speed up response and lead to the loss of ultrasensitivity and
bistability (4). These results were attributed to “spatio-temporal
correlations between the enzyme and the substrate molecules.”
The physical idea is illustrated in Fig. 1 for dual phosphorylation.
For the sake of simplicity, we have assumed that the binding and

catalytic sites are the same and adopted a reference frame where
the substrate is fixed. After modifying the first site, the enzyme
dissociates and (i) diffuses away and another enzyme binds and
modifies the second site (lower pathway) or (ii) binds to the second
site and modifies it (upper pathway). In other words, in the upper
pathway both sites are phosphorylated by the same enzyme mole-
cule, whereas in the lower pathway the sites are phosphorylated by
different molecules. In the fast diffusion limit, only the lower
pathway is in play. In the phosphorylation field, the mechanism is
called distributive when the enzyme and substrate dissociate after
each modification, whereas in a processive mechanism all sites are
phosphorylated before dissociation (7, 8). Thus, when the rate of
diffusion is finite, the mechanism inevitably contains both distrib-
utive and processive features (4, 9, 10).
The goal of this paper is to develop a simple theory that can

quantitatively describe such phenomena for physically relevant
concentration ranges without having to resort to many-particle
computer simulations. In a nutshell, not only does one need to
replace the existing phenomenological rate constants by their
diffusion-influenced counterparts, but also one has to introduce
new transitions into the kinetic scheme. The rates of these new
reaction channels are determined by the probability that a reactant
released from one site binds to another rather than diffusing away.
Even for complex geometries, such capture and escape probabil-
ities can be found by numerically solving or simulating only a time-
independent, two-particle problem.
The outline of the paper is as follows.We start with arguably the

simplest model of multisite modification that can be solved exactly
on the many-particle level. In this model, the lifetime of the
enzyme–substrate complex is assumed to be so short that a site
can be modified when the enzyme simply comes in contact with
the substrate. When the enzyme concentration is sufficiently low,
it is found that the exact time dependence of the concentrations
is well described by ordinary rate equations corresponding to the
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standard kinetic scheme with the crucial difference that new
transitions have been allowed. The corresponding rate constants
turn out to have such a simple physical interpretation that the
formalism can be readily generalized to treat more realistic cases
(e.g., intermediate bound complexes, enzyme reactivation, and
binding to inequivalent sites). The rate constants in the modified
kinetic schemes can be expressed in terms of the capture and
escape probabilities of an isolated pair of reactants. In simple
cases, these can be found by solving a time-independent equation
subject to the appropriate boundary conditions and, for realistic
geometries, by simulating the dynamics of an isolated pair of
reactants. Illustrative calculations for dual phosphorylation show
that our formalism reproduces the speeding up of the response
discovered using stochastic many-particle simulations (4).

Theory
We begin by showing how diffusion leads to the appearance of
new reaction channels in the context of a simple exactly solvable
model. The final results turn out to be so intuitively plausible
that they can be understood without following their derivation.
Consider a substrate with N sites that can be irreversibly modi-
fied by an enzyme. If the lifetimes of the enzyme–substrate
complexes are sufficiently short, this process can be described
within the framework of chemical kinetics by the scheme

Si +E ����!κi Si+1 +E; [1]

where i= 0;1; . . . ;N − 1. Here Si denotes the substrate with i
modified sites and κi is the phenomenological rate constant for
modifying a site on the substrate with i sites already modified.
The corresponding rate equations, in matrix form, are

d
dt
½SðtÞ�= −KCH ½E�½SðtÞ�; [2]

where [S(t)] is a vector of concentrations with components
[Si(t)], i= 0; . . . ;N, and KCH is an (N + 1) × (N + 1) rate matrix
whose only nonzero elements are ½KCH �i;i = − ½KCH �i+1;i = κi, i=
0; 1; . . . ;N − 1.
To see how diffusion influences the kinetics of this reaction,

we adopt arguably the simplest nontrivial many-particle model.
We consider a single impenetrable spherical substrate uniformly
surrounded byM spherical enzymes in volume V. The substrate is
static. The enzymes diffuse with diffusion constant D and do not
interact with each other. When an enzyme comes in contact with
the substrate (i.e., the distance between their centers is R irre-
spective of orientation), the transition Si → Si+1 can occur with
the reaction rate constant κi. In this model, modification occurs
without forming an enzyme–substrate complex, because we have

assumed that the lifetime of such a complex is so short that it can
be ignored. Let Piðr1; . . . ; rM ; tÞ be the probability density that at
time t i sites are modified and the enzymes are located at dis-
tances r1; . . . ; rM from the substrate. The vector of these proba-
bilities satisfies the M-particle diffusion equation

∂
∂t
P=D

XM
m=1

∇2
rmP;  rm ≥R; [3]

where ∇2
r = r−2ð∂=∂rÞr2∂=∂r. The reaction is described by impos-

ing boundary conditions obtained by balancing the diffusive and
chemical fluxes at contact:

4πR2D
∂
∂rm

P=KCHP;  rm =R; [4]

where m= 1; 2; . . . ;M. The substrate concentrations are given by
½SiðtÞ�=½Stot�=

R
VPi   dr1 . . . drM when M;V →∞ in such a way that

M=V = ½E� (i.e., the thermodynamic limit). Here ½Stot�=
PN

i=0½SiðtÞ�.
The different components of P are coupled only by the boundary

conditions in Eq. 4. However, by diagonalizing the rate matrix
KCH, we can decouple them and reduce the solution of the many-
particle problem to N one-particle problems. Let T be the trans-
formationmatrix that diagonalizes KCH (i.e., KCHT =TΛCH , where
ΛCH is the diagonal matrix with elements κi, i= 0; . . . ;N − 1 and
κN = 0). Then it can be shown that (Supporting Information)

½SðtÞ�=TFðtÞT−1½Sð0Þ�

FijðtÞ= lim
M;V →∞
M=V = ½E�

 Z
V

giðr; tÞ drV

!M

δij;
[5]

where giðr; tÞ satisfies ∂gi=∂t=D∇2
r gi, with the boundary condition

4πR2D∂gi=∂r= κigi at r = R. Initially, giðr; 0Þ= 1. Differentiating
Eq. 5 with respect to time and taking the thermodynamic limit, it
can be shown that

d
dt
½SðtÞ�= −KðtÞ½E�½SðtÞ�

KðtÞ=TΛðtÞT−1;

[6]

where ΛðtÞ is a diagonal matrix with elements

kiðtÞ= −
Z∞
R

∂giðr; tÞ
∂t

dr= κi
�
ei + ð1− eiÞeτierfc ffiffiffiffi

τi
p �

; [7]

where i= 0; . . . ;N − 1, kN(t) = 0, dr = 4πr2 dr, τi =Dt=ðeiRÞ2,
ei = kD=ðκi + kDÞ, and kD= 4πDR is Smoluchowski’s diffusion-lim-
ited rate constant. As D → ∞, kiðtÞ→ κi, which are in fact the
eigenvalues of KCH for the kinetic scheme shown in Eq. 1. Thus,
in the fast diffusion limit, Eq. 6 reduces to Eq. 2, as it must. It
should be noted that, except when n = 1, the new rate matrix
K(t) is not the chemical kinetics rate matrix KCH with κi being
replaced by ki(t).
At times longer than the characteristic diffusion time ðt �

R2=DÞ, the time-dependent rate coefficients in Eq. 7 approach
constant values, limt→∞kiðtÞ= κikD=ðκi + kDÞ=Λiið∞Þ, and the
rate matrix in Eq. 6 approaches a constant matrix, K(∞). In
the limit of low concentrations, when the effective volume frac-
tion is much less than unity, the rate equation Eq. 2 with the
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Fig. 1. A substrate Swith two sites (yellow) that can be modified (red) by an
enzyme E at concentration [E]. Lower pathway: After modifying one site, the
enzyme diffuses away and another enzyme binds and phosphorylates the
unmodified site. Upper pathway: The enzyme that has just modified one site
dissociates, binds to the unmodified site, and then phosphorylates it.
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diffusion-influenced rate matrix K(∞) replacing KCH becomes
a good approximation for t � R2=D.
The crucial point is that K(∞) is not simply KCH with the chem-

ical rate constants κi replaced by the diffusion-influenced ones,
κikD=ðκi + kDÞ. Rather, is it given by

Kð∞Þ=TΛð∞ÞT−1 =TΛCHkDðΛCH + kDIÞ−1T−1

=KCHkDðKCH + kDIÞ−1;
[8]

where we have used ΛCH =T−1KCHT. The new rate matrix K(∞)
has finite elements that were zero in KCH. Consequently, the
kinetic scheme that corresponds to the rate matrix K(∞) has
new connections (or reaction channels) that were absent in the
original chemical kinetic scheme. These new transitions appear
due to diffusion and, as shown below, the corresponding rates
have a simple physical interpretation.
It should be mentioned that the reversible reaction Si +E⇌

Si+1 +E can also be solved exactly. All of the above equations
hold when KCH contains both forward and reverse rate constants,
except Eq. 7, where κi must be replaced by the eigenvalues of the
corresponding rate matrix KCH.

Results and Discussion
Consider first how diffusion affects the kinetics of single-site
modification, S0 +E→ S1 +E. In this case, the above results are
identical to those obtained from the Smoluchowski–Collins–
Kimball theory of irreversible diffusion-influenced reactions (11).
The decay of the concentration of S0 is not single-exponential, but
it is given by ½S0ðtÞ�=½Stot�= expð−½E� R t0 k0ðt′Þdt′Þ, where the time-
dependent rate coefficient k0(t) is given in Eq. 7. At short times
ðt � R2=DÞ, k0(t) approaches the chemical rate constant κ0. As
time increases, the rate coefficient decreases because the enzymes
must diffuse to the substrate in order for reaction to occur. When
t � R2=D, k0(t) approaches the diffusion-influenced (often called
steady-state) rate constant k0ð∞Þ= κ0kD=ðκ0 + kDÞ, where kD =
4πDR is the rate constant in the diffusion-controlled limit when
either diffusion is slow ðD→ 0Þ or reaction is fast ðκ0 →∞Þ.
The diffusion-influenced rate constant, k0(∞), has a simple

physical interpretation. Imagine an isolated pair of reactants
(e.g., S0 and E), initially in contact, that can irreversibly react.
If one waits enough, there are only two possible outcomes: (i)
Reaction has occurred (E is “captured” by S0) and (ii) the
reactants diffuse apart never to see each other again (E has
“escaped” to infinity). For isotropic contact reactivity, the escape
probability is e0 = kD=ðκ0 + kDÞ, whereas the capture probability is
1− e0 = κ0=ðκ0 + kDÞ. When diffusion is fast, the substrate and
enzyme are much more likely to separate rather than react, so
e0 → 1. When diffusion is slow, a contact pair is much more likely
to react, so e0 → 0. In terms of this quantity, the diffusion-influenced
rate constant can be written either as k0ð∞Þ= κ0e0 [the chemical
(contact) rate constant is reduced by the escape probability] or,
perhaps more intuitively, as k0ð∞Þ= kDð1− e0Þ (the diffusion-
limited rate constant is reduced by the probability that a contact
pair eventually reacts). Escape and capture probabilities will play
a central role in the rest of the paper. As shown by Onsager (12)
in the context of ion recombination, they can be obtained by solving
a time-independent problem (13).
The simplest example where diffusion leads to a change in the

connectivity of the kinetic scheme is two-site modification, S0 +
E→ S1 +E→ S2 +E. Naively, it seems that one could just renor-
malize the chemical rate constants as shown in Fig. 2A [i.e., κi →
κikD=ðκi + kDÞ≡ κiei, i = 0, 1]. However, the rate matrix in Eq. 8
actually corresponds to the kinetic scheme shown in Fig. 2B. The
“naive” diffusion-influenced rate constant for the transition S0 to
S1 ðk0ð∞Þ= κ0e0Þ is reduced by the escape probability e1 of the S1
and E contact pair. In addition, there is a new direct transition
between S0 and S2 with a rate constant equal to k0(∞) times the

capture probability, 1− e1, of the S1 and E contact pair. These
results can be easily understood. At the instant S0 has been
modified, S1 and E are in contact. The probability that the enzyme
diffuses away is e1 and the probability that it hangs around and
modifies the substrate again is 1− e1. The first scenario is just the
one depicted by the reaction S0 +E→ S1 +E in the original scheme.
In the second scenario, the same enzyme modifies the substrate
twice before diffusing away. This new mechanism, which is only
possible because the rate of diffusion is finite, can be approximately
treated within the framework of chemical kinetics by allowing the
direct transition S0 +E→ S2 +E. The relative importance of these
two channels (i.e., the splitting probability) is determined by the
escape probability of the S1 and E contact pair ðe1Þ.
Fig. 2C shows how the new transition in the kinetic scheme

influences the time dependence of the concentrations. Because S0
and S2 are now directly connected, the population of S1 is smaller
and the concentration of S2 increases faster than that predicted by
the “naive” kinetic scheme in Fig. 1A. The faster response of the
fully modified substrate becomes more pronounced as the number
of sites increases (Fig. S1). For the low concentration used
(effective volume fraction 4πR3½E�=3= 0:01) it can be seen that
the exact kinetics are almost the same as those predicted by the
scheme with the extra connection shown in Fig. 2B. As the con-
centration increases, the difference increases (Fig. S2) so that any
theory based on rate equations with time-independent rate con-
stants eventually becomes inadequate.

Two-Site Phosphorylation: Michaelis–Menten Mechanism. Using the
exactly solvable model, we have demonstrated that the effect of
diffusion can be accounted for by (i) replacing the bimolecular
rate constants by diffusion-influenced ones and (ii) introducing
new reaction channels into the kinetic scheme. In the low-
concentration limit, for times longer than the diffusion time, the
new kinetic scheme describes the kinetics of a simple model of site
modification with high accuracy. We will now use physical argu-
ments based on the insights gained from the exactly solvable
model to extend these results to more general models of enzyme
catalysis. The results presented below are derived in Supporting
Information using an approximate low-concentration theory.
Consider the double phosphorylation of a substrate described

by the Michaelis–Menten mechanism (scheme in Fig. 3A). In
contrast to the kinetic scheme in Eq. 1, here the enzyme E and the
substrate with imodified sites, Si, bind and form the complex SiE,
which has a finite lifetime. It is assumed that catalysis and the

)1( 100
A B

1.0 1.0 1.0[S0(t)] [S1(t)] [S2(t)]
C

11100S0+E S1+E S2+E1100S0+E S1+E S2+E

0 2 4
0.0

0.5

0 2 4

0.5

0 2 4

0.5

i /time t/

Fig. 2. Effect of diffusion on the kinetics of a simple model of dual modi-
fication of a substrate by an enzyme. (A) The standard kinetic scheme in
which the phenomenological rate constants (κ0, κ1) have been scaled by the
escape probabilities of contact pairs. (B) Our kinetic scheme with an addi-
tional transition. (C) Comparison of the exact kinetics (red lines, Eq. S21 in
Supporting Information) with the predictions of scheme A (black lines, Eq.
S23 in Supporting Information with κi → κiei) and B (dashed blue lines, Eq.
S24 in Supporting Information). Time is normalized to τ= ðκ0e0½E�Þ−1.
κ0 = 4kD, κ1 = 2kD, 4πR3½E�=3= 0:01, D = 1, R = 1, [Stot] = 1.
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release of the substrate occur in one step and that no more than
one enzyme binds to the substrate. In the microscopic model of
this reaction, the enzyme and substrate diffuse with the relative
diffusion coefficientD=DE+DS. When they come in contact, the
complex SiE can be formed with the association rate constant κai .
The complex can dissociate (with the dissociation rate constant
κdi ) and form a contact pair of Si and E. Alternatively, the sub-
strate in the complex can be modified (with the catalytic rate
constant κci ), resulting a contact pair of Si+1 and E. As before, we
assume that the molecules are spherical and uniformly reactive,
so that the escape probability, ei, of the contact pair of Si and E is
given by ei = kD=ðκai + kDÞ.
We now change the kinetic scheme in Fig. 3A to take diffusion

into account (Fig. 3B; the corresponding rate equations, Eq. S42,
are given in Supporting Information). The diffusion-influenced rate
constant for the association of S0 and E to form S0E is given by
κa0e0, where e0 is the escape probability of S0 and E contact pair.
The dissociation rate constant of S0E to form S0 + E is the product
of the dissociation rate constant κd0 and the escape probability of
the S0 and E contact pair, κd0e0. The physical reason for this is that
a contact pair cannot be considered to be really dissociated be-
cause it can quickly associate again. Full dissociation occurs only
when the enzyme and substrate separate completely. It should be
noted that the equilibrium constant for binding κa0e0=κ

d
0e0 = κa0=κ

d
0

is independent of diffusion, as it must be, because the equilibrium
constant is a thermodynamic quantity. These expressions for the
renormalized association and dissociation rates have been known
at least since the paper of Schurr (14) and their interpretation in
terms of escape probabilities at least since the work of Shoup and
Szabo (15).
To understand the influence of diffusion on the catalytic step,

consider the fate of the contact pair of S1 and E formed from the
complex S0E. This pair can separate with probability e1 or the
enzyme can bind again to form the complex S1E with probability
1− e1. Thus, the rate corresponding to the catalytic channel in
the scheme shown in Fig. 3A is reduced by e1 and a new channel,
which directly connects the two complexes, S0E and S1E, appears
with rate constant κc0ð1− e1Þ. The physical reason for this new
connection is that, after modifying the substrate, the enzyme and
substrate do not always diffuse apart but can stay close to each
other and bind again. Thus, diffusion naturally introduces an

element of processivity into a distributive mechanism. No new
parameters are needed in this case beyond those that renormalize
the rate constants in the original kinetic scheme. When diffusion is
fast, all of the escape probabilities approach unity and the modi-
fied kinetic scheme in Fig. 3B reduces to that in Fig. 3A. As dif-
fusion slows down, a new transition or reaction channel appears
corresponding to the process where after phosphorylating one site
the enzyme rebinds and modifies the other.
The generalization tomore than two sites is straightforward: The

rate constant for the catalytic step SiE→ Si+1 +E is κci ei+1, whereas
the new transition between adjacent complexes SiE→ Si+1E occurs
at a rate κci ð1− ei+1Þ, where ei+1 is the escape probability of a con-
tact pair involving E and Si+1.

Dual Phosphorylation–Dephosphorylation Cycle. In addition to phos-
phorylation by a kinase, consider dephosphorylation of a two-site
substrate by a phosphotase. The influence of diffusion on the
kinetics of this cycle was recently studied using stochastic many-
particle simulations based on a clever Green’s function algorithm
(4). It was found that slowing down diffusion can speed up re-
sponse and decrease untrasensitivity.
We now show that the theory developed in this paper predicts

this behavior. The diffusion-modified kinetic schemes for this
problem are shown in Fig. 3 B and C. The corresponding differ-
ential equations for the concentrations are given in Eq. S45 in
Supporting Information. The concentration of the doubly phos-
phorylated substrate relative to its steady-state value is shown in
Fig. 4 as a function of time for various diffusion coefficients. It can
be seen that the response at first becomes faster as the diffusion
constant is decreased. The escape probabilities and the rate con-
stants that appeared in the conventional chemical kinetic scheme
all decrease as diffusion slows down because the contact pairs are
less likely to separate than bind. This is why one naively expects the
response to slow down as the diffusion coefficient becomes
smaller. However, the rate constants for the new transitions, be-
cause they are proportional to the capture probabilities, increase
as diffusion slows down. The competition between these two op-
posing effects leads to an optimal diffusion coefficient that mini-
mizes the response time.
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Fig. 3. Conventional and diffusion-modified kinetic schemes for two-site
phosphorylation and dephosphorylation. (A) A substrate S with two sites is
phosphorylated by a kinase E via the Michaelis–Menten mechanism. (B) Kinetic
scheme that describes the influence of diffusion. Not only are the chemical rates
scaled by the escape probabilities (e’s), but a new transition appears (red arrow)
because the same enzyme can phosphorylate the substrate twice before dif-
fusing away. ei (i= 0, 1) is the probability that anenzyme, initially in contactwith
a substrate with i modified sites, diffuses away rather than binds to the sub-
strate. (C) Corresponding scheme for dephosphorylation by a phosphotase F.

Fig. 4. Time dependence of the concentration of the doubly phosphorylated
substrate for different diffusion coefficients. The kinetics were obtained by
solving numerically the ordinary differential equations (Eq. S45 in Supporting
Information) that correspond to the modified schemes in Fig. 3 B and C. Ini-
tially, the substrates are in the unphosphorylated form. The diffusion coef-
ficients are (in square micrometers per second) 50 (purple), 10 (blue), 0.5
(green), 0.1 (orange), and 0.025 (red). The other parameters, taken from ref. 4,
are κa0 = κa2 = 0:027  nM−1s−1, κa1 = κa3 = 0:056  nM−1s−1, κd0 = κd2 = 1:35  s−1,kd

1 = kd
3 =

1:73  s−1, kc
0 = kc

2 = 1:5  s−1, kc
1 = kc

3 = 15  s−1, R = 5nm, ½Etot �= ½Ftot �=30  μm−3, and
½Stot �= 120  μm−3. (Inset) The half-time (i.e., the time at which [S2] reaches half
of its steady-state value) as a function of the diffusion coefficient.
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The kinetic scheme with additional reaction channels in Fig. 3 B
and C can also predict the steady-state concentrations of diffusing
reactants in a dual phosphorylation cycle. As diffusion slows down,
the flux through the new connection increases. Consequently, the
steady-state input–output curve becomes more shallow and less
sensitive to the variation of the kinase/phosphotase concentration,
as shown in Fig. S3 and in agreement with ref. 4.

Enzyme Reactivation Time.After catalytic modification, an enzyme
may be inactive and require some time to become active again.
In phosphorylation, kinase reactivation is related to the release
of ADP, and binding of ATP and has been shown to play an
important role in the kinetics (4, 16). In the framework of
chemical kinetics, this effect can be described by replacing the
scheme in Fig. 3A by (i = 0, 1):

Si +E�
κai

κdi

SiE ���!κc0 Si+1 +E p;  E p ���!k⋆ E: [9]

How does diffusion affect this kinetic scheme? As shown in
Supporting Information, when ½E� � ½E⋆�, for times longer than
both the diffusion time ðR2=DÞ and the reactivation time ð1=k⋆Þ,
the diffusion-modified kinetic scheme has the same connectivity
as that shown in Fig. 3B with the important difference that the
e1 ’s that enter the catalytic step [i.e., κc0e1 and κc0ð1− e1Þ] are
replaced by e⋆1. This new quantity is the probability that the en-
zyme, which is initially in the inactive form E⋆ in contact with the
singly phosphorylated substrate S1, diffuses away rather than
reactivates and binds to the substrate. If the lifetime of E⋆ is
infinite, then the enzyme always escapes because it cannot react
with S1 and thus e⋆1 = 1. Consequently, when the reactivation time
is much longer than the diffusion time, the new reaction channel
does not contribute and simply renormalizing the rates in the
standard kinetic scheme is adequate.
For uniformly reacting species, e⋆1 can be found as follows. Let

E⋆ðrÞ [or EðrÞ] be the escape probability of an isolated pair when
initially the distance between E⋆ [or E] and S1 is r. We are in-
terested in e⋆1 = E⋆ðRÞ. As r→∞, both E⋆ðrÞ and EðrÞ approach
unity. EðrÞ satisfies D∇2

r E = 0 subject to the partially reactive
boundary condition at contact, 4πR2D∂E=∂rjr=R = κa1EðRÞ (15).
E⋆ðrÞ, however, satisfies D∇2

r E⋆ − k⋆E⋆ + k⋆E = 0 subject to the
reflecting boundary condition at contact, ∂E⋆=∂rjr=R = 0, because
E⋆ cannot bind to the substrate. Solving these equations, we find

e⋆1 =
kD

κa1 + kD
 

0
@1+

κa1
kD
�
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⋆R2=D

p �
1
A: [10]

When the lifetime of E⋆ is very short ðk⋆ →∞Þ, then e⋆1 → e1 =
kD=ðκa1 + kDÞ and the diffusion-modified kinetic scheme in Fig.
3B is recovered. However, when k⋆ → 0, e⋆1 → 1 and so E⋆ always
escapes before reactivating and binding to the unmodified site.
No new transition appears in the kinetic scheme. Thus, the rate
constant of the new reaction channel changes from zero to
κc0κ

a
1=ðκa1 + kDÞ as the ratio of the diffusion time to the reactiva-

tion time increases.

Anisotropic Reactivity.We now generalize the theory to handle two
sites that, although equivalent, are located in different places on
the surface of the substrate. In addition we remove the assumption
in the Michaelis–Menten mechanism that catalysis and product
release occur in the same step and explicitly consider the reversible
binding of the enzyme to the modified sites. We start, as before,
with the conventional chemical kinetics scheme, which is shown in
Fig. 5A when all of the «’s are 1 and the q’s are zero. We denote the
nonmodified site (yellow) by “n” and the modified site (red) by “m”

so that, for example, κa1m is the association rate constant for binding

of the enzyme to the modified site of a substrate with one modified
and one nonmodified site.
The diffusion-modified kinetic scheme for this problem is

shown in Fig. 5A. Note that the catalytic rate constants do not
change here. The escape probability e0 is the probability that the
enzyme, initially in contact with one of the sites, escapes rather
than binds. The most interesting results are shown in the shaded
portion of Fig. 5A and depend on the escape and capture
probabilities defined in Fig. 5B. To understand the definition of
these probabilities, consider an isolated pair of an enzyme and
a substrate in which one of the two sites has been modified.
Suppose that the enzyme is initially in contact with the phos-
phorylated (“m” for modified) site (see the left-hand side of Fig.
5B). Such a pair can have only three fates: (i) The enzyme can
rebind to the “m” site with probability qmm, or (ii) it can diffuse
away into the bulk with escape probability e1m, or (iii) it can bind
to the other (“n”) site with capture probability qmn. Clearly
e1m + qmm + qmn = 1. The case when the enzyme is initially in
contact with the “n” site is analogous (see the right-hand side
of Fig. 5B).
With these definitions, the rate constants in the shaded portion

of Fig. 5A have a transparent physical interpretation. The rates
corresponding to the new transitions (red arrows) are the product
of the dissociation rate constant (κd1m or κd1n) and the probability
that the enzyme, starting near one site, binds to the other (qmn or
qnm). This new pathway corresponds to the upper mechanism
shown schematically in Fig. 1. The association and dissociation
rate constants for the transitions that were present in the con-
ventional chemical kinetic scheme (black arrows) are scaled by the
appropriate escape probabilities in such a way that the equilibrium
constants do not depend on diffusion.
For anisotropic reactivity, the escape and capture probabilities

must be obtained numerically by solving differential equations

Fig. 5. Two-site modification with anisotropic reactivity. (A) A substrate
with nonmodified (yellow or “n”) and modified (red or “m”) sites in the
presence of free enzyme (lower row) can form a variety of complexes (upper
row). The rate constants in the conventional kinetic scheme (black arrows)
are scaled by the escape probabilities, whereas those of the new transitions
(red arrows) are proportional to the probability of starting at one site and
being captured by the other. (B) Definition of escape (e’s) and capture (q’s)
probabilities. The enzyme, initially in contact with one site, can bind to the
same site (qnn, qmm), diffuse away ðe1n,e1mÞ, or bind to the other site (qnm,
qmn). Because of detailed balance, κa1nqnm = κa1mqmn.
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subject to the appropriate boundary conditions or, for more
complex models, by stochastic simulations. Because this is a two-
particle problem, it is a lot easier than calculating the time de-
pendence of the concentrations by simulating the reactive dynamics
of hundreds of particles. We note for the sake of completeness that
for isotropic reactivity simple expressions for these quantities can be
found. In the isotropic model, the contact pairs on the left and right
sides of Fig. 5B are assumed to be equivalent, so e1m = e1n = kD=
ðκa1m + κa1n + kDÞ, qmm = qnm = κa1m=ðκa1m + κa1n + kDÞ, and qnn = qmn =
κa1n=ðκa1m + κa1n + kDÞ.
In the limit that the dissociation rate constants of the com-

plexes between the enzyme and the modified site are very large
ðκd1m;  κd2 →∞Þ, the kinetic scheme in Fig. 5A reduces to that in
Fig. 3B with one important difference: e1 in the rates κc0e1 and
κc0ð1− e1Þ must be replaced by ec1, which is the escape probability
of the enzyme initially in contact with the modified site. Because
now the enzyme does not bind to the modified site, ec1 is different
from e1 that scales κa1 and κd1 and is the escape probability of the
enzyme initially in contact with the reactive, nonmodified site.

Ligand Binding to Inequivalent Sites. From the shaded portion of
Fig. 5A, it is clear that the enzyme E can be regarded as a “ligand”
that binds to two inequivalent sites (red and yellow). Thus, our
diffusion-modified scheme with extra connections also describes
ligand binding when the complexes are distinguishable. The extra
transitions describe processes in which a ligand dissociates from
one site and binds to another without diffusing away. Although we
explicitly considered only two sites, the generalization to many
sites is straightforward.

Concluding Remarks
We have shown that the influence of the relative diffusion of the
reactants on the kinetics of multisite catalysis can be described by
introducing new connections or transitions into the conventional
kinetic scheme in addition to using diffusion-influenced rate
constants. These new pathways or reaction channels appear be-
cause an enzyme, after modifying one site on a substrate, can
modify another site before the enzyme–substrate pair diffuses
apart. It is remarkable that the rate constants in the new kinetic
scheme depend on diffusion only through the escape and capture
probabilities of isolated enzyme–substrate pairs. These probabilities

depend on the enzyme–substrate interaction potential, the pre-
cise definition of the reaction zone, and on other factors such
as rotational diffusion, but the connectivity of the diffusion-
modified kinetic scheme does not. Thus, the influence of mo-
lecular crowding can be treated by solving the pair problem with
the appropriate potential of mean force and relative diffusion
coefficient. For realistic microscopic models, where the escape
and capture probabilities must be found numerically, this is a
tremendous simplification because one can now simulate the
reactive dynamics of two rather than hundreds of molecules to
find the time dependence of the concentrations.
The theory presented here is valid at times longer than the

diffusion time when concentrations are low. The fastest relaxation
time of the diffusion-modified kinetic scheme must be much
longer than the characteristic diffusion time ðR2=DÞ, which is
typically on the submicrosecond time scale. When the concen-
trations are large, so that three-particle correlations are impor-
tant, or when the lifetime of the bound state is comparable to the
diffusion time, one can no longer use the rate equations of
chemical kinetics, even in their modified forms. It is possible to
extend this theory by using the self-consistent relaxation time
formalism that we developed and applied to simple reactions such
as A+B⇌C and A+B⇌ C+D (17), where it is exact at both
short and long times. For a substrate with a single catalytic site,
this formalism predicts that, as a result of diffusion, the Line-
weaver–Burk plot becomes nonlinear at high concentrations (18,
19). When there are multiple sites, the complexity of the theory
increases dramatically, and thus there must be compelling reasons
for carrying out such a generalization. For the concentrations and
parameters used by Takahashi et al. (4) in the many-particle sim-
ulations of the mitogen-activated protein kinase cascade, we fully
expect that the approach presented here, based on rate equations
corresponding to kinetic schemes with renormalized rate con-
stants and additional connections, would accurately describe
the influence of diffusion on ultrasensitivity and bistability.
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