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Natural gas from tight shale formations will provide the United
States with a major source of energy over the next several decades.
Estimates of gas production from these formations have mainly
relied on formulas designed for wells with a different geometry.
We consider the simplest model of gas production consistent
with the basic physics and geometry of the extraction process. In
principle, solutions of the model depend upon many parameters,
but in practice and within a given gas field, all but two can be fixed
at typical values, leading to a nonlinear diffusion problem we solve
exactly with a scaling curve. The scaling curve production rate
declines as 1 over the square root of time early on, and it later
declines exponentially. This simple model provides a surprisingly
accurate description of gas extraction from 8,294 wells in the
United States’ oldest shale play, the Barnett Shale. There is good
agreement with the scaling theory for 2,057 horizontal wells in
which production started to decline exponentially in less than
10 y. The remaining 6,237 horizontal wells in our analysis are too
young for us to predict when exponential decline will setin, but the
model can nevertheless be used to establish lower and upper
bounds on well lifetime. Finally, we obtain upper and lower bounds
on the gas that will be produced by the wells in our sample, in-
dividually and in total. The estimated ultimate recovery from our
sample of 8,294 wells is between 10 and 20 trillion standard
cubic feet.
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he fast progress of hydraulic fracturing technology (SI Text,

Figs. S1 and S2) has led to the extraction of natural gas and
oil from tens of thousands of wells drilled into mudrock (com-
monly called shale) formations. The wells are mainly in the United
States, although there is significant potential on all continents (1).
The “fracking” technology has generated considerable concern
about environmental consequences (2, 3) and about whether hy-
drocarbon extraction from mudrocks will ultimately be profitable
(4). The cumulative gas obtained from the hydrofractured hori-
zontal wells and the profits to be made depend upon production
rate. Because large-scale use of hydraulic fracturing in mudrocks is
relatively new, data on the behavior of hydrofractured wells on the
scale of 10 y or more are only now becoming available.

There is more than a century of experience describing how
petroleum and gas production declines over time for vertical
wells. The vocabulary used to discuss this problem comes from
a seminal paper by Arps (5), who discussed exponential, hyper-
bolic, harmonic, and geometric declines. Initially, these types of
decline emerged as simple functions providing good fits to em-
pirical data. Thirty-six years later, Fetkovich (6) showed how they
arise from physical reasoning when liquid or gas flows radially
inward from a large region to a vertical perforated tubing, where
it is collected. For specialists in this area, the simplicity and fa-
miliarity of hyperbolic decline make it easy to overlook that this
functional form reasonably arises only when specific physical con-
ditions are met. For example, all early decline curves were pro-
posed for unfractured vertical wells or vertical wells with vertical,
noninteracting hydrofractures. Physics-based descriptions of such
wells are readily available in textbooks, such as those by Kelkar (7)
and Dake (8). However, these books focus on radial or 1D flow
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from infinite or semiinfinite regions to pipes or planes. The re-
sulting decline curves do not apply to the wells we describe here.

The geometry of horizontal wells in gas-rich mudrocks is quite
different from the configuration that has guided intuition for the
past century. The mudrock formations are thin layers, on the
order of 30-90 m thick, lying at characteristic depths of 2 km
or more and extending over areas of thousands of square kilo-
meters. Wells that access these deposits drop vertically from the
surface of the earth and then turn so as to extend horizontally
within the mudrock for 1-8 km. The mudrock layers have such
low natural permeability that they have trapped gas for millions
of years, and this gas becomes accessible only after an elaborate
process that involves drilling horizontal wells, fracturing the rock
with pressurized water, and propping the fractures open with
sand. Gas seeps from the region between each two consecutive
fractures into the highly permeable fracture planes and into the
wellbore, and it is rapidly produced from there.

The simplest model of horizontal wells consistent with this
setting is a cuboid region within which gas can diffuse to a set of
parallel planar boundaries. Fig. 1 illustrates the well as 10-20
hydrofractures that are H ~30 m high and 2L ~200 m long,
spaced at distances of around 2d ~ 100 m. The fact that this is the
right starting point for these wells was recognized by Al-Ahmadi
et al. (9), and the diffusion problem in this setting has been
studied by both Silin and Kneafsy (10), and Nobakht et al. (11).

Examining Fig. 1 helps one to understand how gas production
evolves. When a well is drilled and completed, the flow of gas is
complicated and difficult to predict, particularly because the
water used to create it is back-produced. In practice, the resulting
initial transients last around 3 mo. After that time, gas should
enter a phase where it flows into the fracture planes as if coming
from a semiinfinite region.

Significance

Ten years ago, US natural gas cost 50% more than that from
Russia. Now, it is threefold less. US gas prices plummeted be-
cause of the shale gas revolution. However, a key question
remains: At what rate will the new hydrofractured horizontal
wells in shales continue to produce gas? We analyze the sim-
plest model of gas production consistent with basic physics of
the extraction process. Its exact solution produces a nearly
universal scaling law for gas wells in each shale play, where
production first declines as 1 over the square root of time and
then exponentially. The result is a surprisingly accurate de-
scription of gas extraction from thousands of wells in the
United States’ oldest shale play, the Barnett Shale.
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Fig. 1. Horizontal well with 10-20 hydrofracture “stages” spaced uniformly
along its entire length. The common fracture height is H, and the tip-to-tip
length of each fracture is 2L. The distance between the hydrofractures is 2d.
Gas flows into each fracture plane from both sides, and the permeability of
a hydrofracture is assumed to be infinite in comparison to the effective
permeability of the rock matrix and natural fractures feeding gas into it.

Gas flows according to Darcy’s law through a system of micro-
fractures, cracks, reopened natural fractures, faults, and failed
rock. This multiscale and loosely connected flow system is cre-
ated by the high-rate hydrofracturing of shale rock. It is fed by the
rock matrix, where gas is stored (adsorbed) in very small pores.

It turns out that the gas effectively flows along paths that are
straight lines (hence, the setting is sometimes called “linear
flow”) perpendicular to the fracture planes. During the flow, the
initially high gas pressure diffuses toward the hydrofractures,
which are kept at a low pressure. This gas pressure diffusion
creates a gas production rate proportional to the inverse of the
square root of time on production.

At some point in time, gas flow causes the pressure along the
midplane between the hydrofractures to drop below the original
reservoir pressure, and gas production slows down relative to the
square-root-of-time behavior. We call the time when this hap-
pens the interference time. Eventually, the gas is so depleted
that the amount coming out per time is proportional to the
amount of gas remaining. This is the classic condition for ex-
ponential decay. Thus, after a long enough time, the rate of
production declines exponentially. The pressure-dependent
coefficient describing the diffusion of gas pressure is called the
“hydraulic diffusivity of gas.” Physically, it is unrelated to the
molecular diffusion coefficients.

The more closely spaced the hydrofractures are, the higher will
be the initial rate of gas production but the more quickly will the
interference time be reached. These intuitive considerations are
consistent with the mathematical results of Silin and Kneafsy
(10) and Nobakht et al. (11), and with the analysis that follows.

Results

Model. Hydraulic fracture in horizontal wells creates a network of
cracks in rock that was previously impermeable, allowing gas to
move. The true geometry is very complicated. Here, we explore
the possibility that it suffices to treat the rock surrounding a well
as a cuboid region in which the permeability is greatly enhanced
over the surrounding area but is uniform. We focus first on the
single region depicted in Fig. 1 (Lower). The solution of a prob-
lem with N hydrofractures is obtained trivially by multiplica-
tion once the problem for a single region bounded by a pair of
hydrofractures has been solved.

In our initial treatments of the problem, we neglected varia-
tions in the hydraulic gas diffusivity as gas pressure changes. This
made it possible to solve the problem with closed-form expres-
sions, but the results did not match well with experimental data.
The thermodynamic properties of natural gas must be treated
properly, as recognized by, for example, Kelkar (7). Natural gas
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is not an ideal gas; its compressibility and viscosity depend upon
its molar composition and vary strongly with temperature and
pressure. Failing to take variable gas properties into account led
to errors on the order of 50%.

We remark on some additional effects that we do not include.
Injecting water into the gas-bearing rock leads to interactions
between gas and water termed spontaneous imbibition. Although
these effects are amenable to precise analysis (12) and have ex-
perimentally measurable consequences (13), we are able to ne-
glect them because we discarded the first 3 mo of gas production,
when these and other transient effects are most pronounced. In
addition, as the pressure falls in a reservoir, gas adsorbed in the
rock may escape, producing additional contributions to the gas
flow. This process is described by the Langmuir desorption iso-
therm. In the particular field studied in this paper, we have carried
out a detailed analysis and found this effect to be negligible, al-
though it might not be so in other cases. Finally, desorption and
flow of gas in unfractured shale have nonlinear properties at the
microscopic level (14). We can neglect this phenomenon because
gas transport is dominated by the effective properties of a fracture
network, and the empirical evidence presented below shows that
the net effect is pressure diffusion at an enhanced rate in a
homogeneous medium.

Thus, we arrive at a specific nonlinear pressure diffusion prob-
lem to solve: It involves gas alone, permeability is uniform but
enhanced in a cuboid volume, the experimental equation of state
for gas is treated exactly, and spontaneous imbibition and de-
sorption are neglected. The precise formulation and exact solution
of the diffusion problem are contained in Methods, and we describe
only the main results here.

Two planar hydrofractures in a well separated by distance 2d
interfere with one another after a characteristic interference
time (15), which we define as

T=d2/a,-, 1]

where «; is called the hydraulic diffusivity. It is related to the
permeability of the rock k by

k
a; = 5
PSg

C
HeCe Initial reservoir p,T'

[2]

where ¢ is porosity, S, is the fraction of pore space occupied by
gas, u, is the gas viscosity, and c, is the gas compressibility. In Eg.
1, 7 is a constant defined at the initial state of the reservoir. It
does not depend on the instantaneous gas pressure that varies in
space and time as the reservoir is depleted. This does not mean
that our solution relies on any approximation where quantities
are fixed at reservoir values. It simply means that we adopt a time
unit that is defined in terms of the initial reservoir properties; the
final results take a particularly simple form when we do so.

We measure time in units of 7z, defining a dimensionless time as

i=t/r. 3]

Next, let m be the cumulative production of gas mass from a hor-
izontal well with N hydrofractures (Fig. 1), and let M be the
original mass of gas contained in the reservoir volume drained
by this well. The exact solution of the model for cumulative gas
production is given by a dimensionless recovery factor (RF):

RF(f) =m/M. [4]

We compute the RF by solving a particular boundary value
problem (Methods) and plot it in Figs. 2 and 3. Although this RF
is obtained from a numerical solution, it is a scaling function
that, for practical purposes, provides the benefits of insight and
convenience commonly associated with closed-form analytical
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solutions. To describe essentially all wells in the Barnett Shale,
one has only to rescale this function in the time and gas produc-
tion coordinates. In SI Text, we provide a spreadsheet (Dataset
S1) in which the function is tabulated for convenience.

Our nearly universal solution to the boundary value problem
depends, in principle, upon the initial state of the reservoir, (p;, T),
the well flowing pressure, py, and gas composition, y, although it
is independent of the details of the well geometry and the hy-
draulic diffusivity. In practice, p;, py, T, and y can be set to typical
values within a given shale gas play. For dimensionless times ¢
much less than 1, we show in SI Text that the solution takes a
particularly simple intermediate asymptotic form:

RE() mryfi, for f,<i<1, (5]

where 7y is the dimensionless time necessary to extinguish the
initial transients in gas flow.

The constant « depends on the gas composition and temper-
ature, as well as on the limiting pressures, p; and py. For the wells
we present here from the Barnett Shale, we set it equal to a
typical value of 0.645. Table S1 shows that it varies rather little as
the limiting pressures range over realistic values. Once the scaled
time 7 reaches 1, the growth in gas recovery slows, and it even-
tually reaches a plateau, which describes the maximum recovery
possible for the given problem parameters. The way this slowing
down occurs depends in detail upon the thermodynamics of gas
expansion, the reservoir permeability, and the initial and final
pressures in the reservoir. Eventually, as also shown in SI Text,
production declines exponentially.

As a first illustration of Egs. 4 and 5, suppose one knows the
original gas in place, M. After transients of the first few months

A 5 typical wells in Barnett showing interference
1.0

0.8 |

0.6

04 |

Recovery Factor RF

0.2 [

0.0 . . . . .
0.0 05 1.0 1.5 20 25 30

Scaled time ¢

B 5 typical wells in Barnett showing interference

1/V1 decline

\

Exponential decline
|

Recovery Rate 9 RF /0t
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Scaled time

Fig. 2. Cumulative production and production rate from scaling theory. (A)
Dimensionless RF RF(t) vs. dimensionless time computed from the scaling
solution (black) compared with five typical wells (burnt orange). The fracture
pressure py is 500 psi, and the initial reservoir pressure p; is 3,500 psi. (B)
Dimensionless well production rate dRF(t)/dt vs. dimensionless time (black)
under the same conditions compared with the same five typical wells (burnt
orange). Production rates of individual wells are noisy, although cumulative
production matches the scaling function well. Because the production rate
becomes linear on a semilog plot, production decline is exponential for
t/r=t> 1.
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A 2057 wells in Barnett, fy < 0.25 & e > 0.64
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Fig. 3. Comparison of 8,294 wells with scaling function. (A) Time history
of 2,057 wells in the Barnett Shale, scaled so as to fit our scaling function
(initial reservoir pressure of 3,500 psi and well flowing pressure of 500 psi),
for which the dimensionless time t starts below 0.25 and reaches 0.64 or
more. The burnt orange curves give the scaled production of each well,
and the black curve is the scaling function. Overall agreement is satis-
factory. (B) Time history of 6,237 wells in the Barnett Shale for which the
scaled maximum time comes out as tmax < 0.64 (burnt orange). These wells
are too young to trust our estimate of the interference time z; therefore,
we simply compare them with a square root function (black line). Time is
scaled by the maximum time tmax reached for each well, and production m
is scaled by Ky/tmax-

of production have subsided, cumulative production takes the
form m(t) ~ KC+/£. The constant K is obtained by fitting a curve of
this form to the measured cumulative production. Then,

Mu\/tjt=KVi = = (Mx/K)’. [6]

Therefore, to estimate the time r after which well production
declines exponentially, measure X from the first year of produc-
tion, estimate M from the well geometry, and insert x =0.645,
and 7 follows from Eq. 6.

However, the practical difficulty we face with gas production
from the hydraulically fractured horizontal wells is greater than
this example indicates. Neither the total mass of gas in place nor
the time scale for interference to begin is known with any pre-
cision. The original mass of gas in place is uncertain, mainly
because the effective hydrofracture length, 2, and the number
of active hydrofractures are uncertain. The time to interference
is uncertain because the hydrofracturing process greatly increa-
ses the effective permeability k of the rock in the vicinity of the
well; laboratory values of k obtained from core samples are on
the order of nanodarcies (16), whereas accounting for observed
well production requires effective values of k& on the order of
100-fold greater.

Thus, we arrive at the following question: Can we extract
enough information from existing field production data to esti-
mate both the interference time 7 and the original gas in place
M at the same time? In the early stages of gas production, when
ty <t < 1, the production rate declines purely as 1/v/f and 7 and
M are impossible to determine separately. Wells delivering a
small ultimate amount of gas at a relatively high rate cannot be
distinguished from those where lower permeability rock or a small
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number of hydrofractures deliver ultimately larger quantities of
gas at a relatively lower rate. Only the onset of interference be-
tween adjacent hydrofractures makes it possible to disentangle the
two scenarios.

Comparison with Field Data. We display the dimensionless RF in
Fig. 2. To illustrate its correspondence to data, we begin with
a sample of 66 wells hand-selected by an experienced reservoir
engineer as examples of good wells. In 5 of them, we find evi-
dence of interference, meaning that cumulative production is not
acceptably fit simply by KCv/z. They do, however, fit the full scaling
curve well, as we show with a graph of the cumulative production
and production rate of these five wells in Fig. 2.

We then proceed to a more comprehensive study. We ob-
tained data for 16,533 wells in the Barnett Shale, and from them,
we selected the 8,807 horizontal wells that had operated con-
tinuously for 18 mo or more and had not been recompleted (i.e.,
the hydrofracturing process was not repeated to increase pro-
duction). We allow ourselves only two fitting parameters on a
per-well basis, horizontal and vertical scale factors, which cor-
respond physically to the interference time, z, and the original
mass of gas in place, M. Details of the fitting process are con-
tained in S/ Text. We find 2,057 horizontal wells for which the
dimensionless time 7 starts with a value less than 0.25 and reaches
a value greater than 0.64. These are the wells for which inter-
ference is sufficiently advanced that it can be detected with an
average uncertainty in parameters of less than 20%. We plot the
REF of all these wells vs. scaled time and compare the results with
the predicted scaling function in Fig. 5 and Fig. S3. Most of the
wells show interference because the interference time 7 is around
5y, but a few of them have interference times of 10 y or more
(Fig. 4). The fact that production from these more than 2,000
wells falls so well on the predicted curve provides evidence that
the simple model we adopted is sufficiently realistic to estimate
gas production in the future. We note that upper bounds on the
total mass of gas in place are available from measurements of
well geometry. As a check on our results, we show in Fig. S4 that
the volumes of gas M we calculate with our theory from pro-
duction data are indeed less than these upper bounds.

We acknowledge that for any given well at particular points in
time, production is noisy for many reasons (Fig. 2B). However,
the cumulative production of individual wells falls remarkably
well on our scaling curve (Fig. 24), as does the expected pro-
duction of thousands of wells (Fig. 34).

There are an additional 6,237 wells for which interference is
not yet visible, and which we say are in the square root decline
phase. We cannot calculate = and M for these wells, but we can
make use of our theory to put upper and lower bounds on them.
We present these bounds in Fig. S5.

7 and M for wells with visible interference
10

5 |

2 |

1

05

0.2

Original gas in place M (Bscf)

0.1 0.2 0.5 1 2 5 10
Interference time 7 (years)

0.1

Fig. 4. Values of interference time = and gas in place M for the 2,057 wells
in Fig. 3A. Error bars indicate two standard uncertainties. Maximum in-
terference times here are around 10 y due to the fact that wells more than
10 y old are still rare; interference times of, say, 30 y will only be reliably
detected when wells are 19 y old or more.
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Summing up the production of the 8,294 wells in our sample,
we obtain the lower and upper bounds on cumulative production
over time, as shown in Fig. 5.

Discussion

i) We have found the minimal ingredients that suffice to model
thousands of wells in the Barnett Shale with acceptable accu-
racy. The geometry of each well is a cuboid volume with a uni-
form array of absorbing boundaries. Between those boundaries,
rock permeability is enhanced above laboratory values but is
constant. Spontaneous imbibition can be neglected, but the gas
equation of state must be treated realistically. Gas desorption
is also negligible in the Barnett Shale but not elsewhere (e.g.,
in the Fayetteville shale). The scaling curve we find as a result
provides surprisingly good agreement with all wells that can
reasonably be analyzed in the Barnett Shale.

ii ) Inserting characteristic values into Egs. 1 and 2, one deduces
rock permeability k of 50 nanodarcies for z of 50 y and 500
nanodarcies for 7 of 5'y. These values of permeability are 20-
to 200-fold larger than the values of a few nanodarcies found
for shale core samples in laboratory experiments (16). This
enhanced permeability must result from the hydrofracturing
process. Many processes could be involved, including the
reopening of preexisting fracture networks.

iii) Cumulative gas production follows a nearly universal func-
tion scaled by two parameters, interference time = and mass
of gas in place M.

iv) For 2,057 of the horizontal wells in the Barnett Shale, in-
terference is far enough advanced for us to verify that wells
behave as predicted by the scaling form. The typical interfer-
ence time in these wells is around 5 y.

v) For 6,237 additional horizontal wells, no significant devia-
tion from cumulative production growing as the square root
of time is observed; these wells are too young to show evi-
dence of interference. We provide upper and lower bounds
on time to interference and original gas in place for each of
these wells. The median lower bound on time to interference
is 5y, and the median upper bound is 100 y. The bounds on
gas in place are somewhat tighter; the mean of the lower
bounds is 1 billion standard cubic feet (Bscf), and the mean
of the upper bounds is 7 Bscf. The lower bound on cumulative
production from the wells we analyzed is 10 trillion standard
cubic feet (Tscf) extracted over the next 10y, whereas the upper
bound is more than 20 Tscf that will continue to be recovered,
at declining rates, over the next 50 y. By way of comparison,
a recent estimate of the total gas production from all wells
to be drilled in the Barnett Shale by 2050 is 40 Tscf (17, 18).

vi) The contributions of shale gas to the US economy are so
enormous (SI Text) that even small corrections to production
estimates are of great practical significance.

Gas released by hydraulic fracturing can only be extracted
from the finite volume where permeability is enhanced. Expo-
nential decline of production once the interference time has
been reached is inevitable, and extrapolations based upon the
power law that prevails earlier are inaccurate. The majority of
wells are too young to be displaying interference yet. The precise
amount of gas they produce, and therefore their ultimate prof-
itability, will depend upon when interference sets in.

For the moment, it is necessary to live with some uncertainty.
Upper and lower bounds on gas in place are still far apart, even
in the Barnett Shale with the longest history of production.
Pessimists (4) see only the lower bounds, whereas optimists (19)
look beyond the upper bounds. A detailed economic analysis
based on the model presented here is possible, however, and is
being published elsewhere (17, 18, 20, 21). The theoretical tools
we are providing should make it possible to detect the onset of
interference at the earliest possible date, provide increasingly ac-
curate production forecasts as data become available, and assist
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Fig. 5. Upper and lower bounds on cumulative production from 8,294 wells
in our sample. Vertical wells are excluded from the analysis, whereas twofold
more wells will ultimately be drilled; thus, the upper bound is not an upper
bound on the whole field.

with rational decisions about how hydraulic fracturing should

proceed in light of its impact on the US environment and economy.

Methods

We begin with an expression for mass balance of gas flowing in a porous rock:
d(pgUg) _0[(¢5gﬂg +(1 _¢)/’a} kg gas 71

ox at m3.s’

where uy is the Darcy (superficial) velocity of gas, S;=1— Sy is gas satura-
tion (with S,,c being the connate water saturation), p, is the free gas density,
p, is the adsorbed gas density (kilograms of gas per cubic meter of solid), and
¢ is the rock porosity.

By applying Darcy’s law to the linear, horizontal flow of gas, we can
substitute

_kop

=—— 8
e i8]
and obtain the following nonlinear partial differential equation:
0 (kpg o) 0pg 0| p., 0Pq 0
= Kpg 9P M]55979£ (1 _mﬁigip. []
x \ pg 0x ap ot dpg op ot

The gas density is related to its pressure and temperature through an equation
of state for real gases:

Mgp
=_= 1
9= Z,RT' (o]

where Z;(p,T,y) is the compressibility factor of gas, M, is the pseudomo-
lecular mass of gas, R=8,314.462 J/kmol-K is the universal gas constant, and
T is a constant temperature of the reservoir.

The isothermal compressibility of gas is defined as

SRNUARY. 1]
’ Pyg ap T=const P Zg l)p‘

We define K,(p,T) as the differential equilibrium partitioning coefficient of
gas at a constant temperature (e.g., ref. 22):

K, = (‘)L) . [12]
9. 9/ T=const

By inserting Egs. 11 and 12 into Eq. 9, the general nonlinear equation of
transient, linear, and horizontal flow of gas is obtained:

2 (kﬂgip

_ _ 9P
x Z6X> =[¢Sq + (1 ¢)Ka}cgpgat. [13]

This nonlinear differential Eq. 13 can be simplified by introducing the
Kirchhoff integral transform of gas pressure after Al-Hussainy et al. (23),
which, in the present context, is also called “the real gas pseudopressure”:
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"pd
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m(p)

Here, p« is a reference pressure that will be set to py. After differentiation of
Eq. 14 and cancelation of terms, one obtains the following nonlinear dif-
fusion equation for gas pseudopressure:

Pm(p) _ (#SgigCe\ dm(p) 1 am(p) 15]
x: k ot ~alp(m)] ot '
with
7 P Su— [16]
P [’/)Sg"'“ _¢)Ka]ﬂgcg'
The initial condition for Eq. 15 is
mlp(x,t=0)]=m(p;)=m;. [17]

Note that m; is a constant only in a virgin reservoir. During refracturing, it
will vary with the distance to the old hydrofractures.

We apply this equation to a finite region between two fractures, as shown
in Fig. 1 (Lower):

mip(x=0,1)|=m(ps) =my, [18]

where the hydrofracture pseudopressure, my, might be a constant or a
slow function of time. At the midpoint between two fractures, one has
by symmetry

m o, [19]

0X |y_g

Eg. 15 is most useful in a scaled form. We define dimensionless time,
distance, and pseudopressure by

2
T=—
Qi

t=t/z; x=x/d

[20]
_ 1 )
= ([caplugZa/p?) mix,t).
Here, the subscript i refers to the quantities at the initial reservoir pressure
p; and temperature T.
Consider the linear flow of gas into a transverse planar hydrofracture
of height H and length 2L, and separated by distance 2d from the next
hydrofracture planes, as depicted in Fig. 1. The scaled transport equation is

om_adm
at  ai ox*’

[21]

and
om/ox=0 for Xx=1.

Our approach is somewhat more general than that of Silin and Kneafsey
(10) because we do not require any particular equation of state for natural
gas and do not use the more limited p? formulation (8). The m(p) and p?
solutions are equivalent only if p/ugZy is a linear function of pressure;
however, generally, it is not (ref. 8, pp. 254-255). The price we pay is that our
model must be solved numerically, but the cost is just a couple of seconds of
delay before the full solution is computed on an average laptop. For the
Barnett Shale, we use the values of well flowing pressure ps = 500 psi and
initial reservoir pressure p; = 3,500 psi.

The superficial velocity of gas flowing into the right face of the hydro-
fracture at the origin is

k o)
=Pl [22]
Hf OX x=0
The mass flow rate into this fracture is
= 2HLpsus. [23]

Using Eq. 22,
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Next, we replace the pressure with the real gas pseudopressure in Eq. 14:

th = 241 KM O

2RT ox [25]

0
The partial derivative can now, in turn, be rewritten with use of the scaled
pseudopressure from Eq. 20, and the permeability, k, can be eliminated
in favor of the gas diffusivity, a;, and the characteristic interference
time, 7.

Let M be the total mass of gas contained originally in the reservoir within
the volume 4LHd between two consecutive hydrofractures, M =4p;,LHd¢S, ;
then the gas flow rate into the fracture plane at the origin takes the final form:

. Mom
m=-——= N [26]
where the function dm/dx|y(t) depends only on gas composition, the initial
and fracture pressures, and reservoir temperature. The scaling of m has been
devised so that this relation is exact.

The total flow into each pair of hydrofractures is twice that in Eq. 26. More
generally, when there are N fracture stages, as depicted in Fig. 1, and we
include the contribution to mass flow from the exterior faces of the left- and
right-most hydrofractures, the original mass in place is

M=(N+1)4p,LHdpS,, [27]
and the total mass transport out of the reservoir is given by

. Mom
m=——

T 0X|y 28]
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Here, we are treating the left- and right-most exterior hydrofracture faces
approximately, as extensions of the wellbore length by d at each end. The
reason it is not appropriate to treat the two ends as semiinfinite is that
without the great enhancement of permeability brought about by the
hydrofracturing process, gas transport is negligible. Our assumption is that
volumetric rock damage extends beyond the ends of the two last fractures
for characteristic distance d.

Integrating Eq. 28 with respect to the dimensionless time t gives the
final result

" (). [29]
0

t
m s 1 — [ /!
m:RF(t), where RF(t)=/dt =
0

The initial boundary value problem (Eq. 21) is solved numerically with
an efficient fully implicit solver and a sequential implicit solver. The first
solver has been implemented in Python, and the second has been imple-
mented in MATLAB (MathWorks). Accurate numerical solutions can be
obtained in both cases within a few seconds on an average laptop. Essential
properties of the result are revealed by exact solution of simplified
equations, depicted in Fig. S6.
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