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Abstract
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt
signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt
also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide
view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by
transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple
time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of
changes in gene expression, involving components of both the canonical and the noncanonical
Wnt signaling pathways. A higher-order, systems-level analysis that combined independent
component analysis, waveform analysis, and mutual information–based network construction
revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors
were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly
inherited forms of Alzheimer’s disease and frontotemporal dementia (FTD), respectively. We
further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN
expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating
that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the
in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased
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and genome-wide analyses provide evidence for a connection between Wnt signaling and the
transcriptional regulation of neurodegenerative disease genes.

INTRODUCTION
Wnts constitute a large family of secreted, but spatially restricted, lipophilic signaling
molecules. They exert wide-ranging biological activities by initiating equally varied
signaling cascades (1, 2). The best-studied (“canonical”) Wnt signaling pathway involves
the disheveled (DVL) and Axin-mediated inactivation of glycogen synthase kinase–3β
(GSK-3β), producing an attendant increase in β-catenin, which activates lymphoid enhancer
factor (LEF) and T cell factor (TCF) (TCF/LEF)–dependent transcription. Negative
feedback, most prominently through increased expression of the intracellular canonical
signaling antagonists AXIN2, naked-1 (NKD1), and naked-2 (NKD2), tightly controls the
overall activity of this pathway (1–3). An emergent property of this complex regulatory
machinery is that the activity of the Wnt signaling pathway oscillates in the face of sustained
Wnt binding (4–7).

First identified as potent oncogenes, Wnts encode master regulators of fetal brain
development and continue to govern neuronal growth and survival in the adult brain (8, 9).
For example, Wnt1 is essential for neural crest induction and proper development of the
midbrain dopaminergic system (9–11) and inhibits apoptosis in various cell types (12–15).
Furthermore, Wnt1, through the canonical signaling pathway, maintains the multipotency of
human neural stem cells (16) and enhances neural progenitor proliferation and
differentiation (17).

Wnt directly binds to more than two dozen partners, activating at least six different second
messenger cascades in addition to the canonical pathway (1). As the number of signaling
pathways known to be initiated by Wnt has increased, so too has the number of identified
steps in each pathway and the number of components involved in mediating each step [for
instance, β-catenin alone has more than three dozen known binding partners (18)].
Furthermore, the potential for crosstalk between Wnt and other signaling cascades has
grown so extensive that these cascades resemble signaling webs more than directed
pathways. The richness of Wnt signaling has also frustrated attempts to discern the most
biologically important roles for this pathway from a myriad of plausible scenarios. Thus, it
is surprising that few studies have systematically studied this pathway from a genomic
standpoint.

Wnt signaling has also been implicated in several forms of neurodegenerative disease, most
prominently Alzheimer’s disease (AD) and frontotemporal dementia (FTD), through various
direct and indirect mechanisms (19–23). For example, Wnt modifies the activity of
presenilin and microtubule-associated protein tau (tau; MAPT), proteins encoded by two
genes that when mutated cause either AD or FTD, respectively. Presenilin deficiency leads
to β-catenin stabilization (24), and AD-causing presenilin mutations also disrupt β-catenin
function (25), providing a direct link between canonical Wnt signaling and genetic factors
that cause AD. Pathological tau phosphorylation is also a hallmark of both AD and a subset
of FTD cases, and GSK-3β is a tau kinase (26, 27). GSK-3β–mediated tau phosphorylation
accelerates tau-induced neurodegeneration in animal models of tauopathy (21), whereas
GSK-3β inhibitors have been touted as potential therapeutic agents in tau-related dementias,
such as FTD and AD (28, 29). Wnt signaling therefore may provide a bridge between
neurodevelopment and neurodegeneration (30, 31).

To develop an unbiased understanding of the global effects of Wnt signaling in the nervous
system from a systems biology perspective, we measured higher-order gene expression
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patterns in primary human neural progenitor (hNP) cells during the early phases of Wnt
signaling. This analysis revealed a complex pattern of transcriptional changes occurring over
a 72-hour period, which uncovered a strong connection between Wnt1-dependent signaling
networks and expression of genes implicated in the etiology of both AD and FTD, as well as
other neurodegenerative conditions. Haploinsufficiency of GRN (granulin), one of the genes
down-regulated by the Wnt1 signal, causes a dominantly inherited FTD; however, virtually
nothing is known about GRN regulation or how the progranulin (PGRN) protein it encodes
affects neuronal survival. As an experimental validation of our network predictions at the
level of a single gene, we investigated the potential mechanism of this interaction. We
discovered a reinforcing feedback relationship between the control of Wnt and PGRN
abundance, where decreased PGRN increased WNT1 expression, whereas Wnt1 repressed
GRN expression and decreased PGRN abundance. This further implicates aberrant Wnt
signaling in the etiology of FTD and supports investigation of Wnt pathway modulation in
the treatment of neurodegenerative disease.

RESULTS
A genome-wide time course of Wnt-induced changes in transcript abundance

The initial aim of this study was to obtain an unbiased view of the time-dependent changes
in gene expression caused by Wnt signaling. Because different Wnts can potentially activate
multiple distinct signaling cascades, we focused on the effects of Wnt1, which is a
consistent activator of the canonical pathway (32, 33). Our experimental design eliminates
many of the limitations encountered in previous studies of Wnt-mediated transcription,
including using few time points (34), relying on transformed or immortalized cell lines that
may poorly reflect normal human tissue (35), or surveying only a small fraction of the
transcriptome (36). Specifically, we measured genome-wide mRNA abundance with
Illumina Human RefSeq-8 BeadArrays at multiple time points (2, 4, 6, 8, 24, and 72 hours)
to optimally capture different early epochs after the initial Wnt signal (36).

After Wnt1 application, the individual time course of these changes in gene expression—
which could reflect changes in transcription, mRNA abundance, or both—showed various
patterns, including transients, monotonic changes, and oscillations (Fig. 1A). Although the
expression of only a minor fraction (0.3 to 20%) of genes was changed at any given time
point (Fig. 1B; t test, P ≤ 0.05), the expression of nearly two-thirds of sampled genes
changed at some point during the 72-hour time course examined. Overall, the largest
changes in gene expression, whether up or down, were apparent at 2, 6, and 24 hours; fewer
changes were observed at 4 and 72 hours.

At 2 hours, increases in gene expression predominated, whereas at 6 and 24 hours, most
differentially expressed genes showed decreased mRNA abundance compared to untreated
cells. After the initial wave of increased transcript abundance at 2 hours, we found that
quantities of most of these mRNAs had declined at 6 hours, then increased again at 8 hours,
only to return to near-baseline activity by 24 to 72 hours. Next, using real-time quantitative
polymerase chain reaction (qPCR), we examined whether we could confirm the initial burst
of increased gene expression and the overall patterns of changes in gene expression recorded
by the microarrays. First, we examined changes in the expression of 25 genes at t = 2 hours.
The genes that compose this sample showed a wide range of changes in expression at t = 2
hours rather than changing in lock-step with the bulk of genes at this time (Fig. 1B).
Eighteen of 24 genes (75%) identified as changing in gene expression by microarray showed
a consistent pattern of changes when analyzed by qPCR (Fig. 1C). After range
normalization, the microarray and reverse transcription–PCR (RT-PCR) data exhibited a
significant Pearson correlation coefficient (ρ = 0.48, n = 24; one-tailed P ≤ 0.01). Next, we
examined the changes in abundance for a subset of six mRNAs across all time points (Fig.
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1D). From time point to time point, the direction of expression changes was the same 83%
of the time, with a high collective correlation of 0.68 ± 0.14 (median ± SD) between qPCR
and microarray results. Together, these data indicated a high degree of reproducibility of the
microarray-based measurements of changes in mRNA abundance across time.

Because Wnt1 is the archetypical ligand for the canonical pathway, we tested the temporal
relationship between activation of this pathway and the observed pattern of transcriptional
changes. In hNPs stably expressing a TCF/LEF reporter (16, 37), signaling through the
canonical pathway peaked 4 to 6 hours after Wnt1 application, returning to baseline by 24
hours (Fig. 1E). This monophasic rise and fall in activity of the canonical pathway coincides
predictably with the initial changes in gene expression (Fig. 1B), but contrasts with those
changes at later time points. These data suggest that canonical signaling may initiate a more
complex cascade of changes in either transcription or mRNA stabilization, so that later
events are mediated by both canonical and noncanonical signaling. Consistent with this
hypothesis, we observed substantial changes in the expression of components of the
noncanonical Wnt signaling pathways (fig. S1).

Successive waves of increases and decreases in transcription could arise from a set of
coherently oscillating genes or represent a more complex summation of asynchronously
changing sets of genes. The latter interpretation is supported by a closer inspection of the
specific genes changing at each time point. For example, of the 2848 genes showing
increased expression at 2 hours, less than half showed a decrease in mRNA abundance at
later time points, with most of those showing decreases at 6 hours (Fig. 1F, upper left trace,
and table S1). There is also a limited overlap of the genes participating in the successive
bursts of increased expression. For example, only 153 genes showed increased expression at
both 2 and 8 hours, representing 5 and 14% of the total number of genes changed at those
time points, respectively. Together, these data suggest the presence of multiple
superimposed transcriptional programs that sum to form apparent waves of altered gene
expression.

Within this complex picture, several time-dependent functional patterns emerge, including
the expected Wnt1-induced transcription of many genes implicated in the canonical Wnt
signaling pathway, including WNT5B, FZD (frizzled) 2, 4, and 8, AXIN1, GSK3B, CTNNB1
(β-catenin), TCF7L2, NKD1, and AXIN2 (table S2). The products of many of these genes
stimulate proliferation, repress differentiation, or are direct feedback regulators of the Wnt
pathway itself (for example, Axin2). These apparent waves of Wnt1-mediated transcription
are consistent with the oscillatory-like patterns of Wnt target gene expression that underlie
operation of the embryonic vertebrate segmentation clock (38, 39).

Pathway analysis
We performed a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis (40) as a first step in unbiased characterization of the function of
differentially expressed Wnt1-induced genes. This analysis confirmed early enrichment (t =
2 hours) for genes involved in Wnt signaling (Fig. 2A, Table 1A, and table S2). Two-thirds
of the genes in the canonical Wnt pathway represented in the KEGG differentially regulated
after the Wnt1 signal, compared to the control condition, validating the activation of Wnt
signaling in these experiments.

Our analysis also revealed enrichment for genes and pathways involved in any of the
following three broad categories (Table 1, A and B, and table S3): (i) cell proliferation or
death, (ii) energy metabolism, and (iii) regulation of the transcriptional or translational
machinery (representative KEGG pathways at early and late time points; figs. S2 and S3).
Because more than 90% of genes that show changes in gene expression at each time point
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do so in the same direction, GO analysis was performed on all differentially expressed genes
irrespective of the direction of the change. Few differences were noted when these changes
were analyzed with respect to the direction of the change in expression (table S3B).

KEGG pathway analysis also revealed a significant enrichment of neurodegenerative
pathways (Table 1A) including the AD (Fig. 2B), Huntington’s disease (HD) (fig. S3), and
Parkinson’s disease (PD) pathways, consistent with the hypothesized role of Wnt in
neurodegenerative disease (21, 23, 41–46). Moreover, we saw enrichment for genes
associated with AD in the National Institutes of Health Genetic Association Database (table
S4). Indeed, nearly one of three of the genes in the KEGG AD pathway were among the
earliest group of genes showing increased Wnt1-mediated expression (t = 2 hours), a
biologically meaningful and statistically significant result (see Materials and Methods).
Because this analysis was based on an unbiased and genome-wide derived overlap, these
data provide a first tier of systematic evidence for a causal connection between Wnt
signaling and regulating expression of genes implicated in neurodegenerative disease.

Time series analysis
Our initial differential expression analysis revealed complex patterns of changes in gene
expression. Analyzing this level of biological complexity across time is complicated by the
nature of the time series data itself. For example, time series data are often mathematically
nonstationary and show autocorrelation, creating nonlinearities or discontinuities in the data,
which limit the use of many statistical techniques that assume fixed or Gaussian probability
distributions (47). A further complication of analyzing time series data is that expression
patterns in pairs of genes are often not monotonically correlated, rendering inappropriate
commonly used nonparametric tests of association, such as the Spearman rank correlation
(48, 49).

To reach a more complete biological understanding of Wnt1’s effects, we analyzed these
data in three separate ways, using distinct statistical techniques that are relatively insensitive
to the underlying data’s distribution: (i) dynamic time warping (DTW) (50–52), (2)
independent components analysis (ICA) (53, 54), and (3) mutual information–based network
analysis (55).

A systems-level analysis of Wnt1 expression trajectories using DTW
The signal processing method of DTW provides a flexible and robust metric for measuring
the difference between two waveforms (50–52). DTW creates this distance measure by
locally compressing or stretching (warping) one trace to best match the other and then
summing the distances of individual aligned elements. In this way, DTW provides high
power to detect differences in time series by accounting for the trajectory of changes in
expression over time, unlike a purely statistical technique, such as analysis of covariance
(ANCOVA). To better establish the applicability of DTW to microarray time series data, we
analyzed how noise or phase shifting affected DTW-based gene ranking or GO enrichment,
first with simulated data and then as applied to our Wnt1 data set. First, we found that DTW
distance increased linearly with random noise and in proportion to the length of random
traces being compared (fig. S4, A and B). Next, we assessed the effects of phase shifting of
identical waveforms on the resulting DTW distance (DTWdist) and compared this to the
Spearman correlation, a more common metric in microarray analysis. Because zero is the
lower boundary of DTWdist, increased phase shifting resulted in monotonically increasing
distances, unlike the correlation coefficient, which crossed the zero point (fig. S4, C and D).
This relationship reduces the ambiguity in interpreting DTW-measured distances that are
zero (or very small), an advantage of DTW over correlations measures (that is, a DTW
distance of zero necessarily indicates that two traces are highly similar, not merely in phase).
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When comparing less idealized transients of gene expression, DTW distance again conforms
better to the common sense notion of association than does either the Spearman or the
Pearson correlation (fig. S4E).

We used DTW to identify those genes most strongly influenced by Wnt1 signaling by
measuring the warping distance between the time course of changes in gene expression in
cells treated with Wnt1 and that in untreated cells (longer DTW distances represent traces
that are more Wnt1-specific). When these distances were ranked from most to least Wnt1-
specific (high to low), they initially fell off exponentially (with an exponential decay
constant, τ = 0.94, and correlation coefficient, R2 = 0.99; fig. S5A), where one decay
constant is equivalent to 300 genes. Using this natural breakpoint, we limited further
analysis to the top-ranked 300 genes (table S5A). Sensitivity analysis revealed that this
ranking predictably degraded with the addition of increasing noise (fig. S5, B and C).

KEGG pathway analysis of the native data revealed an enrichment for cancer-related genes
(fig. S6), consistent with Wnt1 being a protooncogene. Likewise, a GO analysis of these
genes demonstrated enrichment for genes implicated in neurogenesis, angiogenesis, or axon
and dendrite growth (table S5B), and genes associated with neuropsychiatric disease
(disorders with both psychiatric and neurodegenerative features) including the dementia-
related genes APP (amyloid precursor protein), MAPT, and GRN (table S5C).

A functional ICA analysis of the Wnt1 expression network
Our studies of differential gene expression and ontological enrichment rest on the following
assumptions: (i) Perturbations (such as drug application) alter existing biological processes
by changing patterns of gene expression across time. (ii) Each gene product may be involved
in many different biological processes (for instance, β-catenin has different functions at cell
surface and nucleus). (iii) Multiple genes may subserve a single biological process. (iv) Only
a few genes are essential for a given biological process, although many other genes may
contribute to it. On the basis of this biological model (fig. S7A), we can formulate an
analytical model (fig. S7B) for the purposes of computation. By viewing the overall pattern
of gene expression obtained from microarray analysis as resulting from the sum of many
different biological processes, our analysis becomes a special case of blind source
separation, that is to say, recovery of a set of mixed signals, with little or no information
about source signals or the mixing process. ICA, which extracts non-Gaussian statistical
structures from high-dimensional data (54, 56–59), is among the most widely used
techniques for blind source separation and has been applied to the analysis of microarray
data (58).

ICA can decompose the observed expression data into the most likely original independent
sources of variation [a visual demonstration of ability of parallel decomposition ICA (pICA)
to recover separate signals from highly convoluted data is illustrated in fig. S7C]. When
applied to gene expression data, these independent components (the original sources of
variation defined by ICA) will ideally correspond to a set of biologically coherent processes
(that is, convergent physiological effects). For example, a “neuronal maturation” component
might be dominated by groups of co-regulated genes involved in coordinating processes like
neurotransmitter packaging, neurite outgrowth, and synapse formation.

We first performed pICA on the expression data from Wnt1-treated cells, pooled across all
seven time points and replicates, producing seven statistically independent components
(ICA1-7). In each component, each gene is valued by its statistical contribution to that
component, termed gene loading. In each component, genes with gene-loading values below
a threshold of 3.0 were discarded from the component, creating modules (ICM1-7) that
captured only the most relevant genes in that component. Examples of normalized time
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series data for the top 10 genes, by gene-loading value, in each of seven independent
components are displayed in Fig. 3A. In creating these modules (that is, loading-thresholded
components), we used a cutoff far more stringent than those previously reported so as to be
conservative in our analysis (58).

The individual genes that contributed most strongly to each component were subjected to
GO and KEGG analysis. Using ICA, we observed modular ontologic enrichment, consistent
with biologically meaningful gene clustering (Fig. 3B and table S6). For example, KEGG
annotations delineated a single Wnt signaling–enriched component and a single AD-
enriched component (ICM2). However, we also observed some redundancy, with multiple
components enriched for genes related to altered translation or ribosomal function.
Sensitivity analysis to evaluate the robustness of this technique revealed that the ability of
ICA to recover relevant biological processes degraded gradually in the face of increasingly
noisy expression data (table S7). For example, ICA still recovers a Wnt module even when
the noise present in the underlying data is increased by a full SD.

As a further biological validation of ICA-based clustering, we sought to integrate our newly
delineated expression modules into established gene-protein interaction networks, using the
public interaction database MiMI (http://mimi.ncibi.org/MimiWeb/main-page.jsp) as a
generator (60, 61). Starting with the gene ranking in the Wnt-specific ICA module ICM2, we
created three interaction networks seeded with the (i) top 20 odd-ranked genes (genes ranked
1st, 3rd, 5th…19th; top odd), (ii) top 20 even-ranked genes, or (iii) the bottom 20 odd-
ranked genes. We compared the degree of overlap between the odd versus even (top)
networks and the top versus bottom networks, with the expectation that top genes (even or
odd) should extract networks more similar to each other than to the network formed from
lower-ranked genes (bottom). Compared to the bottom network, the top odd gene network
recovered three times as many genes from the even network, including the seed gene
granulin (GRN; Fig. 3C). Using a different experimental modality, these data confirm
functional associations between highly ranked genes in our ICMs.

As a complement to the interaction network building, we sought to place these ICA-derived
gene modules into the context of known changes in expression. We probed each gene set
against the 3429 gene expression profiles available through the Broad Institute Gene Set
Enrichment Analysis (GSEA) Molecular Signatures Database (Fig. 3D and table S8). The
resulting gene set enrichment analysis was highly complementary to the GO analysis
reported above. Consistent with Wnt1’s role in oncogenesis, the genes in each module were
frequently overrepresented in cancer-related data sets. Similarly, there is good agreement
between GSEA signatures and the more specific GO categories identified above (Fig. 3B).
For example, module 1 was enriched for GO-annotated angiogenesis-related genes, and the
genes from this module were overrepresented among genes expressed by regenerating blood
vessels. In contrast, genes present in the Wnt-specific module (ICM2) showed the greatest
overlap with genes showing increased expression in the brains of Alzheimer’s patients (Fig.
3D; Fisher’s exact test, P ≤ 5 × 10−11), strengthening the possible connection between Wnt1
signaling and dementia (Fig. 2).

The two methods, DTW and ICA, address two fundamentally different biological questions
and were used to provide convergent lines of evidence for identifying genes mediating the
Wnt1 response. DTW identified genes specifically influenced by Wnt1 treatment by
comparing the trajectories of gene expression for Wnt1-treated hNPs versus untreated hNPs.
As presented, DTW did not explicitly provide information about which genes might act
together to mediate similar biological processes. Our ICA decomposed multivariate
expression data from Wnt1-treated hNPs into parallel statistical components, a linear
representation of maximally non-Gaussian source signals that are as statistically independent
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as possible. In effect, this parsed genes into groups that potentially serve similar biological
processes. One would expect that the genes common to both lists would be enriched for
those with the strongest biological relevance, even if the magnitude of the overlap is modest.
That these lists do overlap indicates that the cohort of common genes plays a fundamental
role in mediating Wnt1 signaling. Specifically, we observed a significant overlap (17%;
hypergeometric test, P ≤ 10−14) in the gene lists obtained by DTW and ICA (table S9). Of
the 14 genes identified by DTW that have a genetic association with neuropsychiatric illness
(table S5C), 4 genes were shared by the Wnt-specific ICA module (ICM2): APP, GRN,
AQP4, and CTSD, the first two being associated with early-onset dementia.

Evidence from our GO, MiMI interactome, and GSEA-based analyses pointed to the
biological importance of the ICM2 module, because it was enriched for Wnt- or dementia-
related genes, prompting us to more fully investigate the interplay among its constituent
genes. First, we performed a weighted gene coexpression analysis (WGCNA) of the genes
that compose ICM2 (62–65). WGCNA performs unsupervised clustering of co-expressed
genes into modules on the basis of topological overlap (TOM), a measure of the degree to
which a given pair of genes share common neighbors (64). When applied to ICM2,
WGCNA clustered the constituent’s expression profiles into four distinct submodules, each
being described by a characteristic module eigengene (Fig. 4, A and B). These eigengenes
are composite gene expression vectors derived from the first principal component of the
measured mRNA abundances that are used to concisely describe the overall variability of
the data (66, 67). Moreover, GO analysis of each submodule revealed unique patterns of
significant ontologic enrichment, despite the small number of genes present in each
submodule (Fig. 4C).

Advanced Bayesian methods allow one to assess causality among genes with covarying
expression patterns. To further explore these relationships in ICM2, the Wnt-dementia
module, we constructed a dynamic Bayesian network (DBN) for each WGCNA-clustered
submodule, using the G1DBN package (68, 69). We then coded the resulting network to
reflect overlap with either Wnt1-modulated genes previously identified by DTW or those
ICM2 genes with increased expression in the hippocampus of Alzheimer’s brains (70). As
an internal validation of this approach, we observed that the genes identified as “hubs” in the
network were primarily drivers of, rather than targets of, “spoke” genes (Fig. 4, D and E).
The two most prominent hubs were the delta-like 1 homolog (DLK1), which encodes a
Notch antagonist, and the stem cell marker promonin-1 (PROM1). As illustrated, DLK1
forms a nexus connecting the “Blue” and “Turquoise” submodules. Isolating the genes
forming connections to DLK1 (Fig. 4D) produced a subset of 103 genes, with statistically
significant enrichment for both DTW-identified genes and genes with increased message in
the hippocampus of Alzheimer’s patients (70). Closer inspection revealed that this
submodule contains several canonical Wnt effectors (including DVL3, APC2, and TSC2), as
well as two genes implicated in causing dementia [APP and GRN, which binds both DLK1
and SORT1 (sortilin-1; Turquoise submodule)], strengthening the link between Wnt1
signaling and dementia (71–73).

Coexpression network analysis
Our previous network analysis revealed a highly probable link between Wnt1 signaling and
dementia but was limited to a small number of genes. To put these observed changes into a
more complete systems biology context, we performed a mutual information–based network
analysis (55, 74) as a means of systematically exploring the higher-order structure of Wnt1-
induced changes in gene expression across a much larger fraction of the genome. Mutual
information–based network analysis provides a robust measure of the statistical association
of gene expression patterns between gene pairs, but makes no assumptions about the
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underlying probability distributions (55, 74–78). The first step in our analysis was to
dimensionally reduce the data (and thereby decrease the data set) by pooling the genes
identified by DTW, ICA, or strong deviation from statistical normality (that is, a Gaussian
distribution), a common feature of genes that change expression over time, a procedure that
yielded 4398 genes. This reduced data set comprises the union of the most specifically
Wnt1-regulated genes and those showing the greatest changes in expression over time,
thereby providing the context for Wnt1-specific changes. Next, we constructed the Wnt-
induced mutual information–based network (see Materials and Methods and fig. S8), and
then pruned it on the basis of MRnet, the information-theoretic method of maximum
relevance–minimum redundancy (55). This revealed several prominent Wnt-related hubs,
two of which contained known dementia-related genes (Fig. 5, A to C). For example, five
Wnt genes, Wnt4, Wnt5B, Wnt6, Wnt8A, and Wnt8B, out of seven Wnts represented in this
set, colocalized to a nine-gene cluster centered on the hub gene COL25A1. COL25A1 is a
brain-specific membrane-bound collagen that inhibits fibrillization of β-amyloid and
associates with senile plaques in AD brains (79–82). Another hub that revealed a
relationship between Wnt signaling and regulation of dementia-related genes (Fig. 5C)
consisted of a nine-gene cluster centered on APOA4, which is associated with AD (83–85)
and is a paralog of the dementia gene APOA1 (85–88), and included two genes involved in
Wnt/β-catenin signal transduction, DVL2 and CTNNBL1. This cluster also contains the AD-
related genes, presenilin1 (PSEN1) and death receptor 6 [DR6; tumor necrosis factor
receptor (TNFR) superfamily 21: TNFRSF21], the FTD gene GRN, and TROY
(TNFRSF19), which has been implicated in failure of the adult nervous system to regenerate
(89). This grouping is all the more pronounced in that PGRN reduces inflammation by
binding to TNFRs and that PGRN degradation is blocked by APOA1 (90).

Experimental validation of network predictions
To test whether the in vitro network architecture predicted in vivo relationships—
specifically the clustering of dementia- and Wnt-related genes—we examined the effects of
loss of the hub gene APOA4. Using qPCR, we compared the expression of genes predicted
to be highly correlated with APOA4 in the hippocampi of APOA4 knockout to wild-type
mice. Loss of APOA4 substantially altered the expression of many neighborhood genes (that
is, genes one to two degrees separated from APOA4), including PSEN1, TNFRSF21 (death
receptor 6), TNFRSF19 (TROY), DVL2, and DVL3, validating network predictions in vivo
(Fig. 5D).

Thus, these unbiased expression analyses validated, at the whole-genome level, previous
hypothesis-driven work, suggesting a connection between Wnt signaling and
neurodegenerative disease (43, 45, 46, 91–94). Furthermore, both analysis of DTW-
differential expression and mutual information–based network analysis revealed a higher-
order relationship between GRN and Wnt pathway genes in hNPs. Little is known about the
biological function or regulation of GRN, except that haploinsufficiency causes a
dominantly inherited form of FTD (95–98). Therefore, we further investigated the
connection between Wnt and GRN.

Experimental characterization and validation of the Wnt-GRN (PGRN) relationship
We knocked down PGRN in hNPs using lentivirally transduced RNA interference (RNAi)
hairpins (Fig. 6, A to C), observing a 50% decrease in PGRN abundance, using gene-
specific RNAi, and no off-target effects on PGRN, using control RNAi (Fig. 6B).
Decreasing PGRN abundance significantly altered the abundance of the mRNAs encoding
several different Wnts, including WNT1 (Fig. 6C), which was increased nearly fourfold by
PGRN knockdown.
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To determine whether Wnt’s effects on PGRN depended on changes in expression, we
assessed Wnt1 regulation of GRN promoter activity. We found that Wnt1 significantly
repressed the activity of a human GRN luciferase reporter overexpressed in a human cell
line [human embryonic kidney (HEK) 293]. The time course of changes in reporter activity
was parallel to that of the Wnt1-dependent changes in GRN expression observed in primary
hNPs. Wnt1 repression of GRN-luciferase activity was maximal at 6 hours (Fig. 6D),
consistent with studies demonstrating that β-catenin abundance peaks 4 to 6 hours after Wnt
application in HEK293 cells (36).

Next, we examined the relationship between PGRN and Wnt1 signaling in primary hNPs.
We found that both Wnt1 and lithium, a GSK-3β antagonist that mimics canonical Wnt
signaling, decreased PGRN abundance in hNPs in a dose-dependent manner (Fig. 6E).
Along with the microarray and qPCR results above, these data indicate that PGRN and Wnt
reciprocally regulate each other’s expression in hNPs.

Finally, we sought to validate the connection between Wnt signaling and GRN expression by
means of expression data collected from GRN-haploinsufficient demented patients. This data
set (99) is composed of whole-genome expression data from the frontal cortex,
hippocampus, and cerebellum of patients with either sporadic FTD or GRN-haploinsufficient
FTD, or controls of similar sex and age distribution. We observed that various Wnt-related
ligands and receptors, and all four LEF/TCF transcription factors implicated in the canonical
pathway, were differentially expressed in tissue from either the frontal cortex (FTX), the
hippocampus (HIP), or both, of GRN-haploinsufficient FTD patients, compared to their
expression in tissue from the FTX and HIP of sporadic FTD patients (Fig. 7A). Moreover,
WNT1 expression was increased in tissue from the FTX and HIP of GRN-haploinsufficient
patients compared to tissue from the cerebellum, a region not affected by FTD (FTX: log-
fold ratio, 1.6; P = 0.006; HIP: log-fold ratio, 2.42; P = 0.053). In contrast, WNT1
expression was not significantly increased in the FTX or HIP of sporadic FTD patients.

Finally, we sought to identify the changes in gene expression that correlate most specifically
with GRN-mediated FTD and determine whether Wnt-related genes were overrepresented in
this set. To accomplish this, we first created a synthetic eigengene to represent those genes
exclusively exhibiting differential expression in the frontal cortex of GRN-haploinsufficient
FTD patients, but not in sporadic FTD patients, nor in the hippocampus or cerebellum or any
patients (Fig. 7B). By comparing idealized pattern of gene (eigengene) expression against
measured mRNA abundance of the other genes on the array, we found that 392 genes were
highly correlated with GRN haploinsufficiency and frontocortical localization. DAVID-
based GO analysis (40) of this gene set revealed significant enrichment for genes involved
in Wnt receptor signaling (EASE P = 0.001). Ingenuity-based analysis yielded a similar
enrichment for Wnt/β-catenin signaling genes (P = 0.004, Fisher’s exact test). Furthermore,
among this gene set, we found several β-catenin binding transcription factors, including
LEF1 and TCF7L2, two of the four best-described targets of canonical Wnt signaling (Fig.
7C). These data validate and extend the expression data, confirming a connection between
Wnt signaling and neurodegenerative pathways, including those associated with PGRN
deficiency in humans.

DISCUSSION
This study was designed to expand understanding of the role of Wnt signaling in human
neural development using hNPs as a model system. Because Wnts can activate various
intracellular signaling pathways, we used an unbiased systems biology approach to identify
the Wnt1 targets most relevant to neural stem cells. We found that Wnt1 altered transcript
abundance of a large number of genes in an oscillatory fashion. Although Wnt1 affected the
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expression of only a minority of genes at any given time point, it altered the expression of
more than half of the hNP transcriptome during the 24-hour period after treatment. We
showed that Wnt1 broadly affected most noncanonical Wnt signaling cascades, despite
being the archetypal ligand for initialing canonical (β-catenin) signaling. Moreover, Wnt1
activation of these canonical and noncanonical Wnt pathways appeared to widely influence
expression of genes mediating cellular metabolism (for example, steroid, purine, and
ribosome synthesis) in addition to their more well-known functions, proliferation or cell
fate. Using fetal progenitors as a model system, we found that Wnt1-responsive genes
showed a strong collective association with sets of genes implicated in neurodegenerative
diseases associated with aging, most prominently AD and FTD.

We used three complementary statistical workflows—DTW, ICA-WGCNA-DBN, and MI-
MRnet—to generate a consensus network view of the Wnt1 transcriptional program.
Individually and collectively, DTW, ICA-WGCNA-DBN, and MI-MRnet suggested a
connection between Wnt1 and PGRN expression and, by extension, a potential connection
between Wnt signaling and GRN-mediated FTD. Using a humanized inducible model of
GRN deficiency, we found that PGRN and Wnt1 reciprocally regulated each other’s
expression. Moreover, we found that the expression of numerous Wnt signaling genes was
increased in the frontal cortices of GRN-haploinsufficient patients compared to other brain
regions, or the frontal cortices of individuals without GRN mutations, indicating that this
connection is clinically relevant. The variety of altered Wnt signaling genes suggests that
they mediate a complex network of biological processes in GRN-haploinsufficient neurons.
Further in silico and experimental work will be required to delineate these processes and
which Wnt signaling genes are most relevant to them.

The Wnt1 gene expression network
Transcriptional oscillations have become increasingly recognized as a key feature of
synchronized developmental programs (6, 7). We observed that a single application of Wnt1
induced multiple waves of changed expression in cells derived from early fetal neural
progenitors over a 72-hour period. This is akin to what has been observed with the
transcription factor hairy and enhancer of split1 (Hes1), which drives variable period
oscillations in transcription within neural progenitors of the mouse telencephalon (100).
Similarly, Wnt3a produces oscillations within developing limb buds (5–7) that control the
rhythmic production of somites (precursors of the vertebrae) (6, 101), thereby linking the
segmentation clock and signaling gradients within presomitic mesoderm. We identified a set
of oscillating genes implicated in a wide range of biological pathways, including pathways
relating to angiogenesis, immune modulation, cell proliferation, energy metabolism, and
neuronal maturation (36, 38, 39). Thus, we propose that Wnt might serve a dual role in the
developing nervous system: Wnt may act within neuroblasts to initiate the set of parallel
developmental programs that are required for the formation of a mature neuron. In addition,
Wnt secreted by neuroblasts could synchronize neural maturation with the development of
necessary supporting tissue, such as vasculature and glia (102).

Regulation of PGRN expression
PGRN, like Wnt, was first described for its role in oncogenesis, and later shown to have
neurotrophin or growth factor–like activity (103–106). This led to the hypothesis that GRN
haploinsufficiency leads to a relative deficit of PGRN and thereby the death of neurons
within specific brain regions, such as the frontal cortex. However, more recent evidence
suggests that active suppression of neuronal GRN expression, not overall reduced amounts
of PGRN, precipitates frontal lobe degeneration (99, 107). Our findings that Wnt1 and
PGRN reciprocally regulate each other’s expression provide a biological model that could
potentially explain this active, neuron-specific decrease in PGRN.
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We found that suppression of GRN expression, essentially mimicking FTD-associated
human GRN haploinsufficiency, increased WNT1 expression, whereas Wnt1 suppressed
GRN expression in otherwise normal neuronal cells. Hypothetically, a haploinsufficiency-
induced reduction in PGRN could set up a negative feedback loop that actively suppressed
GRN expression (beyond the decrease in GRN resulting from its haploinsufficiency). Wnts
can act as autocrine or paracrine signals because they exhibit limited diffusion away from
the source (108, 109). Therefore, increased neuronal Wnt production would selectively
suppress expression of GRN in neighboring neurons, rendering them incapable of
compensating for haploinsufficiency (that is, unable to increase expression from their
unaffected allele). This model could explain several clinical pathophysiological observations
including (i) the concentration of PGRN in the blood of individuals haploinsufficient of
GRN levels can be far below the 50% that would be expected based on the decrease in gene
dosage (110–112), and (ii) cells in different brain regions of affected patients vary in their
ability to effectively maintain sufficient levels of PGRN synthesis (99, 107).

Whether increased Wnt signaling improves survival of GRN-haploinsufficient neurons
remains an open question. However, it is possible that these cells engage Wnt as an
alternative pro-survival signal. Compensating for the loss of PGRN-mediated tropism by
means of Wnt could partially normalize function early in the disease process. However, it
could ultimately contribute to cortical atrophy by further decreasing GRN expression. A
similar model of “compensatory engagement” has been proposed to explain the indolent
course and ultimate cognitive system failure in chronic neurodegenerative diseases like
Alzheimer’s (113, 114). Because Wnt1 asynchronously activates functionally distinct
transcriptional programs, it is possible that the pro-survival effects of Wnt1 could be
pharmacologically separated from its repression of GRN expression. Therefore, for
individuals with GRN haploinsufficiency, targeting the right subset of Wnt1 target genes
very early in life could conceivably prevent the onset of disease, without affecting the
protective effects of Wnt signaling.

In summary, our data support a role for Wnt signaling in clinical dementia in general, and
FTD more specifically. Together, the combination of functional genomic, bioinformatic, and
cell biological data supports a possible mechanism of GRN dysregulation in
haploinsufficient patients. These data lay the preclinical foundation for developing Wnt
modulators as potential treatments for PGRN-mediated FTD and other neurodegenerative
conditions.

MATERIALS AND METHODS
Primary cell culture

We generated human fetal neural progenitors as previously described (16, 115, 116) and
propagated them in human neural stem cell proliferation medium consisting of Neurobasal
A, 10% BIT 9500 (Stem Cell Technology), fibroblast growth factor 2 (FGF2) (20 ng/ml;
PeproTech), epidermal growth factor (EGF) (20 g/ml; PeproTech), leukemia inhibitory
factor (LIF) (2 ng/ml), and heparin (2 μg/ml). To eliminate the potential confounding effects
of FGF2 and EGF (117), we replaced proliferation medium with minimal growth factor
medium [Neurobasal A, 5% BIT 9500, and heparin (2 μg/ml)] 48 hours before Wnt1
application. After this growth factor washout, the medium was again replaced 100% to
eliminate autocrine factors that might have accumulated (16). hNPs were divided into
treatment and control groups, and recombinant Wnt1 (400 ng/ml; PeproTech) was applied to
the treatment groups. hNPs were harvested at time = 0, and then both Wnt1-treated and
untreated control NPs were harvested at 2, 4, 6, 8, 24, and 72 hours. Three biological
replicates were collected at each time point after Wnt1 treatment. For PGRN knockdown
experiments, hNPs expressing pLCR-RNAiPGRN were differen-tiated in medium
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supplemented with 1% fetal calf serum (FCS; Hyclone), 500 μM all trans-retinoic acid
(Sigma), 10 μM forskolin, NT3 (20 ng/ml), and brain-derived neurotrophic factor (BDNF).
Functional confirmation of PGRN-related effects was performed on hNP lines derived from
separate individuals than those whose cells were used for the time series microarray
experiments. HEK293 cells were propagated in Dulbecco’s modified Eagle’s medium
(DMEM), 10% FCS, and 1× Antibiotic-Antimycotic mix (Invitrogen). Recombinant human
Wnt1 (PeproTech) was used at 200 ng/ml.

Viral preparation, infection, and knockdown
Lentivirus for overexpression or inducible knockdown of gene expression was produced as
previously described (16, 118, 119) (see Supplementary Methods for details). Hairpins
directed against GRN were designed, cloned into either pLCR or pTRIPZ (Open
Biosystems) using the PCR-shagging protocol (120), and then tested for their ability to
achieve greater than 50% knockdown. PGRN knockdown in TRIPZ-infected cells was
induced by addition of doxycycline (2 μg/ml). APOA4 knockout mice were generated by
homologous recombination and maintained as previously described (121, 122).

Immunodetection
Immunoblotting and immunocytochemistry of whole-cell lysates or cultures were performed
by standard methods, essentially as previously described (123) (see Supplementary
Methods).

Reporter assays
GRN promoter analysis was performed in HEK293T cells transected (1:50) with Renilla
luciferase plasmid (pRL-EF) and either constitutively active firefly luciferase or pCMV-
Tag4a PGRN expression plasmid (Switchgear Genomics) and then processed according to
the manufacturer’s instructions (Dual-Luciferase Assay; Promega). Wnt activity was
assessed essentially as previously described (16) (see Supplementary Methods for details).

Microarray analysis
Total RNA was harvested from hNPs with the RNeasy kit (Qiagen) according to the
manufacturer’s protocol. Spectrophotometry [NanoDrop; A260/280 (absorbance at 260/280
nm), −1.8] and the Agilent Bioanalyzer were used to determine RNA concentrations and
RNA quality. Total RNA (200 ng) was amplified, labeled, and hybridized to HumanRef-8v2
and v3 Expression BeadChip (Illumina). Data were preprocessed through BeadStudio
(Illumina) to produce raw output files. All further processing was conducted in the R
statistical computing environment (http://www.r-project.org/). When indicated, background
correction, variance-stabilizing transformation (VST), and robust spline normalization
(RSN) were applied using the Bioconductor package LUMI (http://www.bioconductor.org).
Probes that varied in sequence between platforms were eliminated, leaving 18,396 probes
that were examined in all experiments described herein.

Time point differential expression analysis
Microarray-based measurements of mRNA expression were log2-transformed, and then at
each time point, the values from untreated control hNPs were subtracted from the measured
values for Wnt-treated hNPs. By applying this procedure on a gene-by-gene basis, we
created a data set in which genes whose expression was unaffected by Wnt1 treatment
would be expected to have a normalized mean expression of zero. Significance of
differential expression at individual time points was calculated with a zero-centered, one-
way t test. Differential expression ratios and P values on the in vivo Human FTD data set
[Gene Expression Omnibus (GEO) ID: GDS3459] were calculated in R with the Limma
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(Linear Models for Microarray) differential expression analysis package (124). The
uncorrected P values were computed from a Bayesian moderated t test (124). For qRT-PCR,
complementary DNA (cDNA) was generated from total RNA using random hexamers and
SuperScript III (Invitrogen). Real-time PCR was conducted with SYBR-Rox SuperMix
(Bio-Rad) and an HT-7900 (Applied Biosystems) and statistically analyzed in R with the t
test or ANCOVA methods adapted from available SAS code (125).

GO analysis
GO analysis was performed with DAVID Functional Annotation Bioinformatics Microarray
Analysis software (40), except for the sensitivity analysis where topGO was used (126, 127).
In DAVID-based analyses, the reported P values are derived from the Expression Analysis
Systematic Explorer (EASE) score probability, a modified Fisher’s exact test that is more
conservative than the standard Fisher’s exact test in examining P values of gene lists (128).
Where indicated, significance of overrepresentation was adjusted for multiple comparisons
to control the false discovery rate (FDR) by means of the Benjamini-Hochberg step-down
procedure for calculating the FDR in the case of independent tests or the approximated FDR
tools provided in DAVID (40). All level 5 GO Biological Processes (BPs), the highest-level
terms in the BP GOgraph structure (129), or KEGG pathways that remained significantly
overrepresented (FDR = 5%) were reported. Ingenuity-based analysis reports enrichment
probabilities based on the Fisher’s exact test.

Dynamic time warping
Whole time course analysis used a DTW-based approach (50, 51, 130) to calculate the
distance between Wnt1-treated and control time series gene expression data on a gene-by-
gene basis, using all 18,396 probes. In brief, DTW locally compresses or stretches (warping)
one waveform to best match a reference waveform. The more warping that is required, the
greater the difference between the two waveforms. Using this scheme, greater distances
between trajectories for a given gene indicate a larger effect of Wnt1 treatment. Calculation
of warping paths used the full data window, unconstrained endpoints, and the Euclidean
distance to measure path differences (130). DTW sensitivity analysis: (Random traces)
DTW distance was computed between randomly generated traces containing between 10 and
40 time points, and the same time course with increasing amounts of added Gaussian noise
(μ = 0, 0 ≤ σ ≤ 1). DTWsimilarity (sDTW) was computed as follows: sDTW = 1/(1 +
DTWDist).

Mutual information–based network analysis
Wnt1-induced networks were inferred in four steps on a refined gene list. (i) Dimensional
reduction: The refined gene list was created by pooling the following: ICA-identified genes,
the top 300 DTW-identified genes, and those genes with significantly nonnormal
distributions, as assessed by either the Jarque-Bera skewness test or the Anscombe-Glynn
kurtosis test (P ≤ 0.05). (ii) Network building: We calculated the weighted gene
coexpression network on the basis of the entropy normalized mutual information (see
below) distance (131) between each pair of genes in our refined list. First, data were
discretized; that is, continuous variables were converted into discrete ones by equal
frequency binning. Second, corrected marginal entropy (HX, HY) and joint entropy (HXY)
were calculated from raw discrete marginal and joint probabilities with a James-Stein–type
shrinkage estimator, which is robust for small sample sizes (132, 133). Raw mutual
information (MI) measurements between gene pairs were calculated from the marginal and
joint entropies according to the equation MI(X,Y) = H(X) + H(Y) − H(X,Y), expressed in
natural bits (nats), where 1 nat = log2(e) binary bits. These were transformed into a
maximum entropy-normalized dissimilarity metric (entropy-normalized MI) (131). This
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metric was calculated according to . Next, D’ was scaled according
to MI(X,Y) = log2(e)*D’(Max – Min). (iii) Network pruning: We eliminated low probability
connections from this network with the “maximum relevance, minimum redundancy”
(MRnet) criteria (133). (iv) Final refinement: networks were further pruned by eliminating
edges that fell below 1 bit of information (fig. S8). The resulting sparse network
approximated a power-law distribution of connections, typical of the scale-free topology of
gene-expression and protein networks (134, 135).

Parallel independent component analysis
Eigenarrays corresponding to parallel statistically independent components were calculated
using an R implementation of the fastICA algorithm (136). pICA was used to extract seven
independent components from the expression data for the Wnt1-treated hNPs. Because the
ICA algorithm requires searching the maxima of a target function, the final output may
reflect local rather than absolute maxima.

Modeling suggests that the ordering of genes in individual components is relatively, but not
absolutely, stable for those genes whose gene loading exceeds a threshold of 3. To overcome
this limitation (56), we created consensus components by reseeding the fastICA 250 times
and then median-averaging the gene loading for each gene in each component. Because the
fastICA output is not ordered, but the ranking of gene loadings for a given component was
>90% identical from run to run, we used the Damerau-Levenshtein distance to match
component lists to create seven consensus independent components.

Other network analyses
Topological overlap–based WGCNA networks and dynamic Bayesian network were
performed as described (62–65) in R (http://www.r-project.org/).

Disease eigengene analysis
The FTD data (99) were downloaded from the gene expression omnibus Web site (GEO ID:
GDS3459) and then log2-transformed before further analysis. The disease-specific
eigengene was calculated to reflect perfect up-regulation in the specimens from the frontal
cortex of GRN-haploinsufficient patients, but unchanged expression in other regions and
other disease states. The putative disease eigengene is itself a vector of length equal to the
number of samples in the data set. Each element is limited to the values of {−1,0,1}, where
thesevalues correspond to either up-regulation, no change, or down-regulation in a given
sample. Then, this vector is pairwise-correlated with the expression of every gene using the
Spearman rank correlation. [This measure is more robust than the previously used Pearson
correlation (62, 63, 135), being less sensitive to outliers and other nonlinearities in the data.]
A Spearman correlation (ρ ≥ 0.40) was chosen, which is equivalent to a raw *P ≤ 0.001, as
calculated with R statistical software. The underlying algorithm used by the software
calculates the P value as follows: The distribution of Spearman’s rank correlation
coefficients (ρ) in the null case (zero correlation) can be approximated by several methods;
however, for larger sample sizes (n ≥ 30), it is nearly the t distribution (137, 138). Using the

relationship  (137, 138), we calculated that a ρ = 0.4, n = 56
produces a Student’s t ≈ 3.21. In turn, this t value and n = 56 are roughly equivalent to a P =
0.001, using tables readily available in most introductory statistics textbooks.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Wnt1-induced changes in the human neural progenitor transcriptome vary across time. (A)
Representative genes showing common patterns of changes in gene expression over 24
hours, normalized to initial values. (B) Genes with significantly (P ≤ 0.05; t test) increased
(magenta) or decreased (cyan) message abundance after Wnt1 application. (C and D) qPCR
validation of microarray data. (C) Bars are range-normalized changes in expression (2 hours
versus control) showing high correlation in directionality of expression, array (ILMN)
versus qPCR (ρ = 0.48, n = 24 genes; one-tailed P ≤ 0.01). (D) Time series plots showing
high correlation between qPCR- and microarray-quantified transcript. (E) Canonical Wnt
reporter: Wnt1 applied to hNPs stably expressing a LEF/TCF-dsGFP reporter (n = 4
cultures) (139) causes a time-dependent increase in canonical activity that peaks between 4
and 6 hours. (F) Overlap in gene expression changes across time. (Upper left) Plot showing
the fraction of genes whose message increased at 2 hours, but consistently decreased at
subsequent time points. (Top, left to right) Venn diagrams showing the overlap of genes
whose message increased (magenta) at both 2 and 8 hours or decreased (cyan) at 6 and 24
hours. (Bottom) Venn diagrams of genes whose message increased at 2 hours and then
down-regulated at 6 hours (left), down at 6 hours then up at 8 hours (middle), or up at 8
hours and down again by 24 hours (right).
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Fig. 2.
Wnt1 modulates genes implicated in Wnt signaling and AD. (A) KEGG pathway: graphical
summary of the diversity of Wnt signaling–related genes (canonical and noncanonical),
significantly enriched (FDR ≤ 5%) at 2 hours after Wnt1 application (n = 59 of 151 KEGG
Wnt genes). Significantly increased (magenta) or decreased (cyan) mRNA abundance (t test;
*P ≤ 0.05). (B) KEGG AD pathways highlighting genes (magenta) whose message was
significantly increased by Wnt1 at t = 2 hours (t test; *P ≤ 0.05). (See fig. S9 for scalable
version of this figure.)
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Fig. 3.
Unsupervised parallel independent component analysis (pICA) blindly separates gene
expression patterns by biological function. (A) Normalized, mean expression time course for
the top 10 genes in each ICA component, ranked by gene loading. (B) GO enrichment via
DAVID was performed on each independent component module after thresholding at a
gene-loading level of 3.0. Colors delineate individual modules. Listed are the top
nonredundant level 5 biological processes (129), disease ontologies (underlined), or KEGG
pathways (boldface), with associated P values (n.s., not significant; n = number of genes per
module). (C) Overlapping MiMI interactome networks built using the top 20 odd-ranked
genes versus the top 20 even-ranked genes from ICM2 [Top Odd versus Top Even (left) or
Bottom Odd versus Top Even (right)] networks built from the bottom 20 genes versus Top
Even genes. The Top Odd network recovered significantly more Top Even genes (turquoise
circles; n = 24) than did the Bottom network (magenta circles; n = 8). (D) Genes in each
ICM were probed against the Broad Institute’s Molecular Signatures Database. The most
highly enriched data set is presented for each module, as well as a representative sampling
of other significantly enriched data sets. (See fig. S10 for scalable version of this figure. See
table S8 for a full listing of GSEA-identified data sets.)
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Fig. 4.
Combined topological overlap–based clustering and dynamic Bayesian network construction
links Wnt1 signaling with changes in dementia-related genes. (A and B) WGCNA clustering
of ICM2 genes: Wnt1-stimulated expression time courses for the genes that compose the
ICM2 module were averaged and then subjected to TOM-WGCNA–based clustering (A).
This produced four submodules (Mustard, Brown, Blue, and Turquoise). (B) Submodule
eigengenes, where singular value decomposition was used to extract a characteristic first
principal component eigengene for each submodule. The y axis is eigengene expression. (C)
GO analysis reveals functional uniqueness of individual submodules. (D and E) Dynamic
Bayesian network (DBN) depicting causal relationships, within each module. (D) Overview
of the DBN-based causality network. Edge color codes the original submodule. Node color
indicates those genes identified by DTW analysis (magenta; n = 23). Outlined diamonds
denote those genes whose expression was increased in the brains of Alzheimer’s patients (n
= 20) (70). DLK1 forms the primary hub in this network. [Note: SORT1, like DLK1, is a
binding partner for PGRN (73).] (E) A more detailed view of the DLK1 hub and its
associated genes, revealing a significant overlap (hypergeometric P ≤ 0.001) with DTW-
identified genes and a strong enrichment for genes with increased message in AD brains.
Transcriptional drivers (blue dots), targets (magenta arrowheads). (See fig. S11 for scalable
version of this figure.)
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Fig. 5.
Wnt1 induces a gene expression architecture that correlates many well-known dementia
genes with Wnt-related signal transduction. (A to C) Microarray-based gene expression data
were generated from Wnt1-treated or untreated hNPs, followed at seven time points over 72
hours and repeated in triplicate. Displayed is the subset of the MINA (mutual information–
based network analysis)–based network that contains connections that exceeded a threshold
of 1.1 bits. (A) Multiple Wnts cluster around COL25A1, an AD-related gene. (B) CTNNB1
(β-catenin) and CXCR4 hubs. (C) Neighborhood containing a dense cluster of dementia
[magenta; presenilin (PSEN1), GRN, APOA4, DR6 (death receptor 6)] and Wnt
transduction–related genes. Nodes are color-coded to reflect genes implicated in neural
development (orange), dementia (magenta), Wnt signaling (cyan), or diseases distinct from
dementia (yellow). [Note: CCNT1 (cyclin-T1) is a binding partner of PGRN.] (D) Loss of
APOA4 dysregulates dementia hub genes: qPCR of hippocampal gene expression among
wild-type and APOA4-null mice reveals significant changes in the expression of connected
genes (blue), relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), but not the
other Wnt-dementia hub gene COL25A1 (orange). Values are fold changes in gene
expression calculated with the ΔΔCt method (125) [*P ≤ 0.05; n = 4 brains, PCR-ANCOVA
(125)]. (See fig. S12 for scalable version of this figure.)

Wexler et al. Page 28

Sci Signal. Author manuscript; available in PMC 2013 December 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
PGRN knockdown increases Wnt1 expression. (A) Lentiviral vector using CAG promoter is
not silenced in hNPs and knocks down PGRN: hNPs were infected with lentiviral vector
expressing DsRed2 and RNAi against GRN. The color plate illustrates hNPs immunolabeled
for PGRN (green) and DsRed2 (red), under control conditions. Scale bar, 25 μm. (B)
Western blot analysis of PGRN: At 2 weeks, cell lysates were collected, and PGRN
abundance was analyzed by Western blot, demonstrating PGRN knockdown (n = 4). (C)
qPCR for Wnt1 mRNA showing that GRN knockdown significantly alters Wnt expression:
Bars indicate fold change in Wnt1 expression when normalized to either the general internal
control β-actin (reflecting total cells) or the vector-derived DsRed (reflecting RNAiGRN

expression; means ± SEM). n = 3; t test, *P ≤ 0.05. (D and E) Canonical Wnt signaling
dose-dependently inhibits PGRN transcription and expression: (D) Wnt1 significantly
represses baseline activity of GRN promoter in HEK293 cells transfected with a GRN
luciferase reporter [n = 4; analysis of variance (ANOVA), *P ≤ 0.05]. (E) Western blot
analysis reveals linear dose-dependent reduction of PGRN abundance in hNPs 4 hours after
bath application of Wnt1 or lithium (Li) [n = 4; doses indicated; Pearson R2 = 0.99 (Wnt)
and 0.94 (lithium)].
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Fig. 7.
Canonical Wnt transcription factors are among genes most specifically correlated with
frontocortical expression in GRN-haploinsufficient FTD. (A) Wnt signaling receptors and
ligands differentially expressed in the frontal cortex of GRN-haploinsufficient FTD patients
versus patients suffering from sporadic FTD (Bayesian t test, P ≤ 0.05). (B) Disease
eigengene: This is a graphical representation of the frontal cortex GRN-specific vector used
to correlate disease state and anatomical location with expression of individual genes in the
full FTD data set. The data set comprises whole transcriptome gene expression in the frontal
cortex (magenta), hippocampus (blue), or cerebellum (orange) of patients with either GRN-
haploinsufficient FTD (dark) or sporadic FTD (medium) or controls (light) (99). (C) KEGG
Wnt/β-catenin signaling–related genes among the total set of 392 genes significantly
correlated either positively (orange; increased message) or negatively (blue; decreased
message) with the synthetic FTX-GRN eigengene depicted in (B). Genes binding β-catenin
(bold). Significance was based on Spearman rank correlations between each gene and the
disease-specific synthetic eigengene (ρ ≥ 0.40, *P ≤ 0.001, n = 56 arrays).
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Table 1

GO analysis of changes in Wnt1-mediated gene expression reveals time-specific enrichment. (A) Selected
KEGG pathways (129) or (B) selected highest-level (level 5) GO biological processes showing significant
categorical enrichment at each time point (FDR ≤5%). GO analysis was performed in DAVID (40) on all
significantly changed genes (t test, P ≤ 0.05), irrespective of the direction of the change. ATP, adenosine
triphosphate; ncRNA, noncoding RNA; MAPK, mitogen-activated protein kinase; GTPase, guanosine
triphosphatase; VEGF, vascular endothelial growth factor

A B

KEGG pathway P GO biological process level 5 P

2 Hours Alzheimer’s disease 1.47 × 10−6 2 Hours RNA splicing 7.95 × 10−9

Chronic myeloid leukemia 1.15 × 10−5 mRNA processing 9.72 × 10−9

Colorectal cancer 4.00 × 10−5 Regulation of transcription, DNA-dependent 7.79 × 10−6

Huntington’s disease 5.36 × 10−5 ATP synthesis coupled proton transport 1.10 × 10−4

Oxidative phosphorylation 9.16 × 10−5 Energy coupled proton transport 1.10 × 10−4

Pyrimidine metabolism 1.11 × 10−4 Regulation of neuron projection development 1.64 × 10−4

Parkinson’s disease 1.18 × 10−4 Regulation of ubiquitin-protein ligase activity 2.33 × 10−4

Pancreatic cancer 2.11 × 10−4 Regulation of axonogenesis 3.72 × 10−4

Pathways in cancer 5.35 × 10−4 Regulation of cell morphogenesis involved 4.67 × 10−4

Apoptosis 7.32 × 10−4 in differentiation

Ubiquitin-mediated proteolysis 8.74 × 10−4 Chromatin modification 9.76 × 10−4

Insulin signaling pathway 1.07 × 10−3 Regulation of apoptosis 1.32 × 10−3

Renal cell carcinoma 1.19 × 10−3 ncRNA metabolic process 1.80 × 10−3

ErbB signaling pathway 1.22 × 10−3 4 Hours G protein-coupled receptor protein signaling 4.65 × 10−4

RNA polymerase 1.72 × 10−3 Cell surface receptor linked signal transduction 2.3 × 10−3

MAPK signaling pathway 2.31 × 10−3 6 Hours ncRNA processing 1.04 × 10−7

Prostate cancer 2.48 × 10−3 Mitochondrial transport 3.10 × 10−5

Lysine degradation 3.23 × 10−3 Regulation of ubiquitin-protein ligase activity 2.69 × 10−4

Wnt signaling pathway 3.33 × 10−3 ATP synthesis coupled proton transport 4.11 × 10−4

Pyruvate metabolism 3.93 × 10−3 Negative regulation of ubiquitin-protein ligase 9.36 × 10−4

Axon guidance 5.50 × 10−3 Sterol biosynthetic process 1.25 × 10−3

Cell cycle 5.65 × 10−3 8 Hours Negative regulation of apoptosis 1.57 × 10−3

6 Hours Huntington’s disease 5.09 × 10−8 Negative regulation of programmed cell death 1.80 × 10−3

Oxidative phosphorylation 2.49 × 10−7 ncRNA metabolic process 2.42 × 10−3

Alzheimer’s disease 8.21 × 10−7 Muscle tissue development 2.6 × 10−3

Pyrimidine metabolism 1.23 × 10−5 24 Hours Chromatin modification 1.01 × 10−6

Parkinson’s disease 4.96 × 10−5 Mitosis 4.04 × 10−5

RNA polymerase 5.42 × 10−4 Small GTPase-mediated signal transduction 5.60 × 10−5

Pentose phosphate pathway 1.37 × 10−3 M phase of mitotic cell cycle 7.28 × 10−5

Purine metabolism 2.10 × 10−3 Protein kinase cascade 7.79 × 10−5

Glycosphingolipid biosynthesis 3.04 × 10−3 Regulation of apoptosis 1.36 × 10−4

Alanine and aspartate metabolism 3.18 × 10−3 Lipid oxidation 1.33 × 10−3
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A B

KEGG pathway P GO biological process level 5 P

24 Hours VEGF signaling pathway 8.92 × 10−5 Retrograde vesicle-mediated transport 1.43 × 10−3

Pathways in cancer 3.51 × 10−4 Negative regulation of cell growth 1.67 × 10−3

Base excision repair 2.60 × 10−3 Phospholipid biosynthetic process 2.44 × 10−3

Axon guidance 3.45 × 10−3 Central nervous system development 2.50 × 10−3

Non–small cell lung cancer 4.47 × 10−3 Regulation of axonogenesis 2.79 × 10−3
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