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Abstract
Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets
provide computational challenges when attempting to quickly analyze spectra and obtain correct
protein identifications. Database search and de novo algorithms must consider high-resolution MS/
MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when
analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for
improved peptide identification puts significant strain on computational systems when
investigating large data sets. This review highlights some of the recent developments in peptide
and protein identification algorithms for analyzing shotgun mass spectrometry data when
encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines,
public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics.

Introduction
Peptide based, or shotgun, mass spectrometry is one of the most fundamental methods in the
field of proteomics. In shotgun proteomics, complex protein samples are enzymatically
digested or chemically fragmented to peptides and introduced to a mass analyzer through
separation and ionization techniques (e.g. liquid chromatography and electrospray
ionization). Peptides observed through precursor survey scans are selectively isolated and
fragmented along their peptide backbone, typically using collision induced dissociation
(CID). The peptide fragment masses are recorded in tandem (MS/MS) spectra. These spectra
are then analyzed computationally to identify the peptide sequences, in what is known as a
peptide spectrum match (PSM). The PSMs are then used to infer which protein(s) are in the
sample (see [1–3] for more detailed reviews).

With modern mass spectrometers, it is possible to acquire MS/MS spectra on tens of
thousands of peptides in a few hours, enabling the study of thousands of proteins
simultaneously from a single sample. However, the task of going from spectrum to result is
far from trivial, and requires the use of several software algorithms. Recently, the routine
acquisition of MS/MS spectra using electron transfer dissociation (ETD) and high-energy
collisional dissociation (HCD) have enabled researchers to collect different spectra of the
same peptides [4–8]. However, spectra obtained from the use of ETD and HCD have
challenged existing algorithms and analytical paradigms, prompting the interest in new
software solutions.

On the computational forefront, the availability of fast computers and free software has
enabled more thorough data analysis than ever before. Multiple algorithms can be combined
into robust pipelines for high-throughput analysis. Data and results can be stored and shared
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in large public repositories. Cloud computing offers cheap and efficient processing power to
solve some of the most daunting analytical tasks. These advances will help to make whole
proteome analysis both fast and routine for a multitude of organisms in the near future.

This review explores the process of going from spectrum to result in proteomics with focus
on recent algorithm development and publicly available computational resources
(summarized in Table 1). Generally speaking, the process involves identifying peptide
sequences from spectra, statistically validating those sequences, and then using those
sequences to infer which proteins are in a sample (Figure 1). More specifically, this review
will focus on the new wave of algorithm development for database searching and de novo
sequencing resulting from adoption of ETD and HCD. Software solutions for combining and
validating results from multiple analyses will be presented. New developments in protein
inference will also be investigated, as well as software tools that allow the assembly,
customization, and interaction of these algorithms into versatile pipelines for data analysis.
Interspersed among these developments will be the roles that shared data repositories,
spectral libraries, and cloud computing will play in shotgun proteomics in the coming years.

Peptide sequence identification from MS/MS spectra
Peptide based proteomics can be performed using a variety of instruments, fragmentation
methods, and analytical techniques; however, historically those methods have predominantly
consisted of low-resolution CID spectra acquisition (via quadrupole and ion trap mass
analyzers) and database search or de novo identification. The consistency in instrumentation
and technique produced a general analytical workflow and robust computational tools
(reviewed in [2,3,9]). Alternative methods of generating MS/MS spectra include, but are not
limited to, electron-capture dissociation (ECD)[10], ETD, and HCD. A brief overview and
comparison of these different fragmentation methods can be found in Box 1. Recently, these
alternative modes of fragmentation have gained widespread adoption for their
complementarity to the CID paradigm. For example, ETD has shown superiority over CID
for larger, higher charged (>2+) peptides [6,11]. Higher-energy collisional activation (HCD)
prior to Orbitrap acquisition produces a more complete ion series in the low mass region
[12]. Additionally, modern instrumentation makes acquisition of fragmentation spectra at
high-resolution fast enough to keep pace with low-resolution data acquisition [12–14].
Because of the complementarity of these different approaches for peptide identification, data
are now routinely collected that combine all these acquisition methods [5,6]. CID-centric
algorithms are not optimal for analysis of these new data [15]. This limitation has spurred a
new wave of algorithmic development for peptide identification.

ETD has gained traction due to its complementarity to CID and ease of use. ETD is well
suited for fragmentation of large peptides, thus improving sequence coverage over use of
CID alone [16]. Additionally, ETD is advantageous for the study of certain post-
translational modifications (PTMs), such as phosphorylation [4]. However, CID-based
database search algorithms often underperform when analyzing ETD spectra, thus
necessitating ETD-specific algorithms [17,18]. For example, while CID fragmentation
results in predictable b and y ion series, ETD fragmentation produces the more complex z’,
c, a’, and y ion series. Numerous additional fragmentation artifacts occur, such as 1)
frequent neutral losses, 2) charge-reduced precursor observation, 3) side chain losses on
histidine and alkylated cysteine residues, and 4) observation of c-H ions from doubly
charged peptides [19]. Recently, the pFind database search algorithm was updated to
incorporate these artifacts and showed improvement over the popular CID-centric Mascot
algorithm for ETD spectra. Interestingly, the greatest improvement was in the identification
of 2+ peptides, which are generally considered poor candidates for ETD fragmentation [19].
Similar results were observed using probabilistic scoring models trained for ETD spectra
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with the algorithm, MS-GFDB [20]. MS-GFDB goes even further to improve peptide
identification when both CID and ETD spectra are acquired on the same peptide. The two
fragmentation scans are combined in silico into a single spectrum that shows improved
sequence identification over CID or ETD alone.

With the ever increasing prevalence of modern Orbitrap mass analyzers, HCD is fast
becoming another common method of fragmentation. Although similar to CID (such as
generation of b and y fragment ions), HCD offers two advantages: 1) improved detection of
low mass fragment ions, and 2) high mass accuracy measurements. These features have
shown HCD to be a powerful tool for PTM identification, such as phosphorylation [21–23].
Several, but not all, database search algorithms can be optionally configured to take
advantage of the improved resolution and mass accuracy [7,24]. Where the benefit of HCD
is particularly useful is in the development of de novo peptide sequencing algorithms.

De novo sequencing algorithms have advantages over database search algorithms, such as
that they can be used to identify peptides not contained in the database. This capability is
especially important for identification of protein variants not represented in the database. For
example, one approach to identify protein variants with a database search is using RNA-Seq
data, if available [25]. De novo algorithms are not limited by the availability of
transcriptome data. However, database search algorithms have historically outperformed de
novo algorithms where sample proteomes are known [9]. Incomplete ion series, noisy
spectra, and poor fragment ion mass accuracy contribute much to the inaccuracy of de novo
algorithms. These difficulties have limited de novo algorithms to identification of small
peptides [26], or in conjunction with database search for improved accuracy and efficiency
[27–31]. The emergence of HCD has since breathed new life into de novo identification
strategies. pNovo is one of the first algorithms devoted to de novo sequencing of HCD
spectra [32]. The algorithm also contains an interesting feature: low mass HCD spectra
(containing dominant fragment ions < 500 m/z) can be merged with normal HCD spectra to
the same precursor ion to improve sequencing of the N- and C-termini. These regions can be
highly problematic when performing de novo identifications. The increased success rate of
de novo algorithms when presented with HCD data may highlight a paradigm shift in
shotgun proteomics towards integrating more de novo identification strategies in the coming
years.

Evaluation of peptide spectrum matches
Identifying the most likely peptide sequence for any given spectrum does not mean the
peptide was correctly identified in the sample. Many spectra do not provide adequate
information to produce sequence identifications, yet sequences (likely false) are still
reported for these spectra. To help separate true from false identifications, each algorithm
provides a metric to evaluate the likelihood a given PSM is correct. The metric may differ,
and usually does, from algorithm to algorithm, and the appropriate score cutoff may also
differ from dataset to dataset. For this reason, different database search algorithms can result
in a widely varying array of PSMs for the same set of spectra. As a way of addressing this
uncertainty, target-decoy searches are frequently performed when using database search
algorithms to give an estimate of false discovery rate (FDR) at a given score threshold
(Figure 2). Target-decoy searches involve scoring all spectra against a database that contains
reversed or shuffled protein sequences (decoys) in addition to true protein sequences
(targets). PSMs to decoy sequences are known to be false, and can be exploited to determine
the FDR at a given score threshold. In this manner, the different scoring metrics between
algorithms can be normalized to a fixed FDR (e.g. 1% or 5%), and the PSMs reported from
the different algorithms can be compared at all FDR thresholds [33]. Few database search
algorithms perform FDR calculation as part of their operation. Thus, stand-alone algorithms
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have been created to make use of the target-decoy approach to estimating FDR, including
PeptideProphet [34,35] and Percolator [36,37]. Although target-decoy searches are routine,
PeptideProphet can alternatively estimate FDR using a Baysian mixture modeling approach
for spectra searched against a target-only database.

Even at a low FDR, any algorithm used for peptide identification produces different PSMs
for the same data [33]. This is true for any shotgun proteomics analytical tool, and despite
the abundance of algorithms available to researchers [38], there is no perfect solution for any
given set of MS/MS spectra. One algorithm may be able to produce a correct PSM for a
spectrum where another failed, and vice versa. Rather than limit an analysis to a single
software tool, it is now possible to combine multiple results of the same data using different
database search and de novo algorithms [39–41].

One such algorithm to take advantage of multiple search algorithms is FDRAnalysis [42].
Based on the combined FDRScore approach [43], this web-based algorithm reclassifies
peptide sequence identifications from three different database search tools in terms of FDR.
By doing so, the different scoring metrics employed by each tool can be comparatively
analyzed. A combined FDR is then computed for each peptide. Peptides observed in all
three search tools receive much lower combined FDR values than those observed in only
one search tool. Initial studies using the combined FDRScore algorithm showed an average
35% increase in peptide identifications over individual database search results [43].
Although easily accessible, FDRAnalysis is limited in the database search algorithms
supported.

Of recent note, the iProphet algorithm supports virtually any peptide sequence identification
scheme [44]. After calculating the posterior probability of a PSM from any peptide
identification algorithm, refined posterior probabilities are calculated in iProphet using a
series of models related to identification with multiple peptide sequencing tools. The authors
showed a 30% increase in PSMs combining six different database search algorithm results
[44]. These results highlight that the limitations of a single search algorithm may be
overcome by combining the results of multiple algorithms. Given the amount of readily
available processing power from modern computers, especially when considering the
accessibility of cloud computing, multiple algorithm analysis may soon be routine for
peptide identification.

Spectral libraries
The spectrum in a PSM can be considered a type of barcode for that peptide. If acquired
again under similar conditions, the spectrum for a given peptide will look nearly identical in
terms of observed fragments and their peak intensities. This reproducibility can be exploited
to quickly and confidently identify peptides that have been seen in previous experiments
through a process called spectral library searching [45]. Accurate PSMs are compiled into
spectra libraries, and newly acquired spectra can be matched against those libraries to
identify known peptides using dot products [46–48]. More recently, the Pepitome algorithm
adopted probabilistic scoring metrics [49]. Spectral library search algorithms use only a
fraction of the time of database search algorithms; however, spectral library searching can
only identify previously observed peptides. Furthermore, ETD and HCD spectra are
fundamentally different than their CID spectra counterparts. Thus, independent spectral
libraries must be compiled for each fragmentation method. These caveats have somewhat
limited rate of adoption of spectral library search algorithms.

The increasing availability of large shotgun proteomics data repositories will help lend
weight to spectral library searching. At the time of this writing, the PeptideAtlas [50] project
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contains approximately one-half million peptide annotations from nearly 30 million PSMs
across twelve different species. As spectra repositories continue to grow in coverage,
organisms represented, and types of spectral acquisitions, it will soon be possible to search
entire proteomes using spectral library matching.

Improved methods for protein inference
Confident PSMs are used to infer which proteins are in a sample. At first glance, a PSM that
maps to a protein would indicate that the protein is in the sample. This may be true for PSMs
that are undoubtedly correct and proteotypic, meaning the peptide sequence matches to only
a single protein. If the PSM can be mapped to two or more proteins, then which of those
proteins is in the sample, or all of them, is difficult to determine (Figure 3). Several
algorithms attempt to solve this issue using both non-probabilistic and probabilistic
methods. The non-probabilistic approach returns the simplest set of proteins that explains
the observed high-scoring PSMs [51]. The probabilistic approach, on the other hand, uses
additional metrics, such as the quality of a PSM, to give a probability that a protein is
present in a sample. For example, ProteinProphet [52] may infer a protein with high
confidence from multiple low scoring PSMs because such an occurrence is highly unlikely
by chance. Recent developments in improving protein inference are explored in detail
below.

A common strategy for protein inference is parsimony, or the smallest number of proteins
that result in the observed PSMs. Consider, though, using a large database (e.g. NCBI NR)
which contains homologous sequences across multiple species. Even with parsimony,
degenerate peptides may return far more proteins than are truly in the sample. IDPicker 2.0
attempts to solve this problem non-probabilistically by allowing the user to set a specific
number of distinct peptide identifications for a protein that are not explained by other
proteins [41]. That number may be set interactively by the user, including a value of zero to
disable parsimony. Tests identifying human serum against a multispecies database showed
how setting even low counts of two and three distinct peptide identifications dramatically
reduced the number of orthologous proteins reported with little loss of human proteins
reported.

Probabilistic methods for protein inference attempt to qualify protein identifications with,
for example, an FDR. This is not a straightforward process because incorrectly identified
peptides are randomly sampled among all proteins in the database and correct peptides tend
to cluster on a limited protein set. Thus peptide-level FDR does not directly translate to
protein-level FDR, and special care must be taken to avoid inflating the FDR when
generating a final protein list. The MAYU algorithm was developed specifically to address
this issue, which becomes more difficult as data set size increases [53]. Here a target-decoy
model is applied to the protein identifications, with decoy protein identifications derived
from decoy PSMs present in the data. Additional complications often arise to challenge the
computation of accurate protein probabilities, for instance, when considering degenerate
peptides. The Fido algorithm uses a Bayesian method to compute protein posterior error
probabilities when given a set of PSMs [54]. Peptide degeneracy is resolved by rewarding
protein sets that have additional PSM evidence in addition to the degenerate peptide
sequences. Of interest, with Fido it is possible for a protein inferred from a high-scoring
PSM to receive a poor probability. With large data sets, there is increased likelihood a
protein could be associated with an erroneous high-scoring PSM. Few other algorithms,
however, consider the possibility that the best scoring PSMs might have an error among
them. These examples highlight the challenges faced by protein inference algorithms as data
sets continue to increase in both size and proteome coverage.

Hoopmann and Moritz Page 5

Curr Opin Biotechnol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Assembling multiple algorithms into pipelines
As described above, the software algorithms for getting from spectra to protein identification
are constantly adapting in the rapidly evolving field of shotgun proteomics. No single tool is
sufficient to perform all analytical steps necessary to obtain a result. Thus, software suites
and pipelines have been developed to help researchers perform the required steps for
streamlined data analysis. The different types of suites can be broken into two major groups:
all-in-one packages or interchangeable pipelines. There are strengths and weaknesses to
each format. MaxQuant [55] is an excellent example of the former. With the recent
completion of its Andromeda database search algorithm [56], it can now be used to perform
data analysis from spectra to protein identification inside a single interface without the need
for third party software. The caveat is that the software is not open source or customizable
beyond what its developers have been able to provide for users. In contrast, the Trans-
Proteomic Pipeline (TPP) [57] offers the set of tools needed to perform complete shotgun
analysis in an open-source, customizable interface. Admittedly, the tradeoff for this platform
is the difficulty for non-tech savvy scientists to integrate their own algorithms into the TPP;
however, the TPP comes with a set of tools specifically for migrating data to open standards
[58]. Additionally, the open-source interface enables integration of emerging algorithms
with existing ones [44], whether provided with the TPP or from third parties. This
customizability helps ensure rapid adoption of new algorithms to keep pace with evolving
mass spectrometry technology.

Looking ahead
Shotgun mass spectrometry is constantly evolving to make the goal of complete proteome
analysis a reality. To achieve this goal, shotgun proteomics algorithms are expanding and
adapting to new technology. This development in proteomics algorithms creates challenges
for researchers in terms of processing power and software interoperability. One of the
biggest challenges in shotgun proteomics is simply how to perform such large data analysis
efficiently, reproducibly, and easily.

The combination of multiple peptide identification algorithms is fast becoming routine in
shotgun proteomics. Simultaneously, the size and complexity of shotgun data sets have
grown significantly. Together, these factors contribute to considerable strain on
computational systems for data analysis. Computer clusters are one option to provide
additional processing power, but due to their expense, difficulty to maintain, and limited
lifespan, alternative strategies are being explored. A graphics processing unit can be
configured to provide parallel computing and has recently been shown to improve efficiency
for database search and spectral matching [59,60]. Alternatively, database search algorithms
can be adapted to operate on the internet through cloud computing services [61]. Cloud
computing offers several advantages for shotgun proteomics analysis, with foremost being
access to vast computational resources without the difficulty and expense of maintaining
them on site. Whereas any given cluster has a limit to the amount of data it can analyze at a
time, cloud resources can be expanded on demand to meet the needs of large data sets.
These cloud resources are rapidly becoming available from a variety of vendors (e.g.
Amazon, Microsoft, and Google). Cloud computing may soon be the preferred method for
shotgun data analysis.

Software interoperability is critically important to shotgun proteomics. Without pipelines in
place, many researchers would have difficulty in efficiently and correctly analyzing their
data. However, there is a lag in the development of new algorithms and their widespread
adoption in analytical pipelines. This lag might be overcome with a robust development
environment for creating algorithms and pipelines. Perhaps it will soon be possible to
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download algorithms, much like apps for a smartphone, into an environment where their
interoperability is already established. Thus, in a matter of seconds, researchers would be
able to build custom analytical pipelines specific to their experimental design. Certainly,
shotgun proteomics algorithms are evolving at a rapid pace, and researchers are constantly
finding creative ways to go from spectrum to result.
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Box 1: Overview of gas phase ion fragmentation methods discussed in this
review

Collision induced dissociation (CID): Ions are accelerated to a high kinetic energy using
an electrical potential. The ions then collide with neutral gas molecules (usually helium,
argon, or nitrogen), where the kinetic energy is converted to internal energy resulting in
bond breakage and fragmentation [62]. Peptide fragmentation usually occurs along the
amide backbone to produce b and y ions.

High-energy collisional dissociation (HCD): Ions are fragmented in the same manner as
CID using higher degrees of kinetic energy. This process is can be performed in a
dedicated collision cell coupled to a C-trap in an oribtrap mass spectrometer. Ions are
then analyzed at high resolution in the orbitrap mass analyzer [63].

Electron capture dissociation (ECD): Multiply protonated ions are trapped in the gas
phase and exposed to low-energy electrons. The neutralization of the molecule cations
with the low-energy elections causes fragmentation [10]. This method differs from CID
and HCD in that it does not require kinetic energy redistribution to cause fragmentation.
Peptide fragmentation predominantly results in c and z type ions.

Electron transfer dissociation (ETD): This method is similar to ECD, but uses anions as
vehicles for delivering electrons to multiply protonated ions trapped in the gas phase
[64].
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Figure 1.
A robust computational workflow for shotgun proteomics. Spectra acquired from several
complementary fragmentation techniques are simultaneously analyzed with multiple
sequencing algorithms, utilizing cloud-based computing resources. Multi-level peptide
validation algorithms assign probabilities to peptide sequences from the combined
sequencing results. The most likely proteins in the sample are inferred from the confident
peptide sequences.
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Figure 2.
Estimating false discovery rate (FDR) using target-decoy searches. (A) The score
distribution of target PSMs (blue line) shows a right tail when compared to the decoy
distribution (red line), representing correct PSMs (green line). (B) The distribution of scores
for the target and decoy PSMs are used to estimate the FDR at any score threshold.
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Figure 3.
Protein inference from PSMs. Peptide sequences from PSMs are used to infer proteins in the
sample. Peptide degeneracy, or when a PSM can be matched to two or more proteins, makes
correct protein identification difficult. Some algorithms use probabilistic models,
represented by large red circles versus small orange circles, to discriminate correct from
incorrect protein identifications.
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Table 1

Summary of software tools featured in this review

Software tool Purpose

Andromeda Database search

MS-GFDB Database search

pFind Database search

pNovo De novo sequencing

PeptideProphet PSM validation

Percolator PSM validation

FDRAnalysis Multiple search combination

iProphet Multiple search combination

Pepitome Spectral library searching

PeptideAtlas Annotated spectrum repository

Fido Protein inference

IDPicker 2.0 Protein inference

MAYU Protein inference

ProteinProphet Protein inference

MaxQuant Analytical software suite

Trans-Proteomic Pipeline Analytical software suite
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