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Significance: Wound healing is an intricate biological process in which the
skin, or any other tissue, repairs itself after injury. Normal wound healing
relies on the appropriate levels of cytokines and growth factors to ensure that
cellular responses are mediated in a coordinated manner. Among the many
growth factors studied in the context of wound healing, transforming growth
factor beta (TGF-b) is thought to have the broadest spectrum of effects.
Recent Advances: Many of the molecular mechanisms underlying the TGF-b/
Smad signaling pathway have been elucidated, and the role of TGF-b in wound
healing has been well characterized. Targeting the TGF-b signaling pathway
using therapeutic agents to improve wound healing and/or reduce scarring has
been successful in pre-clinical studies.
Critical Issues: Although TGF-b isoforms (b1, b2, b3) signal through the same
cell surface receptors, they display distinct functions during wound healing
in vivo through mechanisms that have not been fully elucidated. The challenge
of translating preclinical studies targeting the TGF-b signaling pathway to a
clinical setting may require more extensive preclinical research using animal
models that more closely mimic wound healing and scarring in humans, and
taking into account the spatial, temporal, and cell-type–specific aspects of
TGF-b isoform expression and function.
Future Directions: Understanding the differences in TGF-b isoform signaling
at the molecular level and identification of novel components of the TGF-b
signaling pathway that critically regulate wound healing may lead to the
discovery of potential therapeutic targets for treatment of impaired wound
healing and pathological scarring.

SCOPE AND SIGNIFICANCE

Wound healing is a complex
physiological response to injury and
involves three main overlapping
phases: inflammation, proliferation,
and maturation.1 Among the many
cytokines and growth factors in-
volved in wound healing, transform-
ing growth factor beta (TGF-b) has
the broadest spectrum of effects.1

TGF-b plays an essential role in
wound healing through its pleiotro-
pic effects on cell proliferation and

differentiation, extracellular matrix
(ECM) production, and immune
modulation.1 The present review fo-
cuses on the current state of knowl-
edge on the TGF-b signaling
pathway and the approaches that
have been used to manipulate this
pathway to improve wound healing
and reduce scarring.

TRANSLATIONAL RELEVANCE

Research on understanding the
molecular mechanisms by which
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Abbreviations
and Acronyms

ALK = activin-like receptor
kinase

AMH = anti-müllerian hormone

BMP = bone morphogenetic
protein

CM = conditioned medium

ECM = extracellular matrix

EMT = epithelial-to-mesenchymal
transition

GDF = growth and differentiation
factor

GS = glycine/serine

HTS = hypertrophic scar

IFN = interferon

I-Smad = inhibitory Smad

LAP = latency-associated
peptide

LLC = large latent complex

LOX = lysyl oxidase

LTBP = latent TGF-b binding
protein

MH = Mad homology

MIS = müllerian inhibiting
substance
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TGF-b signaling regulates wound
healing have led to the development
and use of therapeutic agents that
modulate TGF-b signaling. Ther-
apeutic agents tested in wound
healing and scarring models include
small-molecule inhibitors of the type
I TGF-b receptor (activin-like recep-
tor kinase 5 [ALK-5]), anti–TGF-b
neutralizing antibodies, and re-
combinant TGF-b3 protein. These
molecules have shown promise in
pre-clinical studies, but none have
yet been approved by the U.S. Food &
Drug Administration for clinical use.

CLINICAL RELEVANCE

TGF-b regulates almost all aspects
of wound healing, and aberrant
TGF-b signaling has been implicated
in pathological skin disorders, in-
cluding chronic wounds and exces-
sive scarring. Targeting the TGF-b
signaling pathway represents a via-
ble strategy for the development of
novel therapeutic agents that im-
prove wound healing and reduce
pathological scarring.

DISCUSSION OF FINDINGS
AND RELEVANT LITERATURE
Overview of TGF-b signaling

The TGF-b signaling pathway is
essential for numerous cell functions
and was thought to arise with the
development of metazoans. In devel-
opment, TGF-b plays numerous roles,
including induction of epithelial-to-
mesenchymal transition (EMT) in
endocardial cells, which is necessary
for normal heart development.1,2

TGF-b also has several roles in nor-
mal tissue homeostasis, regulating
diverse functions such as cellular dif-
ferentiation, apoptosis, cell-cycle ar-
rest, ECM production, and cellular
migration. Partly owing to its pleio-
tropic effects in numerous cell types,
TGF-b has also been implicated in
several pathologies, including fibro-
sis. In wound healing, TGF-b pro-

motes wound closure and resolution
through the production of ECM pro-
teins and the inhibition of matrix
metalloproteinases (MMPs). How-
ever, in fibrotic diseases, excessive
TGF-b production and signaling pro-
motes extensive tissue fibrosis, which
can compromise normal tissue func-
tion.3 Understanding the molecular
mechanisms involved in regulating
TGF-b signaling during wound
healing and scarring may provide
important insights into how its dys-
regulation may contribute to im-
paired wound healing or abnormal
scarring.

TGF-b superfamily members. The
TGF-b superfamily consists of struc-
turally and functionally related cy-
tokines that signal through a pair of
transmembrane serine-threonine ki-
nase receptors known as the type I
and type II receptors (TbRI [also
known as ALK] and TbRII, respec-
tively), which, in turn, activate in-
tracellular Smad transcription
factors to mediate downstream sig-
naling events. The TGF-b superfam-
ily contains > 30 ligands, which are
structurally characterized by the
presence of a cysteine-knot motif.4

This superfamily is divided into two
subfamilies, the bone morphogenetic
protein (BMP)/growth and differ-
entiation factor (GDF)/müllerian-
inhibiting substance (MIS) subfamily
and the TGF-b/activin/Nodal sub-
family (Fig. 1).5 These two sub-
families are classified partially on the
basis of which ALK they bind as well
as the subset of Smad transcription
factors they activate. The BMP/GDF/
MIS subfamily generally binds to
ALK1, -2, -3, or -6, and activates the
receptor-regulated Smads (rSmads)
Smad-1, -5, and -8; whereas the TGF-
b/activin/Nodal subfamily binds to
ALK4, -5, and -7, and activates the
rSmads Smad-2 and -3.6 In addition
to the rSmads, another class of
Smads known as the inhibitory
Smads (I-Smads), Smad-6 and -7 act

MMP = matrix metalloproteinase

P144 = peptide 144

rSmad = receptor regulated
Smads

SLC = small latent complex

Smurf = Smad ubiquitination
regulatory factor

SSc = systemic sclerosis

sTbRII = soluble TbRII

TbRI, TbRII = TGF-b receptor
types I and II

TIMP = tissue inhibitor of
MMPs

TGF-b = transforming growth
factor beta

TSP-1 = thrombospondin 1

WT = wild-type
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as adaptor proteins that bind Smad ubiquitin reg-
ulatory factor (Smurfs)-1 and Smurf-2, which ubi-
quitinate the receptor complex, targeting it for
degradation via proteosomal and lysosomal path-
ways.

The BMP/GDF/MIS subfamily is best known for
its role in bone development and regeneration and
consists of *20 cytokines.4 BMPs are so called due
to their ability to induce osteoblast differentiation
and promote bone formation.4 While the majority of
BMP ligand gene knockout mice are non-viable and
die during embryogenesis, mice lacking BMP type I
receptor A (BMPR-IA) are viable and have appen-
dicular skeletal defects.7 Although BMPs are
known to inhibit myogenic (muscle cell) differen-
tiation and promote osteogenic differentiation
during embryonic development, emerging evidence
indicates that BMPs have pro-proliferative effects
on muscle progenitor (satellite) cells during adult
skeletal muscle regeneration after injury.8 For ex-
ample, administering BMP4 to mice that have
undergone muscle injury reduces differentiation of
satellite cells and sustains their proliferative po-
tential.9 Therefore, it seems that BMPs are not
only implicated in fracture healing, but can also act

as a signal to provide precursor cells during muscle
repair.

GDFs are also known for their roles in tissue
development. For example, GDF-8 (also known as
myostatin) is a negative regulator of skeletal
muscle growth and has been implicated in the
maintenance of whole body homeostasis.10 Finally
MIS, also known as anti-müllerian hormone, in-
hibits development of the müllerian ducts during
embryogenesis and appears to have a negative
regulatory role in follicular development in the
adult ovary.11

The TGF-b/activin/Nodal subfamily has been
studied in-depth due to its roles in tissue morpho-
genesis, cancer, and wound healing. It consists of
five activins/inhibins, Nodal, and three TGF-bs
(TGF-b1, TGF-b2, and TGF-b3).6 While the acti-
vins were initially discovered due to their ability to
induce follicle stimulating hormone release, it has
now been appreciated that activins, particularly
activin A, play a role in wound healing.12 Activin is
up-regulated during cutaneous wound healing in
humans.13 Keratinocytes, fibroblasts, and inflam-
matory cells appear to be sources of activin in the
wound microenvironment.12,13 Further, transgenic

Figure 1. Members of the TGF-b superfamily and their signaling components. TGF-b superfamily members include TGF-b (-b1, -b2, and -b3), activin, nodal,
BMPs (-2, -4, and -7), AMH/MIS, and GDF-5. TGF-b superfamily members signal through a unique pair of transmembrane serine-threonine kinases known as the
type I and type II receptors to mediate intracellular Smad signaling. The TGF-b/activin/Nodal subfamily binds to ALK 4, 5, and 7 and activates Smads 2 and 3;
whereas the BMP/GDF/MIS subfamily generally binds to ALK 1, 2, 3, or 6 and activates Smads 1, 5, and 8. Activated Smad2/3 and Smad1/5/8 form a complex
with Smad4 and enter the nucleus, where they regulate target gene expression. Accessory or co-receptors (betaglycan, endoglin, CD109, and cripto) are
potent modulators of signaling by TGF-b superfamily members. TGF-b, transforming growth factor beta; BMP, bone morphogenetic protein; AMH, anti-müllerian
hormone; MIS, Müllerian inhibiting substance; GDF, growth and differentiation factor; ALK, activin-like receptor kinase. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/wound
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mice overexpressing activin A in the epidermis
display enhanced wound healing with increased
granulation tissue formation as compared with
wild-type (WT) littermates;14 whereas epidermal
overexpression of the activin antagonist follistatin
is associated with impaired wound healing and
reduced granulation tissue formation.15 A critical
role for endogenous activin in wound healing was
also shown in another study where blocking follis-
tatin expression in the epidermis led to enhanced
re-epithelialization without affecting the quality of
the healed wound.16

Similar to other TGF-b superfamily members,
Nodal is critical for proper early development and
is best known for its role in inducing mesoderm and
endoderm formation.17 Nodal is also essential for
maintaining human embryonic stem cell plur-
ipotency, which may explain its frequent over-
expression in a number of human cancers.18

However, Nodal is generally not found in adult
tissues, and its potential role in wound repair is not
known.18

While the role of other TGF-b superfamily
members in wound healing is still being investi-
gated, the TGF-b subfamily, consisting of TGF-b1,
2, and 3, has long been appreciated as having
critical roles in wound healing, and will be the focus
of the remainder of this review.

The TGF-b isoforms (-b1, -b2, and -b3) have been
conserved throughout evolution, and orthologs
to human TGF-b can be found in Drosophila
melanogaster and Xenopus laevis (reviewed by Wu
and Hill).2 The TGF-b ligands share a significant
sequence homology. Together, they have > 76%
identity in their active domains.19,20 Despite
structural similarities, TGF-b ligands have distinct
affinities for TGF-b receptors. The three TGF-b li-
gands are produced by a number of different cell
types, and the production of all three occurs during
development, although TGF-b1 is the predominant
type in adults.21,22 Each TGF-b ligand has rela-
tively specific, non-overlapping functions in vivo.
Mice containing deletions of these genes illustrate
that these ligands have distinct functional roles.
For example, Tgfb1 - / - mice develop significant
problems in utero, including vasculogenic and
hematopoietic defects.23 Mice that survive gesta-
tion develop a severe wasting inflammatory
syndrome.23 Tgfb2 - / - mice have a myriad of de-
velopmental defects, including skeletal, cardio-
vascular, pulmonary, and visual problems.24

Interestingly, Tgfb3 - / - null mice have the least
defects and die after birth due to an inability to
suckle caused by cleft palate.25 Similar to their
non-redundant roles in development, the TGF-b

ligands have different effects during wound heal-
ing and scarring. For example, TGF-b1 is found at
very high levels in the wound microenvironment
and promotes myofibroblast differentiation, pro-
duction of ECM components, and fibroblast che-
motaxis (reviewed by Ferguson and O’Kane).26

Overall, TGF-b1 promotes the formation of a scar
during adult wound healing. On the other hand,
the embryonic wound microenvironment contains
high levels of TGF-b3 and low levels of TGF-b1.26

Further, adding exogenous TGF-b3 to an adult
wound promotes scar-free healing in rats,27 and
injuries obtained in utero heal scar free possibly
due to the relatively high levels of TGF-b3 com-
pared with TGF-b1.26

Activation of latent TGF-b. TGF-b is synthe-
sized as a homo-dimeric proprotein (pro-TGF-b)
and undergoes proteolytic cleavage in the trans-
Golgi network by furin-like enzymes, giving rise to
a C-terminal mature TGF-b dimer and N-terminal
pro-peptide known as latency-associated peptide
(LAP). LAP remains non-covalently associated
with mature TGF-b, rendering TGF-b inactive in a
so-called small latent complex (SLC) (Fig. 2). In
most cases, the SLC forms a complex with another
protein called latent TGF-b binding protein (LTBP)
via intermolecular disulfide bonds, giving rise to
the large latent complex (LLC), the most abundant
secreted form. The LLC can associate with the
ECM by covalent cross-linking of LTBP with ECM
proteins (Fig. 2).28,29 Latent TGF-b can be acti-
vated in vivo by molecules such as thrombospondin
1 (TSP-1), integrins, MMPs, and plasmin, and
in vitro by acidic or alkali conditions, heat dena-
turation, or shear stress.30–33 All three TGF-b iso-
forms exist in latent complexes34,35 and, in their
active forms, exist as homodimers that are stabi-
lized by disulfide bridges and hydrophobic inter-
actions.

It has been suggested that activation of latent
TGF-b occurs at two time points during wound
healing: immediately after wounding, and during
re-epithelialization.32 Platelets are thought to be
the primary source of activated TGF-b immediately
after injury. Of the total TGF-b that is released by
platelets, only a small amount is activated, and it is
thought that the rest of it may remain in its SLC
form.32 Platelet-derived latent TGF-b can be acti-
vated by TSP-1, which is also contained in the
platelet secretory granules,36 as well as by the fi-
brinolytic enzyme plasmin during dissolution of
the blood clot.37 The activated TGF-b then acts as a
potent chemoattractant for inflammatory cells that
invade the wound microenvironment, leading to

198 FINNSON ET AL.



further activation of latent TGF-b during the early
re-epithelialization phase. Macrophages recruited
to the wound microenvironment secrete plasmin-
ogen activators, which can also activate latent
TGF-b.38 Overall, the spatiotemporal control of

latent TGF-b activation may represent an impor-
tant regulatory mechanism that controls TGF-b
bioavailability and action during wound healing.

TGF-b/Smad signaling pathway. As mentioned
earlier, TGF-b signaling is mediated by a pair of
transmembrane serine-threonine kinase receptors
known as TbRI (or ALK) and TbRII. TbRII is a
62 kDa protein containing a short cysteine-rich,
N-glycosylated extracellular domain, a single trans-
membrane domain, and a serine-threonine kinase
intracellular domain.39 The cytoplasmic domain of
TbRII is also serine-threonine rich, which is lack-
ing in TbRI.40 At the cell surface, TbRII exists as a
homodimer in the absence and presence of ligand.41

TbRII binds TGF-b1 and TGF-b3 with a relatively
high affinity,42,43 but is unable to bind TGF-b2,
which requires the presence of a TGF-b coreceptor
known as betaglycan (TbRIII).39 In the absence of
ligands, TbRII undergoes autophosphorylation on
serine residues Ser549, Ser551, Ser223, Ser226, and
Ser227.43,44 In response to TGF-b binding, TbRII
forms a heterotetrameric complex comprising two
pairs of TbRII and TbRI. TbRII then phosphory-
lates TbRI at serine-threonine residues in its gly-
cine/serine (GS) domain, leading to the activation
of TbRI, which, in turn, phosphorylates and acti-
vates intracellular Smad2 and Smad3 proteins,
which are central mediators of TGF-b signaling.45

Activated Smad-2 and -3 then interact with the co-
Smad (Smad4) and enter the nucleus to regulate
gene transcription (Fig. 3).

TbRI and TbRII are structurally similar, al-
though TbRI contains a shorter extracellular do-
main and cannot bind ligands in the absence of
TbRII.46 Akin to TbRII, TbRI also exists as a
homodimer at the cell surface and contains a
serine/threonine kinase intracellular domain.39

However, TbRI contains a unique intracellular
GS-rich region that is phosphorylated by TbRII.19

Once phosphorylated, the GS domain of TbRI acts
as a docking platform for the so-called receptor-
regulated Smad proteins, Smad-2 and -3 (Fig. 3).47

Mutations of the GS domain have highlighted the
importance of this region to TGF-b signal trans-
duction; mutations of two or more glycine or serine
residues in the GS domain impair TGF-b signaling
activity.48 Mutation of threonine 204 to aspartic
acid increases TGF-b signal transduction in the
absence of ligands, as it generates a constitutively
active TbRI.48 These mutational studies confirm
that TbRI is the key player in Smad signal trans-
duction.

Smad proteins typically consist of two domains
that are separated by a variable linker region. The

Figure 2. Latent and active forms of TGF-b ligand. TGF-b is synthesized as
a homo-dimeric proprotein (pro–TGF-b) and undergoes proteolytic cleavage
in the trans-Golgi network by furin-like enzymes, giving rise to the mature
TGF-b dimer and its pro-peptide, also known as LAP. TGF-b is secreted
either as an SLC, which comprises the mature TGF-b dimer in association
with LAP, or as an LLC in which the LAP portion of SLC is covalently linked
to a protein known as latent TGF-b binding protein (LTBP). (A) SLC: The
mature TGF-b dimer (red) is non-covalently associated with its LAP (green).
*Asterisks indicate the regions that have undergone proteolytic processing
by furin-like enzymes in the trans-Golgi before secretion. (B) LLC: The SLC
is covalently linked to latent TGF-b binding protein (LTBP, yellow) by disulfide
bonds to form the LLC. (C) Mature TGF-b dimer: The mature TGF-b dimer is
released from the latent complex by different mechanisms, giving rise to the
active form of TGF-b that can bind its receptors and elicit biological re-
sponses. LAP, latency associated peptide; SLC, small latent complex; LLC,
large latent complex. To see this illustration in color, the reader is referred to
the web version of this article at www.liebertpub.com/wound
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amino Mad homology (MH) 1 domain has DNA
binding capabilities in some Smad sub-types, while
the carboxy MH2 domain has been shown to me-
diate interactions with a variety of proteins.49 The
activated GS domain of TbRI serves as a docking
site for Smad2 and Smad3 via their MH1 do-
mains.47 TbRI phosphorylates rSmads on the con-
served SSXS motif located at the C-termini of
Smads 2 and 3 (e.g., serine residues 465 and 467 in
the MH2 domain of Smad2).50–52 The phosphory-
lated serine residues of Smad2/3 serve as a docking
site for Smad4, promoting the dissociation of
Smad2/3 from TbRI and the formation of a het-
eromeric complex with Smad4.50,53 Smad2/3 are
generally located cytoplasmically in the absence of
ligands, but on ligand stimulation, they translocate
to the nucleus through its interaction with Smad4,5

which is able to bind with nucleoporins; the inter-
action of Smad4 with the nucleoporin importin-1a
is thought to mediate the translocation of the Smad
heteromeric complex to the nucleus.54 In the nu-
cleus, the heteromeric Smad complex binds to
promoters or enhancers of TGF-b target genes,such
as the Smad binding element via its MH1 domain,
and interacts with transcriptional co-activators
and co-repressors in order to induce cell-specific
transcriptional programs.5,19

TGF-b coreceptors. In addition to type I and
type II TGF-b signaling receptors, there are three
TGF-b coreceptors: betaglycan (TbRIII), endoglin,
and the recently discovered CD109. They play im-
portant roles in modulating TGF-b signaling and
are considered accessory receptors, as they have no
signaling or enzymatic activity. Endoglin and be-
taglycan are structurally related, with large,
heavily glycosylated extracellular domains, and a
short cytoplasmic region with high sequence simi-
larity.55–57 Both receptors can be phosphorylated
on serine/threonine residues in their cytoplasmic
domain.58–60 At the cell surface, endoglin and be-
taglycan form homodimers,61,62 as well as form
complexes with TbRI and TbRII.59,63 Though
structurally similar, these co-receptors differ in
their ligand-binding ability and expression. Beta-
glycan can bind all three TGF-b isoforms with a
high affinity,62 whereas endoglin binds TGF-b1
and TGF-b3 in the presence of TbRII, but does not
bind TGF-b2.58,59 Betaglycan is widely expressed
in adult and fetal tissues,39 whereas endoglin is
thought to be primarily expressed in proliferating
endothelial cells,64 although recent studies show
its expression in other cell types such as chon-
drocytes65–67 and skin fibroblasts.68,69 Betaglycan
is thought to facilitate TGF-b signaling by

Figure 3. TGF-b/Smad signal transduction pathway. TGF-b signaling is initiated when the TGF-b ligand binds to the extracellular domain of TbRII. TGF-b1 and
TGF-b3 bind TbRII with a high affinity, whereas TGF-b2 requires the TGF-b co-receptor betaglycan (TbRIII) to ‘‘present’’ it to TbRII. TGF-b-associated TbRII then
recruits TbRI, resulting in the formation of a heterotetrameric receptor signaling complex comprising one TGF-b ligand, one homo-dimeric TbRII, and one homo-
dimeric TbRI. TbRII is a constitutively active kinase that phosphorylates TbRI, resulting in activation of TbRI kinase activity. TbRI then phosphorylates intracellular
Smad2 and Smad3 proteins, which, in turn, form a complex with Smad4 and enter the nucleus to regulate gene transcription. TbRII, type II TGF-b receptor. To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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‘‘presenting’’ the TGF-b ligand to TbRII, whereas
endoglin inhibits TGF-b/ALK5/Smad signaling,
although other mechanisms also exist.61

Another TGF-b coreceptor, CD109, has been
shown to bind TGF-b ligand and inhibit TGF-b
signal transduction.70–74 CD109 is a glycopho-
sphatidylinositol-anchored protein that binds
TGF-b1 with a high affinity and also forms a com-
plex with TbRI, TbRII, and betaglycan.70,74 Work
by Bizet et al. demonstrated that the association of
CD109 with the TGF-b receptor complex increases
the internalization of the receptors via caveolae
and enhances receptor degradation.75 In a follow-
up article, Bizet et al. illustrated that CD109
promotes TbRI degradation in a Smad7/Smurf2-
dependent manner.76

Endocytosis and TGF-b signaling. Endocytosis
refers to the process in which cell-surface associ-
ated molecules enter the cell without passing
through the plasma membrane. Essentially, the
plasma membrane invaginates, budding off and
forming a vesicle containing the internalized cargo.
There are several methods of endocytosis of cell-
surface receptors, including clathrin-mediated en-

docytosis and membrane-raft dependent endocy-
tosis.77 Current evidence indicates that distinct
endocytic pathways regulate TGF-b receptor sig-
naling and turnover. At the cell surface, TGF-b
receptor complexes can access both clathrin-coated
pits and membrane rafts (Fig. 4).78 Inhibition of
clathrin-coated pit internalization through the use
of a dominant-negative epidermal growth factor
substrate 15 (Eps15) mutant shifts receptors into
membrane raft fractions; similarly, inhibition of
membrane raft formation through cholesterol de-
pletion shifts receptors back into non-membrane
raft fractions.78 TGF-b receptors internalized via
clathrin-mediated endocytosis access the early en-
dosome, a signaling endosome, which propagates
TGF-b signal transduction through the recruit-
ment of Smad2 and Smad3.78,79 Membrane raft
endocytosis of TGF-b receptors, however, results in
receptors being targeted to the caveolin-1 positive
vesicle.80 Unlike the early endosome, the caveolin-
1 positive vesicle promotes association of Smad7,
not Smad2/3, with the receptor complex,78 with
Smad7 acting as an adaptor that binds Smurf-2,
which ubiquitinates the receptor complex while
targeting it for degradation78,81,82 (Fig. 4).

Figure 4. Regulation of TGF-b signaling by clathrin-dependent and -independent endocytosis. TGF-b receptors can be internalized by clathrin-dependent and
clathrin-independent, membrane-raft dependent mechanisms. TGF-b receptors internalized via clathrin-coated pit mediated endocytosis traffic to Smad anchor
for receptor activation (SARA)-containing early endosome and propagate signal transduction. TGF-b receptors in the early endosome can be recycled back to
the plasma membrane in a Rab11-dependent manner. TGF-b receptors internalized by membrane-raft dependent endocytosis traffic to caveolin-1 positive
vesicles, where they are targeted for Smad7/Smurf2-mediated ubiquitination and proteosomal/lysosomal degradation. Other potential intracellular trafficking
pathways for TGF-b receptors, including bi-directional trafficking between the early endosome and caveolin-1 positive vesicles (intermediate pathways) or
direct trafficking of TGF-b receptors from the early endosome to proteosomal/lysosomal degradation pathways, are current topics of investigation. Smurf,
Smad ubiquitination regulatory factor. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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TGF-b and wound healing

Role of TGF-b in cutaneous wound healing: an
overview. Wound healing is a complex and dy-
namic physiological process that involves numer-
ous secreted cytokines and growth factors and the
interaction of a variety of different cell types.1,83

The three phases of wound healing are known as
inflammation, tissue formation (proliferation), and
maturation (tissue remodeling), which overlap in
time. TGF-b plays a critical role in regulating
multiple cellular responses that occur in all three
phases of wound healing (Fig. 5). Hemostasis may
be defined as the stoppage of bleeding after an in-
jury and involves vasoconstriction, platelet aggre-
gation, and blood coagulation.84 Inflammation
ensues shortly thereafter and lasts for about 2–4
days. Inflammation is characterized by the re-
cruitment of immune cells such as neutrophils and
macrophages to the injured site in response to
chemotactic cytokines such as TGF-b.85 Neu-
trophils cleanse the wounded area of foreign par-
ticles, secrete chemicals to kill bacteria, and are
then extruded with the eschar (scab) or phagocy-
tosed by macrophages.86 Monocytes also infiltrate

the wound site in response to TGF-b, differentiate
into activated macrophages (also in response to
TGF-b) that engulf and digest foreign particles and
necrotic debris, and release TGF-b and other
growth factors to stimulate capillary growth and
initiate granulation tissue formation. Once im-
mune cells become activated, they are susceptible
to TGF-b1-mediated suppression to reverse the
inflammatory process.87 Thus, TGF-b plays a dual
role in the inflammation phase of wound healing by
exerting pro-inflammatory effects during the early
stages and later contributing to the resolution of
inflammation.

The second phase of wound healing is known as
‘‘tissue formation’’ or the proliferative phase. Dur-
ing this phase, TGF-b orchestrates many cellular
responses, including re-epithelialization as well as
formation of new blood vessels (angiogenesis), fi-
broblast proliferation, and production of ECM
components, leading to granulation tissue forma-
tion and wound contraction.88 TGF-b regulates
wound angiogenesis by stimulating endothelial cell
migration, differentiation, and capillary tubule
formation.89 TGF-b also promotes fibroblast trans-

Figure 5. Schematic diagram showing the role of TGF-b in regulating all three phases of the wound healing process. Inflammation: TGF-b acts as a potent
chemoattractant for immune cells (neutrophils and macrophages) during the early stages of inflammation, regulates immune cell function, and contributes to
resolution of inflammation. Proliferation: TGF-b promotes angiogenesis by stimulating endothelial cell migration, differentiation, and capillary tubule formation.
TGF-b also stimulates fibroblast proliferation, promotes fibroblast trans-differentiation into myofibroblasts, and stimulates ECM production. In addition, TGF-b
inhibits keratinocyte proliferation and enhances keratinocyte migration, promoting re-epithelialization. Maturation: TGF-b regulates the balance of ECM
synthesis and degradation by tightly controlling the production of ECM components and regulating their rate of degradation by modulating synthesis of MMPs
and production of protease inhibitors such as TIMPs. TGF-b also regulates ECM remodeling by stimulating production of LOXs, which play an important role in
collagen cross-linking. ECM, extracellular matrix; MMPs, matrix metalloproteinases; TIMPs, tissue inhibitors of matrix metalloproteinases; LOXs, lysyl oxidases.
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differentiation into myofibroblasts (Fig. 6), which
play a critical role in wound contraction.90 TGF-b1
has been shown to increase the expression ECM
components, including fibronectin, the fibronectin
receptor, and collagens, and to reduce their deg-
radation by down-regulating the expression and
activity of matrix-degrading enzymes such as
MMPs and increasing the expression of protease
inhibitors such as tissue inhibitors of MMPs
(TIMPs).91 Although TGF-b is a potent inhibitor of
epithelial (keratinocyte) cell proliferation in vitro,
TGF-b may have both pro- and antiproliferative
effects in keratinocytes in vivo, depending on the
differentiation state and/or other factors such as
TGF-b concentration or the timing of its adminis-
tration.91 In addition, TGF-b stimulates keratino-
cyte migration in vitro, possibly by regulating
integrin expression,92 which is thought to be im-
portant for the migratory component of re-epithe-
lialization.87 Thus, TGF-b affects multiple cell
types during the proliferative phase of wound
healing, contributing to the formation of granula-
tion tissue consisting of newly formed blood ves-
sels, proliferating fibroblasts, and ECM
components, which sets the stage for normal scar
formation.

The final stage of wound healing, known as
‘‘maturation’’ or the remodeling phase, can last for
several years. Although the proliferation phase of
wound healing is characterized by an increase in

collagen production, which is tightly regulated by
TGF-b, the transition from the proliferative phase
to maturation phase is dependent on the ongoing
synthesis and degradation of collagen at a low
rate.86 Collagen degradation is mediated by MMPs
and other serine proteases that are also regulated
by TGF-b.93 Further, collagen degradation by
MMPs is counterbalanced by the presence of en-
dogenous TIMPs whose expression is also regu-
lated by TGF-b.94 Although the rate of collagen
production and degradation are balanced during
the maturation phase, there continues to be an
extensive remodeling process in which disorga-
nized collagen fibers are re-organized, cross-linked,
and aligned along tension lines.95 Cross-linking of
collagen is mediated by enzymes known as lysyl
oxidases (LOXs), which have been shown to in-
crease collagen cross-link dependent contraction
in vitro96 and enhance the wound’s tensile strength
in vivo.97,98 TGF-b has been shown to increase LOX
expression in many different cell types, including
skin fibroblasts in vitro,99,100 but its role in regu-
lating LOX expression during wound healing
in vivo remains to be explored.

Analysis of the functional role of TGF-b in wound
healing using animal models. Much of what has
been learned about the role of TGF-b in wound
healing has come from animal studies. These
studies have used different approaches, including

Figure 6. Myofibroblasts originate from different cell types and play a critical role in wound healing and scarring. Myofibroblasts are specialized cells that
express alpha smooth muscle actin (a-SMA, red) and display a contractile phenotype. During wound healing, resident fibroblasts trans-differentiate into
myofibroblasts in response to TGF-b and promote wound contraction. Fibrocytes are circulating bone marrow-derived cells that can enter tissues and
differentiate into myofibroblasts in response to TGF-b. Myofibroblasts also originate from other cell types such as epithelial cells through epithelial-to-
mesenchymal transition (EMT) and perivascular cells (pericytes) by trans-differentiation, and these processes have been implicated in the pathogenesis of
hypertrophic scarring.
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incisional and excisional wounds generated in
various animal species followed by measurement of
TGF-b signaling pathway components, and treat-
ing wounds with recombinant TGF-b (-b1, -b2, and
-b3) proteins or anti–TGF-b neutralizing anti-
bodies and measuring various wound healing and/
or scarring parameters. Another approach used
was to perform wound healing studies on mice with
genetic modifications of specific components of the
TGF-b signaling pathway. This section highlights
the current knowledge on the role of TGF-b sig-
naling in wound healing in non–genetically modi-
fied animal models. For information on the role of
TGF-b signaling in wound healing obtained using
mice with genetic modification in the TGF-b sig-
naling pathway, the reader is referred to the ‘‘Cri-
tical Review’’ by Finnson et al.,101 published in the
current issue of Advances in Wound Care.

The relationship between endogenous TGF-b
and wound healing first became evident in studies
that measured TGF-b isoform levels in experi-
mental wound healing models. For example, an
early study investigating TGF-b1 expression and
activity in vivo using two different models of cuta-
neous injury (human suction blister and partial
thickness excisional wounds in porcine skin)
showed that TGF-b1 expression/activity was in-
creased immediately (within 5 min) after injury
and progressed outward from the site of injury,
particularly at the leading edge of the migrating
epithelial sheet.102 Another study showed that
TGF-b isoforms (-b1, -b2, and -b3) display marked
differences in spatiotemporal expression during
excisional wound repair in pigs, with TGF-b2 and
TGF-b3 expression becoming prevalent 24 h after
wounding, particularly in the migrating epidermis,
and TGF-b1 expression increasing later at 5 days
post-wounding, when re-epithelialization was
complete.103 All three TGF-b isoforms were de-
tected in the mesenchymal cells (dermis) and basal
lamina, suggesting their involvement in dermal–
epidermal interaction during wound healing.103 An
intriguing aspect of TGF-b isoform expression
comes from studies comparing their expression
profiles in embryonic (scar-free) and adult (scar
forming) wounds. Embryonic wounds have been
shown to express high levels of TGF-b3, produced
mainly by skin cells (keratinocytes and fibroblasts),
and low levels of TGF-b1 and TGF-b2; whereas
adults wounds contain mostly TGF-b1 and TGF-b2
derived from degranulating platelets and immune
cells.26 These findings prompted the hypothesis
that the ratio of TGF-b3 to TGF-b1 (or TGF-b2) is
an important factor in scar-free wound healing and
led to studies aimed at increasing TGF-b3 levels by

exogenous application of recombinant TGF-b3
protein or reducing TGF-b1 and TGF-b2 levels
using neutralizing antibodies (see below).

The potential for TGF-b to regulate wound
healing was first implicated in a study showing
that a subcutaneous injection of TGF-b into normal
(non-wounded) skin of new born mice caused
granulation tissue formation with the induction of
angiogenesis and collagen production.104 A subse-
quent study showed that TGF-b administered to
rat incisional wounds accelerated wound healing
and increased wound strength.105 These studies
used TGF-b purified from human platelets and,
therefore, could not distinguish which TGF-b iso-
form(s) was responsible for these effects. Sub-
sequent studies showed that neutralization of
TGF-b1 and TGF-b2 using anti-TGF-b1/2 neutral-
izing antibody, or exogenous addition of TGF-b3,
reduces cutaneous scarring in rat incisional
wounds without reducing the wound tensile
strength.27,106,107 These studies were important in
establishing the pro-scarring effects of TGF-b1 and
TGF-b2 and the antiscarring potential of TGF-b3.

The role of TGF-b in wound healing and scarring
was further examined by Thomas Mustoe’s group,
who investigated the effects of an anti-TGF-b1, 2,
and 3 monoclonal antibody on wound healing and
hypertrophic scar (HTS) formation in rabbit ear
wounds.108 They found that early treatment of the
wounds (days 0, 2, and 4 post-wounding) with
neutralizing antibody impaired wound healing
without decreasing scar hypertrophy, whereas as
middle (days 7, 9, and 11) and late (days 11, 12, and
13) treatment of wounds significantly reduced scar
hypertrophy.108 Although this study could not de-
termine which TGF-b isoform(s) are involved, a
follow-up study investigating the temporal ex-
pression of TGF-b isoforms in the rabbit ear model
showed that elevated levels of TGF-b1, and possi-
bly TGF-b2, are associated with HTS formation.109

Another study using the rabbit ear model showed
that viral delivery of a dominant negative (trun-
cated) mutant of TbRII (to block endogenous TGF-b
signaling) 8–12 days post-wounding decreased
hypertrophic scarring.110 The rabbit ear model has
also provided insight on the role of TGF-b signaling
during the earlier wound healing events. For ex-
ample, one study showed that an injection of ade-
novirus-containing Smad3 48 h before wound
healing led to enhanced re-epithelialization and
granulation tissue formation in rabbit ear wounds.111

In addition, using the rabbit ear model under is-
chemic conditions, it was shown that adenoviral
delivery of Smad3 enhanced re-epithelialization
but that granulation tissue parameters were not
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affected by Smad3 under ischemic conditions.112

Further studies using TGF-b isoform–specific
neutralizing antibodies and adenoviral delivery
of Smad2, Smad3, and/or Smad4 at the early (days
0–4) and late (after day 7) stages of wound healing
in the rabbit ear model are possible avenues of
future research to further elucidate the role of
TGF-b/Smad signaling in this valuable animal
model.

Further evidence that decreasing TGF-b sig-
naling improves scarring outcome without com-
promising wound healing is provided by a recent
study using transgenic mice overexpressing
CD109, a TGF-b co-receptor and a potent TGF-b
antagonist, in the skin. These mice display de-
creased inflammation and granulation tissue for-
mation and improved collagen architecture
without a compromise in wound tensile strength as
compared with WT littermates, in a manner con-
sistent with inhibition of TGF-b signaling.113 Fur-
thermore, these mice also show a diminished
fibrotic response in a bleomycin-induced skin fi-
brosis model.114 Together, these studies support
the notion that dampening TGF-b signaling during

cutaneous wound healing is beneficial for improv-
ing scarring outcome.

Aberrant TGF-b signaling in pathological
scarring: HTSs and keloids

Hypertrophic scarring. Hypertrophic scarring
often occurs after deep burn injury or trauma and
is characterized by excessive ECM deposition.115

HTSs appear as elevated red scar tissue that re-
mains within the boundary of the original injury
(Fig. 7A).115 Although the pathophysiological
mechanism(s) involved in hypertrophic scarring
are not fully understood, many studies indicate
that aberrant TGF-b signaling plays a key role in
its etiology. For example, Scott and colleagues
showed that TGF-b1 protein was present in HTSs,
particularly in the deep dermis, as well as in the
dermis of mature ‘‘normal’’ scars but was not de-
tected in normal (non-scarred) dermis.116 In addi-
tion, Wang and colleagues showed that TGF-b1
mRNA levels are higher in HTS tissue and in cul-
tured HTS fibroblasts as compared with normal
skin tissue and cells, and that cultured HTS fibro-
blasts secrete more TGF-b1 protein than normal

Figure 7. Characteristics of human hypertrophic scars and keloids. (A) Hypertrophic scar: This appears as a red, raised scar that does not extend beyond the
boundaries of the original injury. They have nodular collagen deposits containing a-SMA producing myofibroblasts that are involved in scar contracture.
Hypertrophic scars can regress with time. The main findings from studies on the role of TGF-b signaling and hypertrophic scarring are indicated. (B) Keloid:
This appears as a shiny and smooth protuberance ranging from pink to purple in color and extends beyond the boundaries of the original wound. Unlike
hypertrophic scars, keloids do not have nodular collagen deposits, a-SMA-producing myofibroblast, do not undergo scar contracture, and do not regress with
time. The main findings from studies on the role of TGF-b signaling and keloid formation are indicated. Images were obtained with permission from the DermNet
NZ Web site (www.dermnetnz.org). To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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skin fibroblasts.117 HTS skin tissue has been
shown to display persistent ALK5 and TbRII ex-
pression compared with normal wound tissue,
where ALK5 and TbRII expression declines during
the tissue remodeling phase.118 In addition,
downstream TGF-b/Smad signaling appears to be
activated in HTS fibroblasts, as evidenced by a
predominantly nuclear localization of Smad2 in
HTS skin fibroblasts as compared with normal fi-
broblasts.119 The pleiotropic effects of TGF-b1 in
fibroblasts, including the induction of their differ-
entiation into myofibroblasts, increasing ECM
production,90 and stimulating synthesis of TIMPs
that inhibit ECM degradation by MMPs,120 con-
tribute to the formation of HTS.

In addition to the effects of local TGF-b produc-
tion by resident fibroblasts, alterations in systemic
TGF-b levels have also been implicated in the
pathogenesis of HTS. For example, Tredget et al.
showed that patients with severe HTS display in-
creased TGF-b1 serum levels after thermal injury
and that treatment with interferon (IFN)-a 2b
significantly reduced TGF-b1 serum levels and
enhanced resolution of HTS.121 IFN-a 2b has been
shown to inhibit TGF-b1 protein production by
HTS fibroblasts,122 and other studies have shown
that IFNs increase expression of the I-Smad7,123

which has been shown to inhibit TGF-b signaling
by different mechanisms (see the section En-
docytosis and TGF-b signaling). In addition, IFN-a
2b has also been shown to inhibit TGF-b-induced
alpha smooth muscle actin expression in a unique
subpopulation of leukocytes known as fibro-
cytes,124 which are circulating bone marrow de-
rived cells that can leave the blood, enter tissues,
and differentiate into myofibroblasts in response to
TGF-b.125 Interestingly, dermal fibroblasts treated
with conditioned medium (CM) from burn patient
fibrocytes (but not by CM from normal fibrocytes)
showed an increase in proliferation, migration, and
contractility, which was abrogated by application
of a TGF-b1 neutralizing antibody.126 These find-
ings suggest that fibrocytes in burn patients may
act as a source of systemic TGF-b1 as well as a
target for TGF-b1-induced myofibroblast differen-
tiation action in tissues, thereby creating a vicious
cycle of TGF-b1 production and action in patho-
genesis of HTS. In addition, myofibroblasts origi-
nating from other cell types, such as epithelial cells
by EMT and perivascular cells (pericytes) via
trans-differentiation, have also been implicated in
pathological scarring (Fig. 6).127 A recent study
showing that a major proportion of collagen-over-
producing cells generated by scarring are derived
from profibrotic progenitors residing in the peri-

vascular space128 suggests that non-resident fi-
broblasts may play a more important role in
scarring that previously thought.

Although TGF-b1 serum levels have been shown
to be increased in patients with severe HTS re-
sulting from burn injury, these findings have not
been universally reproduced. For example, a recent
study on post-burn scarring in children showed
that although plasma TGF-b1 levels significantly
increased during the first 2 weeks post-injury and
then declined in patients who healed with good
quality post-burn scars, the early increase in
plasma TGF-b1 levels was not detected in patients
who developed HTS.129 Further longitudinal
studies characterizing TGF-b1 serum levels in a
larger cohort of burn patients will be needed to
determine whether TGF-b1 serum levels can be
used as an indicator for predicting clinical scar
outcomes or whether they might serve as a clinical
tool for selecting patient groups to be targeted for
anti-scarring therapy.

Keloids. Keloids are another type of patholog-
ical scar for which aberrant TGF-b signaling is
thought to play a pathophysiological role. Unlike
HTS, keloids often appear as shiny rounded pro-
tuberances with colors ranging from pink to purple,
and scarring extends beyond the boundaries of the
original injury (Fig. 7B).115 Studies using cultured
keloid fibroblasts have shown that these cells pro-
duce higher amounts of ‘‘pro-scarring’’ TGF-b1 and
TGF-b2 as compared with normal fibroblasts.130,131

Another study demonstrated that keloid fibro-
blasts exhibit increased expression of ALK5 and
TbRII as well as increased phosphorylation of
Smad3 relative to normal fibroblasts.132 Interest-
ingly, increased TGF-b/Smad3 signaling has been
implicated in keloid pathogenesis via epithelial–
mesenchymal interactions, where keloid keratino-
cytes act through a paracrine mechanism to
increase ALK5 and TbRII expression and Smad3
signaling in keloid fibroblasts.133 Genetic studies
have not revealed an association between keloid
disease and the occurrence of common polymor-
phisms or mutations in genes encoding the three
TGF-b isoforms (-b1, -b2, and -b3) in Cauca-
sians134–136 or Smads (-3, -6, and -7) in a Jamaican
population.137 However, a recent study has re-
vealed an association of TGF-b1 and Smad4 vari-
ants in the etiology of keloid scar in the Malay
population.138 Further genetic studies investigat-
ing the potential link between keloid disease and
polymorphisms/mutations in components of the
TGF-b signaling pathway using larger cohorts of
patients, particularly individuals with darker skin
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pigmentation who are more susceptible to keloid
formation, are warranted.

Strategies used for targeting the TGF-b
signaling pathway to improve wound
healing outcome

The TGF-b signaling pathway is considered a
promising target for the treatment of many path-
ological skin conditions, ranging from chronic
(non-healing) wounds to hypertrophic scarring
and keloid formation. Manipulation of the TGF-b
signaling pathway is also thought to be a suitable
strategy for improving the cosmetic appearance of
non-pathological ‘‘normal’’ scars that result from
surgery or minor injury. This section highlights
some of the therapeutic avenues used to target the
TGF-b signaling pathway for improving clinical
scar outcomes.

Neutralizing antibodies and ligand traps. The
concept of blocking TGF-b signaling using anti-
TGF-b neutralizing antibodies has been around
since the early 1990s with the pioneering work of
Ferguson and colleagues, who showed that neu-
tralizing antibodies to TGF-b1/b2 reduces cutane-
ous scarring in adult rodents.27,106 This work was
expanded on by Mustoe’s group, who investigated
the effects of an anti-TGF-b1, 2, and 3 monoclonal
antibody on wound healing and HTS formation in
rabbit ear wounds.108 They found that early
treatment of the wounds (days 0, 2, and 4 post-
wounding) with a neutralizing antibody impaired
wound healing without decreasing scar hypertro-
phy; whereas middle (days 7, 9, and 11) and late
(days 11, 12, and 13) treatment of wounds signifi-
cantly reduced scar hypertrophy.108 CAT-192 is
a human monoclonal antibody that neutralizes
TGF-b1 and was shown to improve corneal wound
healing in bovine organ cultures by promoting
re-epithelialization.139

Scleroderma, or systemic sclerosis (SSc), is a
rare connective tissue disease that is characterized
by autoimmunity, vasculopathy, and fibrosis
(scarring) of the skin and internal organs.140 Due to
the potentially critical role of TGF-b in the patho-
genesis of SSc, it was thought that CAT-192 might
provide therapeutic benefit to SSc patients. Al-
though a Phase I/II clinical trial showed that CAT-
192 was safe and well tolerated across all dose
levels, no conclusions regarding its efficacy in SSc
could be made.141 Future preclinical studies
showing that CAT-192 reduces cutaneous scarring
would be expected to translate well to a clinical
setting, as safety and tolerability studies on CAT-
192 have already been performed.141

In addition to TGF-b neutralizing antibodies,
TGF-b ligand traps represent another class of
molecules in development for neutralizing excess
TGF-b produced in pathological conditions. One
example is the soluble TbRII (sTbRII) containing
the extracellular domain of TbRII fused to the Fc
region of IgG1, which was developed as a TGF-b–
sequestering agent and has shown efficacy in var-
ious animal models of human disease.142 A recent
study has shown that adenoviral delivery of sTbRII
accelerates lymphatic regeneration and decreases
inflammation and fibrosis in a mouse tail model of
lymphedema,143 suggesting that sTbRII may be
applicable to other models of wound healing, scar-
ring, and fibrosis. LAP is another molecule that has
potential for development as a TGF-b trap for the
treatment of TGF-b-driven pathologies. As an ex-
ample, one study has shown that treatment with
human recombinant LAP (TGF-b1) prevents skin
fibrosis in a mouse model of scleroderma (murine
sclerodermatous graft-versus-host disease).144

Other molecules with the potential to act as TGF-b
ligand traps include decorin and fibromodulin,
which are members of the small leucine-rich pro-
tein (SLRP) family. Decorin is thought to inhibit all
TGF-b isoforms,145 which may pose some limita-
tions for its potential as an antiscarring agent, as
it would be expected to block not only the pro-
scarring effects of TGF-b1 and TGF-b2, but also the
anti-scarring effects of TGF-b3. A recent study
demonstrated that a recombinant decorin protein
fused to a wound-homing peptide (CARSKNKDC;
CAR peptide) displays enhanced TGF-b1 and TGF-
b2 neutralization activity and reduced TGF-b3
neutralization activity as compared with non-
targeted decorin in vitro, and also enhances wound
healing and suppresses scar formation in mice at
doses where non-targeted decorin is inactive.146

Decorin has also been shown to block the activity of
connective tissue growth factor (CCN2), a down-
stream mediator of pro-fibrotic TGF-b action,147

suggesting that its antiscarring activity may ex-
tend beyond its effects on TGF-b neutralization.
Fibromodulin has also been shown to promote
wound healing and to reduce scarring in animal
models148,149 and may represent a therapeutic
target for the treatment of HTS.150,151

TGF-b co-receptors represent a unique class of
molecules that are starting to receive attention for
their potential as TGF-b ligand neutralizing agents.
The ability of TGF-b co-receptors, particularly beta-
glycan and CD109, to bind TGF-b isoforms with high
affinity and specificity make them attractive tar-
gets for the development of TGF-b isoform-specific
traps. As an example, peptide 144 (P144) is a 14-mer
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peptide from human betaglycan that was designed
as a TGF-b1 inhibitor and has shown efficacy in re-
ducing fibrosis in different animal models.152,153

P144 is currently being tested in a Phase II clinical
trial for the treatment of skin fibrosis in SSc.154,155

ALK5 kinase inhibitors. Since excessive TGF-b
has been shown to lead to fibrotic scarring, blocking
TGF-b action by inhibiting TGF-b receptor kinase
activity using small-molecule inhibitors is expected
to be beneficial in promoting an antiscarring effect.
Several small molecule inhibitors that block ALK5
kinase activity have been tested for their efficacy to
improve scarring in preclinical models. The small
molecule SB431542, which was developed as a po-
tent inhibitor of ALK5,156 has been shown to re-
duce scar formation in the eye after glaucoma
filtration surgery in rabbits as evidenced by a de-
crease in collagen deposition in the subconjunctival
space in the experimental groups.157 SB431542
used in combination with recombinant human
granulocyte colony-stimulating factor (G-CSF) and
macrophage colony-stimulating factor (M-CSF)
was shown to improve wound breaking strength in

full-thickness incisional wounds in the rat skin.158

Topical application of a novel ALK5 inhibitor (CP-
639180) was shown to reduce collagen deposition in
a rat dermal incision wound healing model.159

The latter two studies demonstrate the feasibility
of using topically applied small-molecule ALK5
kinase inhibitors to improve cutaneous scarring
after wound healing. A recent study reported the
discovery of a series of small molecules known as
2-(1H-pyrazol-1-yl)pyridines that act as potent
ALK5 kinase inhibitors and have demonstrated
their potential utility in the prevention of dermal
scarring.160 Topical application of one of these
compounds (PF-03671148) in a rat incisional
wound repair model led to a reduction in fibrotic
gene expression without altering the normal
wound healing process.160 Although these studies
are promising, it remains to be seen whether any of
these ALK5 inhibitors will be of clinical use, as
none of them have yet been screened in Phase I
clinical trials for safety and tolerability.

TGF-b3. As mentioned earlier, research on
the expression and function of TGF-b isoforms

Figure 8. Therapeutic strategies that have been used to target the TGF-b signaling pathway to reduce scarring. (1) Neutralizing TGF-b antibodies and (2)

ligand traps bind TGF-b and neutralize TGF-b activity by preventing its binding to the TGF-b signaling receptors (TbRII and TbRI). (3) Small molecules that
inhibit ALK5 kinase activity, including CP-639180 (depicted), prevent ALK5-induced phosphorylation of Smad2 and Smad3 and downstream signaling events. (4)

Recombinant TGF-b3 protein (avotermin) binds to TGF-b signaling receptors and elicits Smad2/3-dependent signaling. Unlike TGF-b1 and TGF-b2 isoforms that
have pro-scarring effects, TGF-b3 has anti-scarring properties. The molecular mechanisms underlying the different responses of the TGF-b isoforms have not
been elucidated. (5) Antisense oligonucleotides are single-stranded DNA or RNA sequences that are complementary to a specific mRNA sequence. They bind
to their target mRNA sequence and silence gene expression by blocking protein translation or promoting degradation of the mRNA transcript. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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(-b1, -b2, and -b3) in scar-free (embryonic)
and scar-forming (adult) wound healing
models has shown that the three TGF-b
isoforms play very different roles in
scarring, with TGF-b1 and -b2 showing
pro-scarring effects and TGF-b3 display-
ing antiscarring effects.161 The discovery
of the antiscarring properties of TGF-b3
led to a clinical development program for
evaluating recombinant human TGF-b3
(avotermin) as a therapeutic intervention
(prophylatic) to reduce scarring in human
surgical wounds. Prophylactic adminis-
tration of avotermin was successful for
improvement of skin scarring in several
double-blind, placebo-controlled, phase I/
II studies.162–165 Avotermin was shown to
significantly improve the visual appear-
ance of scars,162–165 decrease scar surface
area, and promote a collagen organization
that more closely resembled normal skin
in 14 of 19 cases.162 Unfortunately, avo-
termin failed to show efficacy in Phase III
trials, possibly due to the use of a different
TGF-b3 standard, which led to a twofold
overestimation of TGF-b3 concentration,
and, therefore, a 50% lower dose of TGF-b3
used in the Phase III clinical trial as com-
pared with the Phase I/II clinical trials.166

Antisense oligonucleotides. Antisense
oligonucleotides are single-stranded DNA
or RNA that are complementary to a specific mRNA
sequence which blocks target gene expression either
by inhibiting RNA translation or by promoting en-
zymatic degradation of the mRNA target.167 Several
studies demonstrate that antisense oligonucleotides
targeting components of the TGF-b signaling path-
way have the potential to modulate wound healing
and scarring outcomes. In one study, topical appli-
cation of antisense TGF-b1 oligonucleotides reduced
scarring of incisional wounds in mice as compared
with sense control oligonucleotides.168 In addition,
TGF-b1 antisense oligonucleotides reduced scarring
and improved surgical outcome in animal models in
which surgical procedures performed resemble
those done in glaucoma patients.169 In addition,
Smad3 antisense oligonucleotides accelerated
wound healing and reduced scarring in a mouse
excisional wound model.170 More advanced methods
of gene silencing such as RNA interference have also
been successfully employed in wound healing and
scarring studies. Accordingly, transcutaneous de-
livery of Smad3 siRNA decreases radiation-induced
skin fibrosis as compared with control siRNA.171

Future studies targeting other components of
the TGF-b signaling pathway to modulate wound
healing and scarring outcome are eagerly awaited.
Figure 8 depicts strategies for targeting the TGF-b
pathway to improve wound healing outcome as
described earlier.

LIMITATIONS AND FUTURE DIRECTIONS

Although the TGF-b signaling pathway is con-
sidered a promising therapeutic target for the
treatment of impaired wound healing and exces-
sive scarring (fibrosis), currently, no therapies are
available that target the TGF-b signaling pathway
to improve wound healing outcome. One potential
explanation for the lack of ‘‘translatability’’ of
TGF-b research is that the animal models used in
preclinical research may not mimic the wound heal-
ing and scarring responses in humans. Accordingly,
there has been recent progress in the development
of animal models such as the nude mouse model of
hypertrophic scarring, which displays many char-
acteristics of human hypertrophic scarring172,173

TAKE-HOME MESSAGES
Basic science advances
� TGF-b plays important roles in all three phases (inflammation, prolifer-

ation, and maturation) of wound healing.

� TGF-b isoforms (-b1, -b2, and -b3) play distinct roles in wound healing
with TGF-b1/2 having predominantly pro-scarring roles and TGF-b3
having mainly anti-scarring effects.

� Recent advances in our understanding of TGF-b signaling, including TGF-
b synthesis and activation, TGF-b receptor activity, Smad pathways, and
modulation by co-receptors, provide new opportunities to delineate the
mechanisms by which TGF-b signaling regulates specific wound healing
events.

Clinical science advances
� Several therapeutic agents, including anti–TGF-b neutralizing antibodies,

TGF-b ligand traps, small-molecule inhibitors of TGF-b signaling recep-
tors, and TGF-b3, have shown promising results in improving scarring in
preclinical studies. TGF-b3 was successful in reducing scarring in Phase
I/II clinical trials but failed to show efficacy in a Phase III clinical trial.

� The potential beneficial effects of TGF-b isoforms during the early stages
of wound healing and the different effects of TGF-b1/b2 (pro-scarring)
and TGF-b3 (anti-scarring) at the later stages of wound healing suggest
that modulation of TGF-b signaling to promote wound healing and/or
reduce scarring may require agents that modulate TGF-b signaling in a
temporal and isoform-specific manner.

Relevance to clinical care
� The development of therapeutic agents that target the TGF-b signaling

pathway to reduce scarring is relevant to clinicians and surgeons who
treat conditions such as burn injury or other trauma that lead to hy-
pertrophic scarring, keloid formation, and/or tissue fibrosis.
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and chemically induced animal models of systemic
sclerosis (scleroderma) that reproduce the entire
spectrum of the human disease, including inflam-
mation, autoimmunity, vasculopathy, and fibro-
sis.174 Such models provide powerful tools for
future preclinical studies, exploring the utility of
agents that target the TGF-b signaling pathway to
improve wound healing or scarring outcomes. In
addition, identifying the cellular source of TGF-b
that causes scarring and fibrosis and devising
strategies using specific modes of delivery such as
topical treatment and intralesional delivery or
systemic administration may be important. For
example, emerging evidence indicates that fibro-
blasts from the deeper dermal layers produce more
of the pro-fibrotic TGF-b1 and less anti-fibrotic
decorin, fibromodulin, and TGF-b3 than fibroblasts
from superficial layers and contribute to the de-
velopment of HTS after injuries involving the deep
dermis.150,151,175 The latter findings have impor-
tant implications for selecting an appropriate
strategy for delivering an anti-TGF-b therapy
specifically to the deep dermis to ameliorate fibro-
sis in HTS patients.
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