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Abstract
Helicobacter pylori  (H. pylori ) is a common human 
pathogen responsible for various gastric diseases. 
This bacterium relies on the production of urease and 
hydrogenase to inhabit the acidic environment of the 
stomach. Nickel is an essential cofactor for urease and 
hydrogenase. H. pylori  has to uptake sufficient nickel 
ions for the maturation of urease, and on the other 
way, to prevent the toxic effects of excessive nickel 
ions. Therefore, H. pylori  has to strike a delicate bal-
ance between the import of nickel ions, its efficient 
intracellular storage, and delivery to nickel-dependent 
metalloenzymes when required. The assembly and mat-

uration of the urease enzyme is a complex and timely 
ordered process, requiring various regulatory, uptake, 
chaperone and accessory proteins. In this review, we 
focus on several nickel trafficking proteins involved in 
urease maturation: NikR, NixA, HypAB, UreEFGH, HspA, 
Hpn and Hpnl. The work will deepen our understanding 
of how this pathogenic bacterium adapts to severe ha-
bitant environments in the host.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Helicobacter pylori  (H. pylori ) is responsible for 
various gastric diseases. The nickel containing urease 
and hydrogenase are essential for the successful infec-
tions of H. pylori  in the stomach. Nickel is an essential 
cofactor for urease and hydrogenase. In this review we 
discussed the various regulatory, uptake, chaperone 
and accessory proteins involved in the maturation of 
urease, especially the proteins NikR, NixA, HypAB, Ure-
EFGH, HspA, Hpn and Hpnl. The work will deepen our 
understanding of how this pathogenic bacterium adapts 
to severe habitant environments in the host.
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INTRODUCTION
Helicobacter pylori (H. pylori), a micro-aerophilic Gram-
negative spirobacterium, infects around half  of  the 
people worldwide and is responsible for gastric diseases 
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such as chronic gastritis, peptic ulcer and gastric cancer[1]. 
The bacterium is widely present in the mucus layer of  
the stomach, the mucus glands in the stomach cavity and 
the surface of  gastric epithelial cells as well as within the 
cells. Due to the wide presence in the differential parts 
of  the stomach, it is difficult to completely eradicate 
the pathogen during gastric disease therapy[2]. The com-
monly used treatment for H. pylori related diseases is the 
so-called triple therapy, which consists of  two antibiotics 
and either a proton pump inhibitor (PPI) or one kind of  
bismuth-based colloidal drug[3,4]. In some countries, stan-
dard triple therapy combining one PPI, amoxicillin and 
clarithromycin is the best option. However, in countries 
where clarithromycin resistance rate is over 20%, bismuth-
containing quadruple therapy, or non-bismuth sequential 
or concomitant therapies are the preferred option. The 
medical and social impact of  the discovery of  H. pylori 
was acknowledged by the award of  the 2005 Noble Prize 
in Physiology and Medicine to Marshall and Warren.

Around 80% of  H. pylori cells inhabit the moder-
ately acidic gastric mucus. Once entry into the stomach, 
the first hurdle for H. pylori is to be quickly transmitted 
through the extremely acidic gastric lumen, exhibiting a 
median pH of  approximately 1.4[5]. H. pylori multiplies 
in an environmental pH from 6.0 to 8.0[6], and cannot 
survive when the pH < 4.0 or > 8.2[7]. In order to live 
in the gastric environment, H. pylori has developed vari-
ous acid-resistant mechanisms. Time-independent acid 
resistance depends on the high isoelectric points of  the 
inner and outer membrane proteins to reduce proton 
permeability[8]. Acute acid resistance depends on the con-
stitutive synthesis of  urease that catalyzes the hydrolysis 
of  urea to ammonia and carbamate, the latter of  which 
is further degraded to ammonia and carbonic acid. The 
end products are in an equilibrium between their proton-
ated and de-protonated forms, leading to an elevation of  
the surrounding pH from absolutely acidic to approxi-
mately neutral[9]. Urease is an oligomeric Ni2+-containing 
heterodimer of  UreA and UreB subunits and is essential 
for H. pylori to infect in all animal models so far exam-
ined[10-12]. The substrate gastric juice urea is able to rapidly 

access intrabacterial urease through a pH-gating urea 
channel, UreI[13], when the periplasmic pH falls < 6.2.

H. pylori urease is produced in a high level, account-
ing for up to 10% of  total cellular proteins[14]. Expression 
of  urease protein is constitutive[15], primarily due to the 
housekeeping σ80-dependent promoters for the transcrip-
tion of  both ureAB and ureEFGHI[16,17]. Under in vitro 
growth conditions without additionally added Ni2+, only 
2% of  the active sites were filled with Ni2+[18,19]. Urease 
produces NH3 from gastric juice urea with maximal ef-
ficiency at millimolar concentrations[14,20], 1014 times faster 
than uncatalyzed reactions. The enzymatic hydrolysis 
of  urea causes an abrupt overall pH increase, resulting 
in negative side effects for human and positive effects 
in the buffering of  the periplasm and maintenance of  a 
proton motive force adequate for ATP synthesis of  the 
bacterium[21]. H. pylori urease was shown to be a giant 
1.1 MDa complex containing 12 subunits of  UreA and 
UreB (Figure 1), with two Ni2+ needed for enzyme activ-
ity[6,22]. The assembly of  the urease enzyme is a complex, 
timely ordered process, and the UreEFGH accessory 
proteins are absolutely necessary[23,24]: UreH stabilizes 
the apoprotein[25]; UreF facilitates carbamylation of  the 
Ni2+-bridging lysine residue and blocks premature Ni2+ 
binding to the active site[26]; UreG provides energy during 
urease assembly[27]; and UreE facilitates Ni2+ incorpora-
tion into the active center[28]. The hydrogenase accessory 
proteins HypA and HypB are also necessary to maintain 
the urease activity, indicating that the bacterium utilizes 
both maturation systems for the activation of  its ure-
ase[18]. This present review intends to cover the reports 
and discoveries in the field of  nickel trafficking system 
in urease maturation of  H. pylori, which may deepen our 
understanding of  how this pathogenic bacterium adapts 
to severe habitant environments in the host.

NICKEL REGULATORY PROTEIN NIKR
Bacteria have developed sophisticated mechanisms to 
regulate levels of  intracellular nickel ions, to ensure suf-
ficient nickel for enzyme processes in one way and to 
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Figure 1  Structure of Helicobacter pylori urease. A: The urease enzyme subunit UreAB (UreA, blue; UreB, cyan; PDB code: 1E9Z); B: The active sites of H. pylori 
urease with the side chains of the enzyme involved in the chelation of the catalytic di-nickel center shown (Ni, green; O, red; N, blue; C, pink). H. pylori: Helicobacter 
pylori.
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prevent excessive toxic free ions in the other way[29]. 
NikRs, a novel class of  ribbon-helix-helix nickel regula-
tory proteins, are homotetrameric transcription factors 
that repress and/or activate specific genes in response 
to nickel availability. H. pylori NikR, a tetrameric protein 
made of  two dimeric N-terminal DNA-binding domains 
(DBD) and C-terminal domains for tetramerization and 
metal binding (MBD), binds stoichiometric nickel with 
picomolar affinities[30,31], comparable to NikRs from 
other species[32-34]. The DBD and MBD are connected by 
a flexible linker, allowing for differential conformations 
(open, trans and cis) of  NikR. In E. coli and Pyrococcus 
horikoshii, the apo-NikRs adopt an open conformation, 
whereas the apo-NikR shows an unusual closed trans-
conformation and asymmetrical quaternary arrange-
ment, where the DBDs are on the opposite sides of  the 
transmembrane domain[35]. Computational and NMR 
studies suggest that NikR is interconverting among the 
open, trans and cis forms in solution and nickel binding 
facilitates the interconversion[36].

At non-physiologically low pH (4.6-5.6), NikR had 
three types of  nickel-binding sites: the final high affinity 
site (F) with square-planar geometry, the intermediate 
site (I) involving residues belonging either to the F or 
external site, and the external sites (X) with an octahedral 
geometry[35,37]. Whereas in physiological conditions (pH 
5.6-7.5), NikR binds four low-spin Ni2+ at the protein tet-
ramerization interface, although differential nickel coordi-
nation modes are proposed. Michel’s group suggests that 
two nickels are bound at 4-coordinate square-planar sites 
with His3Cys ligands (i.e., 4-sites) and the other two are 
coordinated by His3(H2O)2-3 in square pyramidal or octa-
hedral geometries (i.e., 5/6 sites)[37]. Ciurli’s group reports 
a structure with all four nickel ions bound to 4 sites[38], 
and the four binding sites are classified into two sets (2/2), 
with binding affinities differing by one order of  magni-
tude[39]. The findings may suggest that an equilibrium ex-
ists between the two nickel-bound forms of  the protein. 

The biological role of  NikR is to regulate the tran-
scription of  multiple genes as a function of  nickel avail-
ability[40,41]: up-regulated genes in nickel metabolism 
(nikABCDE, nixA, ureA, ureB, hpn and hpn-like); down-
regulated genes in iron uptake and storage (pfr, fur and 
exbB/exbD), motility (cheV, flaA and flaB), and stress re-
sponses to outer membrane proteins (omp11, omp31 and 
omp32)[40]. The nickel-responsive binding of  NikR to tar-
get promoters pUreA, pNikR, pexbB and pFur have been 
characterized by the in vitro gel shift and DNase I foot-
printing studies. Michel’s[42] group proposed a mechanism 
for nickel-mediated DNA recognition by NikR. NikR 
prefers binding Ni at 5/6 sites. Upon addition of  two Ni, 
the ligands are rearranged to two 4-sites. Addition of  two 
more Ni results in mixed coordination geometry (two 
4-sites and two 5/6-sites) and makes the protein binding 
to target DNA. The binding to DNA changes the orien-
tation of  the DBD from trans to cis, an orientation that 
is stabilized at the MBD/DBD interface[42].

Controversial opinions exist for the roles of  NikR 

in urease activation as a function of  pH. One opinion 
goes that under acidic conditions, the greater availability 
of  Ni2+ leads to the formation of  Ni2+-NikR complexes 
which further increase the expression of  urease, Ni2+ 
transporter NixA and iron regulator Fur[43,44]. Whereas, 
Pflock et al[45] found that a two-component system ArsRS 
(acid responsive signaling) regulated urease expression 
in response to low pH, and further proposed that urease 
expression is mediated by two distinct mechanisms: one 
in response to increasing Ni2+ concentration (NikR) and 
one in response to decreasing pH (ArsR). 

NICKEL UPTAKE
Due to the essential stasis of  Ni2+-containing urease for 
the host colonization and infection of  H. pylori, a con-
stant supply of  Ni2+ into H. pylori is required. The con-
centration of  nickel ions in the environment is relatively 
low: around 30 nM in seawater and 5 nM in freshwater, 
a condition requiring highly specific importers of  Ni2+ 
ions for H. pylori[46]. Thus far, two types of  nickel uptake 
strategies have been identified in H. pylori[46]: (1) NixA[47], 
a member of  the nickel-cobalt transporter family (Ni-
CoT)[48]; and (2) the multiple-component ATP-binding 
protein cassette (ABC)-transporters, which are believed 
to be a four-gene operon designated as abcABCD[49].

NixA is required for effective H. pylori colonization, 
as disruption of  the gene led to reduced colonization[50]. 
NixA is predicted to have eight transmembrane-spanning 
helices, and transports Ni2+ with a Vmax of  1750 pmol 
Ni2+/min per 108 cells and a Km of  11.3 nmol[51,52], thus 
enabling H. pylori to efficiently scavenge nickel ions in 
the range of  2-11 nmol from the human body[53]. NixA 
transcription was shown to be repressed by NikR in a 
nickel-dependent manner to prevent excess toxic in vivo 
nickel[44,54].

NixA deletion mutants still retained urease activity in 
some levels (up to 50% in some strains)[50,55], indicating 
the existence of  an alternative nickel transporter. Further 
analysis identified the abcABCD genes, a component of  
the ATP-dependent nickel transport system to be po-
tentially involved in NixA-independent nickel uptake, as 
mutations in abcCD decreased urease activity[49]. Another 
work identified FrpB4 to be a potential outer membrane 
nickel uptake protein as energized by the TonB/ExbB/
ExbD machinery[56], indicating that the established iron 
uptake machinery may be involved in nickel uptake. 
However, further work is needed to confirm their role 
and mechanism in nickel transport.

CHAPERONES
Similar to other bacteria, H. pylori has to maintain a 
delicate balance between the import of  nickel ions, its 
efficient intracellular storage, and delivery to nickel-
dependent metalloenzymes when required. Metals, such 
as nickel, pose problems for the cell because they are 
required for the growth, whereas they inhibit growth and 
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HypB[68]. Nickel binding is reported to either slightly[68] 
or highly[61] stimulate the activity of  HypB, with reasons 
for these discrepancies yet unknown. The regulation of  
HypB activities by metal binding may contribute to the 
maturation of  the hydrogenase and urease.

UreEFGH
UreEFGH is a group of  accessory proteins involved in 
the synthesis of  the urease active site[41], which has been 
excellently covered recently in a review by Farrugia et al[69]. 
This review will only briefly discuss their respective roles. 
The information about UreH is quite limited primarily 
due to its insolubility in solution, although it is believed to 
be the first protein to bind to apo-urease[70]. UreE is the 
chaperone to deliver nickel to urease and UreF activates 
the GTPase activity of  UreG[29,41]. UreE is capable of  
binding Ni and Zn (Kd of  0.15 and 0.49 μmol, respective-
ly) in a stoichiometry of  one per dimer[71,72]. Apo-UreE is 
a dimer and the metal-bound protein is a tetramer (dimer 
of  dimer) formed by the coordination of  the metal ion 
by His104 from each subunit[73]. A second UreE crystal 
structure indicates that Ni is six-coordinate (His102 from 
one monomer, His102, His152, Glu4 from the other, a 
water molecule and one unidentified ligand)[74]. His152 is 
disordered in the crystal and could be replaced by UreG 
residues, thus leading to the transfer of  nickel from 
UreE to UreG. In the calculated structure of  UreDEFG 
through computational modeling, the convex surface of  
the UreG dimer is in direct contact only with the shal-
low crevice at the interface of  the two UreF monomers 
through weak van der Waals and polar interactions[75]. 
UreF and UreH can form dimer of  heterodimers in solu-
tion with concomitant conformational changes in two 
distinctive regions of  UreF[76]: (1) the flexible C-terminus 
becomes ordered to form an extra helix α10 and a loop 
stabilized by hydrogen bonds involving Arg250; and (2) 
the first turn of  helix α2 uncoils to expose a conserved 
residue Tyr48. Both Arg250 and Tyr48 are critical for 
the heterotrimeric formation of  UreG-UreF-UreH and 
urease maturation[76]. One crystal structure of  UreGFH 
indicates that UreFH facilitates UreG dimerization and 
assembles its metal binding sties by juxtaposing two 
Cys66-Pro67-His68 motifs at the interface to form the 
(UreGFH)2 complex[77].

HspA, Hpn and Hpn-like
HspA, Hpn and Hpn-like (Hpnl) proteins in H. pylori are 
histidine-rich in full or in part. HspA is a bacterial GroES 
homologue with a unique cysteine- and histidine-rich 
C-terminal domain[78]. HspA binds 2 Ni per monomer 
with a dissociation constant of  1.1 μmol in vitro[79]. The 
in vivo work showed that HspA is involved in intracel-
lular nickel sequestration and detoxification, and plays a 
role as a specific nickel chaperone in the maturation of  
hydrogenase, while not for urease[80]. Hpn (Figure 2A) 
is a histidine rich protein (accounting for around half  
of  its amino acids) and highly abundant in the cell cyto-
plasm (approximately 2% of  all protein synthesized)[81]. 

exhibit toxic effects when present in excess. In this sec-
tion, we would like to discuss the proteins involved in 
metallocenter assembly in urease.

HypA and HypB
HypA and HypB are named to emphasize their roles in 
the maturation and activation of  NiFe hydrogenase (hyp, 
hydrogenase pleiotropic). However HypA and HypB 
are also found to be accessory proteins for urease[57], as 
reflected by the reduced urease activity (40-200 folds) 
upon hypA or hypB disruption[18] and the competition 
between HypA and UreG for UreE (see below) recogni-
tion[58]. HypA binds nickel and zinc ions and HypB is a 
P-loop GTPase to provide energy during nickel insertion 
in hydrogenase. HypA and HypB exist as homodimers 
in solution and form heterodimers with each other[59,60] 
with a low affinity (Kd of  52.2 ± 8.8 μmol)[61]. HypA and 
HypB also make heterodimers with UreE[62] and SlyD[63], 
respectively in solution. The NMR structure of  zinc-
bound HypA monomer indicates that the nickel binding 
site is located at the N-terminus and nickel is bound to 
four nitrogens in a square planar geometry[64]. A thermo-
dynamic study indicates that the zinc binding site has a 
much higher affinity to zinc than nickel and zinc bind-
ing induces a great change in the secondary structure of  
HypA to exert its structural role in the metalloprotein[65]. 
Further study with XAS showed that HypA dimer has a 
unique structural flexibility of  the zinc site and has roles 
in sensing nickel binding and pH[66,67]: a decrease of  pH 
from 7.2 to 6.3 induces a change of  the zinc binding 
ligands from Cys4 to Cys2His2 and results in a change 
of  the nickel binding stoichiometry from one Ni per 
monomer to one Ni per dimer[66]. Cys106 and His107 of  
HypB are required for nickel binding and metal-depen-
dent dimerization[68]. Nickel binding of  HypB is possibly 
facilitated by SlyD via its IF (insert-in-flap) domain[63]. 
Zinc binding significantly inhibits the GTPase activity of  
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The majority of  histidines are located within the central 
part of  the protein and include two separated stretches 
of  6 and 7 consecutive histidine residues. There are two 
internal short repeats of  Glu-Glu-Gly-Cys-Cys, four sets 
of  paired histidine residues and an X-X-His motif  at the 
N-terminus. All these sequence features indicate that this 
protein would strongly bind metal ions. Mutated strains 
of  H. pylori lacking the hpn gene are four times more 
sensitive to ranitidine bismuth citrate, a metal-containing 
drug widely used to treat H. pylori infections, than the wild 
type[3,82,83]. Hpn exists in solution as a range of  multimeric 
forms with the 20-mer to be potentially physiologically 
relevant[84]. The protein can bind nickel in a stoichiometry 
of  five Ni per monomer with a Kd of  7.1 μmol. There-
fore it is possible that nickel may be transferred from 
Hpn to stronger nickel binding proteins, such as HypA (Kd 
of  1.3 μmol) and HspA (Kd of  1.8 μmol). Nickel can be 
released from Hpn by decreasing pH (pH1/2 of  6.3) or by 
adding nickel chelating agent EDTA[84,85], which indicates 
that Hpn could provide stored nickel ions to the relevant 
chaperone proteins for the subsequent urease matura-
tion upon intracellular pH decrease. The nickel release 
from Hpn by EDTA is a two-step process consisting of  
a rapidly established equilibrium (formation of  Hpn-Ni•
EDTA, K) followed by a rate-determining step (disso-
ciation of  Hpn-Ni•EDTA to Ni-EDTA and apo-Hpn, 

k2)[85]. The data was fitted in Figure 2B which suggests 
that lower pH favors both the formation of  the Hpn-
Ni•EDTA intermediate and its decomposition to the Ni-
exchanged products[85]. Later work by our group showed 
that this His-rich protein can form amyloid-like structures 
and exhibit some cytotoxic effects to gastric epithelia 
cells[86], indicating that Hpn may be involved in the patho-
logical roles of  H. pylori other than the nickel storage role 
in the maturation of  nickel specific enzymes[87]. Hpnl is 
a histidine- and glutamine-rich protein in H. pylori, the 
N-terminus (46 residues) of  which shows 56% identity 
to Hpn. Hpnl binds two nickel ions per monomer in the 
histidine-rich domain with a dissociation constant of  3.8 
μmol[88]. Nickel release experiments established that Hpnl 
is similar to Hpn, as nickel can be release from Hpnl at 
acidic pH (pH1/2 of  4.6) and in the presence of  EDTA. 
One in vivo study by Maier’s group indicated H. pylori can 
utilize stored nickel ions via Hpn and Hpnl to aid coloni-
zation of  the host[89].

CONCLUSION
H. pylori is an established agent causing various gastric 
diseases. The nickel containing urease and hydrogenase 
are essential for the successful infections of  H. pylori in 
the stomach. Nickel is an essential cofactor for urease 

Figure 3  Complex network controlling urease synthesis and activity in Helicobacter pylori. The different levels of control comprise (1) expression of the UreAB 
structural subunits fine-tuned by acidity and the nickel-dependent transcriptional regulator NikR; (2) nickel uptake into cells via NixA importer; (3) nickel storage in his-
tidine-rich proteins such as Hpn, Hpnl and HspA; (4) nickel incorporation into urease as mediated by accessory proteins UreEFGH and HypAB; and (5) urea substrate 
entry via UreI. H. pylori: Helicobacter pylori.
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and hydrogenase. Various nickel-binding proteins play key 
roles in microbial nickel homeostasis by shuttling nickel 
within the cells. In this review we discussed the regula-
tory, uptake, chaperone and accessory proteins involved 
in the maturation of  urease, especially the proteins NikR, 
NixA, HypAB, UreEFGH, HspA, Hpn and Hpnl. The 
proteins function in a coordinated way to maturate the 
urease in an efficient way for the successful inhabitation 
of  the bacterium in the stomach (Figure 3). The work 
will deepen our understanding of  how this pathogenic 
bacterium adapts to severe habitant environments in the 
host.
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