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Abstract
Nonalcoholic fatty liver disease (NAFLD) has been rec-
ognized as the most common liver metabolic disease, 
and it is also a burgeoning health problem that affects 
one-third of adults and is associated with obesity and 
insulin resistance now. Thyroid hormone (TH) and its 
receptors play a fundamental role in lipid metabolism 
and lipid accumulation in the liver. It is found that thy-
roid receptor and its isoforms exhibit tissue-specific 
expression with a variety of functions. TRβ1 is predomi-
nantly expressed in the brain and adipose tissue and 
TRβ2 is the major isoform in the liver, kidney and fat. 
They have different functions and play important roles 
in lipid metabolism. Recently, there are many studies 
on the treatment of NAFLD with TH and its analogues. 
We review here that thyroid hormone and TR are a po-
tential target for pharmacologic treatments. Lipid me-
tabolism and lipid accumulation can be regulated and 
reversed by TH and its analogues. 
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Core tip: The clinical findings that nonalcoholic fatty 
liver disease (NAFLD) patients have more prevalence 
of subclinical hypothyroidism and patients with hypo-
thyroidism may develop fatty liver give the evidence 
that dyslipidemia and fatty liver have some relationship 
with thyroid dysfunction, and thyroid hormone and its 
receptor may be a therapeutic target for NAFLD. We re-
view here that thyroid hormone and TR are a potential 
target for pharmacologic treatments that can benefit 
NAFLD patients a lot.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a burgeon-
ing health problem that affects one-third of  adults and 
is associated with obesity and insulin resistance. Its 
pathogenesis remains poorly understood, and therapeutic 
options are limited. Here, we discuss recent treatment 
insights into NAFLD that focus primarily on its relation-
ship with thyroid function.

THYROID HORMONE AND ITS 
RECEPTORS
Thyroid hormone (TH) regulates cellular and tissue me-



tabolism throughout the body. The active form of  TH, 
3,3’,5-triiodo-L-thyronine (T3), controls gene expression 
in target tissues by binding to its cognate nuclear recep-
tors (TRs), which are ligand-inducible transcription fac-
tors. In the presence of  T3, TRs activate transcription by 
binding to T3-response elements (TREs) of  the target 
genes and forming coactivator complexes containing 
histone acetyltransferase activity[1]. In the absence of  T3, 
TRs recruit corepressors, such as nuclear receptor co-
repressor (NCoR) and silencing mediator of  retinoid and 
thyroid receptors, which form a complex with transducin 
β-like protein 1 and histone deacetylase 3 that has histone 
deacetylase activity on the promoters of  target genes that 
repress basal transcription[2].

Two TR isoforms, TRα and TRβ, have been identi-
fied. They share high sequence homology in the func-
tional DNA and T3-binding domains, but differ greatly 
in the lengths and sequences of  the amino-terminal A/B 
domains. Studies of  mice deficient in either of  these two 
TR genes or both TR genes indicate that TR isoforms 
have both redundant roles and specific functions[3]. 
TRα1, TRβ1, and TRβ2 isoforms bind T3; however, 
TRα2 does not. TRα2 functions, at least in vitro, as a 
TRα1 and TRβ1 antagonist[4]. Activation of  TRs affects 
a multitude of  physiological processes ranging from em-
bryonic development to maintenance of  energy homeo-
stasis in adults. Excess TH can result in some therapeuti-
cally desirable effects, such as increased metabolic rate, 
increased lipolysis, lowered cholesterol levels, improved 
heart contractility, and suppressed thyroid-stimulating 
hormone (TSH) levels. At the same time, systemic thyro-
toxicosis can lead to undesirable effects, including tachy-
cardia, arrhythmia, muscle wasting, nervousness, fatigue, 
and loss of  bone mass[5]. A series of  studies in mice with 
inactivation or mutation of  different TR isoforms[6-12], as 
well as studies in patients with resistance to TH, suggest 
that TR isoforms selectively mediate tissue-specific TH 
responses[13].

There is a tissue-specific expression pattern for TRs. 
TRβ2 is the major isoform in the liver, kidney, and thy-
roid, and TRβ1 is predominantly expressed in the brain 
and adipose tissue[14-17]. There is also a general consen-
sus that TRα mediates the effects of  TH on the heart, 
whereas TRβ mediates its effects on plasma cholesterol 
and TSH secretion. Therefore, the development of  T3 
analogues with preferential binding to TRβ may induce 
the beneficial effects of  T3 while avoiding undesirable 
side effects.

EFFECTS OF TH ON HEPATIC LIPID 
METABOLISM
TH maintains lipid homeostasis via its effects on gene ex-
pression in target organs, including the liver and adipose 
tissues. T3 has profound and diverse effects on lipid me-
tabolism and lipid accumulation in the liver. In the liver, 
TRβ is responsible for mediating the majority of  the 
actions of  T3, whereas in other tissues, such as the heart 

and brown adipose tissue (BAT), TRα is the main media-
tor of  TH effects[18,19].

T3 exerts strong effects on hepatic carbohydrate and 
lipid metabolism in both anabolic and catabolic states. 
Elevated levels of  T3 in hyperthyroidism are associated 
with increased lipolysis and lower body weight. In con-
trast, lower levels of  T3 in hypothyroidism are associated 
with cold intolerance, weight gain, reduced lipolysis, and 
cholesterol clearance. Mice devoid of  all TR isoforms 
exhibit decreased body temperature and basal metabolic 
rate, growth retardation, and an increased amount of  fat 
tissue[20,21]. T3 increases the expression of  several genes 
involved in hepatic lipogenesis by increasing the expres-
sion of  lipogenic genes such as fatty acid synthase (FAS), 
Thrsp (Spot14), acetyl-CoA carboxylase (ACC1)[22], acyl-
CoA synthetase 5, fatty acid transporter protein, malic 
enzyme, and glucose-6-P dehydrogenase. It also induces 
the expression of  genes involved in fatty acid oxidation, 
such as fatty acid transporter (Fat), fatty acid-binding 
protein, lipoprotein lipase (LPL)[23], and carnitine palmi-
toyltransferase-1 alpha (Cpt-1α)[24]. Cpt-1α is a key rate-
limiting enzyme in mitochondrial fatty acid oxidation. 
Many of  these metabolic genes (e.g., malic enzyme, Fas, 
and Cpt-1α) in the liver are directly regulated by the inter-
action between T3 and TR, as TREs have been identified 
in promoters of  these genes[25]. However, the regulation 
of  lipid homeostasis by T3 is complex and tissue depen-
dent, as it involves the coordinated regulation of  several 
target tissues, mainly adipose tissue and the liver. The 
tissue-dependent manner of  lipid regulation via TH was 
uncovered using knockin mice harboring identical muta-
tions in the TRα (TRα1PV mouse) and TRβ (TRβPV 
mouse) genes. TRα gene mutations dramatically decrease 
the mass of  both the liver and white adipose tissue (WAT). 
In contrast, TRβ gene mutations markedly increase liver 
mass with an excess deposition of  lipids, but no signifi-
cant abnormality is observed in WAT. Molecular stud-
ies showed that the expression of  lipogenic genes was 
decreased in WAT of  TRα1PV mice, but not in TRβPV 
mice. Markedly increased lipogenic enzyme expression 
and decreased fatty acid β-oxidation activity contribute to 
adipogenic steatosis and lipid accumulation in the liver of  
TRβPV mice. In contrast, reduced expression of  genes 
critical for lipogenesis mediates decreased liver mass with 
lipid scarcity in TRα1PV mice.

TH action is mediated by a complex interaction be-
tween TRs and other nuclear receptors, including the 
PPARs and the liver X receptor (LXR), which respond 
to circulating metabolite levels[26,27]. Cross-talk between 
TH signaling and these nutrient-responsive factors oc-
curs through a variety of  mechanisms, including but not 
limited to competition for retinoid X receptor (RXR), 
transcriptional co-factors, DNA-binding sites, or tran-
scriptional cofactors.

Studies in several animal models, including the 
PPARα KO mouse, have demonstrated that hepatic 
steatosis occurs when nuclear receptors involved in meta-
bolic control are inactivated. In both humans and animal 
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models, obesity is associated with lipid deposition in the 
liver, which can lead to fibrosis and even cirrhosis[28,29]. In 
both human and murine microarray studies, the greatest 
change in liver gene expression as a consequence of  he-
patic lipid accumulation is the downregulation of  a set of  
T3-responsive genes, including genes involved in energy 
metabolism[19,30].

Autophagy of  lipid droplets, termed “lipophagy,” is a 
major pathway of  lipid mobilization in hepatocytes[31-33], 
and its inhibition has been linked to the development of  
fatty liver and insulin resistance[34-36]. TH is a well-known 
metabolic regulator of  energy expenditure that activates 
fatty acid β-oxidation in mammals[37]. However, the pre-
cise mechanism of  this effect has not yet been revealed. 
During periods of  starvation, autophagy degrades cyto-
plasmic materials, producing amino acids and fatty acids 
that can be used to synthesize new proteins or generate 
ATP for cell survival[38]. Derangement of  the autopha-
gic response has been implicated in several pathologi-
cal hepatic conditions, such as ischemia, reperfusion, 
viral infections, acute injury, α1-antitrypsin deficiency, 
hepatocellular carcinoma, alcoholic liver disease, and 
NAFLD[36,39,40]. 

“Lipophagy”[31] leads to the degradation of  intracel-
lular lipid droplets, and this process is believed to provide 
fatty acid substrates for β-oxidation[41]. Such lipophagy is 
coupled to the effects of  T3 stimulation in altering the 
levels of  a broad array of  hepatic lipid-related metabo-
lites, which is consistent with a key role for T3 as an im-
portant regulator of  fatty acid delivery to mitochondria 
and mitochondrial metabolism. Autophagy is a stress-
induced catabolic process, conserved in all eukaryotes, 
involving fusion of  autophagosomes with lysosomes and 
resulting in degradation of  cytoplasmic cargo. T3 induces 
lipophagy in cultured liver cell lines, and it induces he-
patic autophagy in vivo coupled with ketogenesis, resulting 
in a lipolytic-metabolomic profile. Moreover, TH stimula-
tion of  autophagy and lipid metabolism is TR dependent 
and modulated by NCoR corepressor activity. These find-
ings suggest that T3 plays an important role in the regula-
tion of  hepatic autophagy, which is a critical step for the 
amelioration of  NAFLD.

THYROID MALFUNCTION IN 
DYSLIPIDEMIA AND NAFLD PATIENTS
The most frequent metabolic syndrome disorders are 
dyslipidemia and NAFLD. The pathogenesis of  NAFLD 
is a complex, multifactorial process characterized by 
insulin resistance and other endocrine disorders. TH 
can stimulate the expression of  uncoupling proteins in 
the mitochondria of  adipocytes and skeletal muscle and 
modulate adrenergic receptor numbers by enhancing 
responsiveness to catecholamines[42], thus controlling 
metabolic and energy homeostasis. TH influences body 
weight, thermogenesis, lipolysis, and metabolism of  
cholesterol and bile acids. Thyroid dysfunction is associ-
ated with hepatic lipid peroxidation and oxidative stress 

in experimental models[43,44], raising the question of  the 
role of  hypothyroidism in NAFLD patients. The preva-
lence of  hypothyroidism in patients with NASH is twice 
as high as in controls[45]. NASH is twice as common in 
postmenopausal compared with premenopausal women, 
and hormonal replacement therapy decreases the risk of  
steatosis. This association seems plausible, taking into 
consideration that thyroid dysfunction can lead to hyper-
lipidemia, obesity, and insulin resistance[46], all of  which 
are major components of  metabolic syndrome[47,48] and 
are implicated in the pathogenesis of  NAFLD. 

The mechanism of  hypothyroidism-induced hyper-
lipidemia has been shown to be due to a decrease in 
cholesterol excretion and a marked increase in apoB lipo-
proteins due to decreased catabolism and turnover sec-
ondary to a reduced number of  low-density lipoprotein 
(LDL) receptors on the liver cell surface[49]. Thus, com-
mon findings in patients with hypothyroid are increased 
levels of  total and LDL cholesterol. In hypothyroidism, a 
reduced removal rate of  triglycerides from plasma and an 
accumulation of  intermediate LDL (IDL) have also been 
reported. Thus, NAFLD can develop in hypothyroid 
patients due to increased LDL and deposition of  triglyc-
erides in the liver.

In addition to hyperlipidemia and obesity, hypothy-
roidism has been associated with insulin resistance[50]. 
There is a strong link between insulin resistance and 
excessive deposition of  triglycerides in hepatocytes. A 
recent study investigated the frequency of  metabolic 
syndrome in hypothyroid patients. These authors studied 
100 patients with overt hypothyroidism, 100 patients with 
subclinical hypothyroid, and 200 healthy controls. The 
authors found that the HOMA index was higher in the 
hypothyroid group than in the control (P = 0.008) and 
subclinical hypothyroid groups (P = 0.014). Metabolic 
syndrome prevalence was 44% in the hypothyroid group 
and 33% in the control group (P = 0.016)[51].

Thyroid dysfunction commonly occurs in the elderly 
population, and overt thyroid dysfunction is associated 
with some liver abnormalities. Xu et al[52] performed a 
cross-sectional study among 878 euthyroid elderly Chi-
nese, in which 227 (25.85%) subjects fulfilled the diag-
nostic criteria for NAFLD. Patients with NAFLD had 
significantly lower levels of  serum-free thyroxine (FT4) 
than control patients (11.12 ± 1.43 pmol/L vs 11.58 ± 
1.47 pmol/L; P < 0.001). The prevalence of  NAFLD de-
creased in proportion to progressively higher serum FT4 
levels (P < 0.001). Age-, gender-, and smoking status-
adjusted correlation analysis showed that serum FT4 
levels were negatively correlated with body mass index, 
waist circumference, and triglyceride and serum uric acid 
levels (all with P < 0.05). Stepwise logistic regression 
analysis showed that serum FT4 level was significantly as-
sociated with the risk for NAFLD. These results suggest 
that thyroid function, even within the reference range, is 
associated with NAFLD in elderly people.

TH may interfere with the regulation of  lipid and 
carbohydrate metabolism, and correlate with the severity 
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tive agonists of  TRβ, may improve the metabolic status 
of  diet-induced obese rodents[13,65,66]. 

Recently, mice treated with T3 showed a dose-de-
pendent increase in hepatic FGF21 expression with sig-
nificant induction at doses as low as 100 μg/kg. FGF21 
expression is downstream of  the nuclear receptor peroxi-
some proliferator-activated receptor α (PPARα). PPARα 
knockout mice treated with T3 did not have an increase 
in FGF21 expression, indicating that hepatic regulation 
of  FGF21 by T3 in the liver is via a PPARα-dependent 
mechanism. In contrast, in WAT, FGF21 expression was 
suppressed by T3 treatment, with other T3 targets being 
unaffected. In cell culture studies with an FGF21 report-
er construct, three transcription factors were required 
for the induction of  FGF21 expression: TRβ, RXR, 
and PPARα. These findings indicate a novel regulatory 
pathway whereby T3 positively regulates hepatic FGF21 
expression, presenting a novel therapeutic target for dis-
eases such as NAFLD.

In addition, prolonged T3 treatment promotes the 
catabolism of  fatty acids by increasing the expression and 
activity of  Cpt-1α, a rate-limiting enzyme for transport 
and β-oxidation of  fatty acids in the mitochondria[25]. 
Thus, the catabolism of  fatty acids is a cardinal metabolic 
feature of  prolonged hyperthyroidism[63]. T3 stimulates 
the shuttling of  free fatty acids (FFAs) for delivery into 
mitochondria[67]. While this process is well described, the 
T3-regulated cellular pathways that lead to the generation 
of  FFAs from stored lipid droplets in the liver are not 
very well understood. In that way, T3 treatment is benefi-
cial to patients with high TSH and high FFA levels.

TRα inhibition
TRα or TRβ gene knockout mouse models display a 
range of  defects in lipogenesis, lipolysis, cholesterol me-
tabolism, and fatty acid oxidation. Francois[68] reported 
that TRα gene knockout mice are protected from diet-in-
duced hepatic insulin resistance. With the goal of  examin-
ing whether TRα would be a potential therapeutic target 
to prevent diet-induced NAFLD and insulin resistance, 
they assessed insulin action in high-fat diet fed TRα gene 
knockout (Thra-0/0) and wild-type mice using hyper-
insulinemic-euglycemic clamps combined with 3H/14C-
labeled glucose to assess basal and insulin-stimulated 
rates of  glucose and fat metabolism. Body composition 
was assessed by 1H magnetic resonance spectroscopy, and 
energy expenditure was measured using indirect calorim-
etry. Thra-0/0 mice were lighter, leaner, and manifested 
greater whole-body insulin sensitivity than wild-type mice 
during the clamp, and these results could be attributed to 
increased insulin sensitivity both in the liver and periph-
eral tissues. Increased hepatic insulin sensitivity could be 
attributed to decreased hepatic diacylglycerol content, 
resulting in decreased activation of  protein kinase C and 
increased insulin signaling. Therefore, TRα inhibition 
represents a novel pharmacologic target for the treatment 
of  NAFLD, obesity, and type 2 diabetes.

of  NAFLD; however, these results are still under debate. 
Mazo et al[53] performed a retrospective evaluation of  
clinical and metabolic correlations between hypothyroid-
ism and NAFLD. Clinical, biochemical, and histological 
investigations of  103 NAFLD patients exhibiting drug-
treated hypothyroidism were conducted. Steatosis was 
present in 32.0% of  the population and nonalcoholic 
steatohepatitis was present in 68.0%. Females were the 
majority in both groups. A link was identified between 
hypothyroidism and markers of  glucose and lipid homeo-
stasis, but not with severity of  NAFLD.

Hepatic steatosis can progress to hepatocyte injury, 
inflammation, and fibrosis in the presence of  poten-
tial synergistic factors such as oxidative stress from 
β-oxidation, increased expression of  inflammatory 
cytokines by NF-κB-dependent pathways, and adipo-
cytokines[54-56]. This is called the “multi-hit hypothesis” 
and has been used to describe the pathogenesis of  
NAFLD[57]. Lipid peroxidation and oxidative stress are 
both believed to play important roles in the progression 
of  disease from steatosis to NASH[56,58]. Previous experi-
mental data regarding thyroid dysfunction and hepatic 
lipid peroxidation have shown that, in a state of  hyper-
thyroidism, TH elevation stimulates the metabolic rate, 
possibly leading to reactive oxygen species generation, 
lipid peroxidation, and liver cell damage[43,44]. On the oth-
er hand, reduced levels of  oxidative stress accompanying 
hypothyroidism might be responsible for the experi-
mental results indicating that hypothyroidism protects 
from hepatic fibrosis[59]. This concept correlates with the 
absence of  an association between hypothyroidism and 
steatosis or NASH. In some studies, mainly with obese 
NAFLD patients, hypothyroidism appears to contribute 
to the major components of  metabolic syndrome, lead-
ing primarily to the accumulation of  fat. However dur-
ing progression to NASH, additional results are needed, 
with emphases on the role of  oxidative stress and lipid 
peroxidation.

POTENTIAL PHARMACOLOGIC 
TREATMENT WITH TH IN BASIC 
RESEARCH AND CLINICAL PRACTICE
The current pharmacologic treatment for NAFLD is lim-
ited, relying mostly on weight loss[60-62]. Insulin-sensitizing 
agents, such as thiazolidinediones, have been shown to 
decrease hepatic steatosis by promoting fat redistribution 
to the liver.

TH
T3 treatment in rats stimulates thermogenesis from fatty 
acid β-oxidation as a result of  lipolysis and increased 
caloric intake[63]. Lipogenesis is also stimulated by T3. 
However, this effect occurs to a much lesser extent and is 
mainly seen in the context of  restoration of  depleted fat 
stores after a period of  energy deficit[64]. Previous studies 
have shown that treatment with T3 itself, or with selec-
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TRβ agonists
The use of  TR agonists for the treatment of  NAFLD has 
not been considered viable because TH increases FFA 
flux from the periphery to the liver, induces hepatic lipo-
genesis, and therefore could potentially contribute to ste-
atosis. However, specifically targeting TRβ could provide 
therapeutic benefit while avoiding the potential of  non-
selective TR agonists to increase hepatic FFA accumula-
tion. MB07811 is an orally active liver-targeted TRβ ago-
nist. Cable[29] reported a reduction of  hepatic steatosis in 
rats and mice after treatment with MB07811.The purpose 
of  these studies was to assess the effects of  MB07811 on 
whole body and liver lipid metabolism of  normal rodents 
and rodent models of  hepatic steatosis. Animal studies 
showed that MB07811 markedly reduced hepatic steato-
sis as well as plasma FFA and triglyceride levels. In con-
trast to MB07811, treatment with T3 induced adipocyte 
lipolysis in vitro and in vivo, but had a diminished ability to 
decrease hepatic steatosis. This finding suggests the in-
flux of  FFA from the periphery to the liver may partially 
counteract the antisteatotic activity of  T3. Clearance of  
liver lipids by MB07811 results from accelerated hepatic 
fatty acid oxidation, a known consequence of  hepatic TR 
activation, as reflected by increased hepatic mitochondrial 
respiration rates, changes in hepatic gene expression, 
and increased plasma acyl-carnitine levels. Transaminase 
levels remained unchanged or reduced, and no evidence 
of  liver fibrosis or other histological liver damage was 
observed after treatment with MB07811 for up to 10 wk. 
Additionally, MB07811, unlike T3, did not increase heart 
rate or decrease pituitary TSHβ expression. Therefore, 
MB07811 represents a novel class of  liver-targeted TR 
agonists with beneficial LDL cholesterol-lowering prop-
erties that may provide additional therapeutic benefit to 
hyperlipidemic patients with concomitant NAFLD.

LXR activator
TH action is mediated by interactions between TRs and 
nuclear receptors such as LXR, and Thrsp is known to 
be regulated by a variety of  transcription factors, includ-
ing TR, PXR, and CAR. Thrsp has been reported to be 
a lipogenic gene in cultured hepatocytes, suggesting an 
important role for Thrsp in the pathogenesis of  NAFLD. 
Hepatic overexpression of  Thrsp increases triglyceride 
accumulation with enhanced lipogenesis in the liver of  
C57Bl/6 mice, whereas hepatic Thrsp gene silencing 
attenuates the fatty liver phenotype in db/db mice. It 
has been reported that the LXR activator TO901317 
induces Thrsp expression in the liver of  wild-type and 
LXRβ gene-deficient mice, but not in LXRα or LXRα/β 
double knockout mice. Emerging in vitro evidence also 
points to a critical role for LXR in regulating Thrsp tran-
scription in hepatocytes. New evidence[69] also shows that 
Thrsp is upregulated in the liver of  db/db mice and high-
fat diet-fed mice, two models of  murine NAFLD. The 
expression of  Thrsp depends on LXRα via an SREBP1c-
dependent mechanism. TO901317 treatment significantly 
enhances hepatic SREBP1c expression and activity in 

wild-type mice but fails to induce Thrsp expression in 
SREBP-1c gene-deficient mice. TO901317 treatment and 
LXRα overexpression fail to induce, whereas overexpres-
sion of  SREBP1c significantly increases, Thrsp promoter 
activity. Moreover, deletion of  the SRE site completely 
abolishes SREBP1c-induced Thrsp transcription. These 
findings demonstrate that Thrsp is a lipogenic liver gene 
that is induced by the LXR agonist through an LXRα-
mediated, SREBP1c-dependent mechanism. Thrsp may 
therefore represent a potential therapeutic target for the 
treatment of  NAFLD.

TRβ-specific agonist GC-1
GC-1 is a synthetic TH analogue that is relatively selec-
tive for both the binding and activation functions[13] of  
TRβ1 over TRα1. GC-1 has several structural differ-
ences with respect to the natural hormone T3, including 
replacement of  the three iodine residues with methyl and 
isopropyl groups, replacement of  the biaryl ether linkage 
with a methylene linkage, and replacement of  the amino 
acid side chain with an oxyacetic acid side chain[70]. GC-1 
binds TRβ1 with the same affinity as T3 does, but GC-1 
binds TRα1 with an affinity approximately 10 times 
lower than that of  T3, both in vitro and in vivo[71]. The dif-
ferential effects of  GC-1, compared with those of  T3, on 
the thermogenesis by BAT[72], tadpole metamorphosis[73], 
and the development of  bone and central nervous sys-
tem[74-76] may be the result of  GC-1 selectivity for TRβ[77]. 
On the other hand, the selective effects of  GC-1 may 
also be related to the body distribution of  the TR iso-
forms. In agreement with studies in which the TRβ gene 
was disrupted[78], GC-1 has almost no effect on the heart, 
which expresses mainly TRα1, but does lower serum 
levels of  cholesterol and triglycerides, in agreement with 
the predominant expression of  TRβ1 in the liver. Other 
studies also suggest that the selective actions of  GC-1 
might be explained by differential tissue uptake, since 
GC-1 presents a clear tissue-specific accumulation[79]. It 
has been shown, for example, that GC-1 accumulates se-
lectively in the liver as compared in the heart. The tissue/
plasma ratio was similar for GC-1 and T3 in the liver but 
was 30-times lower in the heart[71]. It is well known that 
thyrotoxicosis affects body composition, reducing both 
fat and lean mass[80,81]. In primates, treatment with GC-1 
increases oxygen consumption and reduces body weight, 
but its effects on body composition have not yet been 
determined. Treatment with GC-1 increases the meta-
bolic rate, has no effect on food intake, and decreases fat 
mass while sparing lean mass in rats. These data illustrate 
the potential of  GC-1 for the selective activation of  TRβ 
in rats to induce UCP1 gene expression, while only mini-
mally mediating synergism between TH and the sympa-
thetic nervous system. The use of  GC-1 or other TRβ-
selective agonists in rodents and primates has recently 
been shown to increase energy expenditure and decrease 
fat mass and plasma levels of  cholesterol[82], while sparing 
the heart[71] and skeletal system[83]. The TRβ-specific ago-
nist GC-1 increases energy expenditure and prevents fat 
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mass accumulation in rats.
The effect of  GC-1 on biological processes has not 

yet been demonstrated. The effects of  6-wk treatment 
with T3 (daily injections of  3 or 6 μg/100 g body weight) 
or GC-1 (equimolar doses) on different metabolic param-
eters in adult female rats were investigated by Villicev[13]. 
Whereas all animals gained weight (17-25 g) equally with 
T3 or GC-1 treatment, only T3 treatment increased food 
intake (50%-70%). Oxygen consumption was signifi-
cantly and equally increased (50%-70%) by T3 and GC-1. 
Analysis of  body composition by dual-energy X-ray ab-
sorptiometry (DEXA) revealed that whereas control ani-
mals gained about 80% of  fat mass, T3- or GC-1-treated 
animals lost 70%-90% and 20%, respectively. Analysis 
of  the carcasses showed that T3 treatment resulted in a 
14%-74% decrease in fat content, whereas GC-1 treat-
ment resulted in only a 15%-23% reduction. The gain in 
lean mass by DEXA and carcass protein content were 
unaffected by either T3 or GC-1 treatment. However, 
the masses of  individual skeletal muscles were negatively 
affected by T3, but only marginally by GC-1. These find-
ings highlight the potential use of  GC-1 for the treatment 
of  obesity and metabolic syndrome.

GC-24
BAT is a tissue specialized in adaptive thermogenesis 
with the expression of  mitochondrial uncoupling protein 
1 (UCP1) in response to cold induction. In contrast to 
WAT, the main function of  BAT is to dissipate energy, 
not to store it. Therefore, the conversion of  WAT to 
BAT is sought as a possible strategy to treat obesity. In 
rats fed a high-calorie diet, GC-24 confers resistance to 
diet-induced obesity through the promotion of  energy 
expenditure[84]. In addition, a recent case report[85] indi-
cates that in a diabetic patient with extreme insulin resis-
tance due to a mutation in the insulin receptor gene, TH 
induces BAT and ameliorates diabetes.

Overall, TH or TR dysfunction can serve as another 
mechanism that is related to fatty liver and obesity. Evi-
dence based on animal models and clinical phonemes can 
lead us to further explore the pathway between thyroid 
and fatty tissues or the liver. With an understanding of  a 
functional thyroid, we believe that TH analogues and re-
ceptor agonists will be potential pharmacologic targets in 
patients with NAFLD in the near future.
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