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Abstract
Weighted log-rank estimating function has become a standard estimation method for the censored
linear regression model, or the accelerated failure time model. Well established statistically, the
estimator defined as a consistent root has, however, rather poor computational properties because
the estimating function is neither continuous nor, in general, monotone. We propose a
computationally efficient estimator through an asymptotics-guided Newton algorithm, in which
censored quantile regression methods are tailored to yield an initial consistent estimate and a
consistent derivative estimate of the limiting estimating function. We also develop fast interval
estimation with a new proposal for sandwich variance estimation. The proposed estimator is
asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of
practical size. However, computation time is typically reduced by two to three orders of
magnitude for point estimation alone. Illustrations with clinical applications are provided.
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1. Introduction
With censored survival data, failure time T is subject to censoring, say, by time C.
Consequently, T is not directly observed but through X ≡ T ∧ C and Δ ≡ I(T ≤ C), where ∧
is the minimization operator and I(·) the indicator function. In a regression problem, it is of
interest to study the relationship between T and a p × 1 vector of covariates, say Z, using
observations of (X, Δ, Z). The accelerated failure time model is the linear regression model
on the logarithmic scale along with the conditional independence censoring mechanism:

(1)

where β is the regression coefficient vector, ε is the random error with an unspecified
distribution, and ⫫ denotes statistical independence.

In the extensive literature on model (1), weighted log-rank estimating function (Tsiatis,
1990) has become an accepted and standard estimation method. Despite challenges from
discontinuity and, in general, non-monotonicity of the estimating function, the past two
decades has seen steady advances, including Tsiatis (1990) and Ying (1993) on the
asymptotics; Fygenson & Ritov (1994) and Jin et al. (2003) on consistent root identification;
and Parzen et al. (1994), Jin et al. (2001), and Huang (2002) on the interval estimation.
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Nevertheless, the estimator still has rather poor computational properties with existing
algorithms, including the simulated annealing algorithm (Lin & Geyer, 1992), the recursive
bisection algorithm (Huang, 2002), the linear programming method (Lin et al., 1998; Jin et
al., 2003), the importance sampling method (Tian et al., 2004), and the Markov Chain
Monte Carlo approach (Tian et al., 2007). To elaborate on the currently prevailing linear
programming method, Lin et al. (1998) showed that the Gehan function can be formulated
as a linear program; this is a special monotone weighted log-rank function. Jin et al. (2003)
further established that a root to a general weighted log-rank function is the limiting root to a
sequence of weighted Gehan functions, provided that the limit exists. They then devised a
procedure that iteratively solves weighted Gehan functions via linear programming.
However, a (weighted) Gehan function involves pairwise comparisons so that the number of
terms in the linear program increases quadratically with the sample size. This explains its
computational inefficiency, despite the availability of several well-developed linear
programming algorithms including the classical simplex and interior point (cf. Portnoy &
Koenker, 1997).

In this article, we propose a novel estimator based on an asymptotics-guided Newton
algorithm to achieve good computational properties, for a general weighted log-rank
function. Starting from an initial consistent estimate, the algorithm updates the estimation by
using a consistent derivative estimate of the limiting estimating function and yields an
estimator asymptotically equivalent to a consistent root. Such a Newton-type update is
similar to that used in the one-step estimation of Gray (2000). However, the consistency of
Gray’s derivative estimate and subsequently the properties of his one-step estimator are not
yet established. Furthermore, Gray’s approach uses the Gehan estimator as the initial
estimate, which may be computationally intensive in itself. Our proposal is also distinct
from the algorithm of Yu & Nan (2006), which targets the Gehan function only. We adopt
computationally efficient censored quantile regression as in Huang (2010) to obtain the
initial estimate and the derivative estimate. Multiple Newton-type updates are taken for
better finite-sample properties. In addition, we develop fast interval estimation with a
proposal for sandwich variance estimation. The computational improvement over the linear
programming method is tremendous. The proposed asymptotics-guided Newton algorithm is
presented in Section 2, and the fast preparatory estimation in Section 3. Section 4 describes
new interval estimation methods. Section 5 summarizes simulation results on both statistical
and computational properties of the proposal. Illustrations with clinical studies are provided
in Section 6. Section 7 concludes with discussion. Technical details and proofs are collected
in the Appendices. An R package implementing this proposal is available from the author
upon request.

2. Estimation by asymptotics-guided Newton algorithm
The data consist of (Xi, Δi, Zi), i = 1,…, n, as n iid replicates of (X, Δ, Z). Define counting
process Ni(t; b) = I(log Xi – bTZi ≤ t)Δi and at-risk process Yi(t; b) = I(log Xi – bTZi ≥ t).
The weighted log-rank estimating function is

(2)

where ϕ(t; b) is a nonnegative weight function; ϕ(t; b) = 1 and 
correspond to the log-rank and Gehan functions, respectively. Typically, U(b) is not
monotone and can have multiple roots, some of which may not be consistent (e.g., Fygenson

HUANG Page 2

Scand Stat Theory Appl. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



& Ritov, 1994). In such a case, the estimator needs to be defined in a shrinking
neighborhood of the true value β. On the other hand, U(b) is a step function and a root might
not be exact. Nevertheless, an estimator can be defined as a root to

(3)

With probability tending to 1, such roots exist in a shrinking neighborhood of β and they are
all asymptotically equivalent in the order of op(n−1/2) under regularity conditions.

Due to the lack of differentiability, the standard Newton’s method is not applicable. We
shall suggest an extension by taking advantage of the asymptotic local linearity of U(b),
established by Ying (1993). Write ∥·∥ as the Euclidean norm. Under regularity conditions,
for every positive sequence d = op(1),

(4)

for a non-singular matrix D that is the derivative at β of the limiting U(b). This proposed
asymptotics-guided Newton algorithm proceeds with the provision of an initial consistent

estimate of β and a consistent estimate of D, say  and , respectively. That is,

 and , where ∥·∥max denotes the maximum absolute
value of matrix elements. Note that the above asymptotic local linearity also holds with D
replaced by :

(5)

Then, Newton-type updates can be made iteratively:

(6)

A standard Newton-type update has the step size of , corresponding to g = 0.
However, over-shooting may occur, in which case the step size is halved repeatedly until the

new estimate is an improvement. Thus, g is the smallest non-negative integer such that 

improves over . We adopt a quadratic score statistic (cf. Lindsay & Qu, 2003) as the
objective function for the improvement assessment. Take the variance estimate of Wei et al.
(1990):

(7)

where v⊗2 ≡ vvT. By applying the results of Ying (1993), we have ∥V(b) – H∥max = op(1)
for any b converging to β in probability, where H is the asymptotic variance of n1/2U(β).
Then, the quadratic score statistic is defined as

(8)

HUANG Page 3

Scand Stat Theory Appl. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The use of Ω(b) is justified by its asymptotic local quadraticity, following the asymptotic
local linearity (5): For every positive sequence d = op(1),

(9)

By design, the algorithm dictates  to decrease over k.

In our proposal presented later, the initial estimator , is n1/2-consistent. In such a case,

, for any given k ≥ 1, and also , corresponding to the one such that  is
minimized according to the algorithm, are all asymptotically equivalent to a consistent root
of U(b); see Appendix A. Therefore, the one-step estimation is appealing for less

computation, as used by Gray (2000). Nevertheless, we shall adopt  as our proposed
estimator for better finite-sample performance.

In contrast to the linear programming method, this asymptotics-guided Newton algorithm
tolerates statistically negligible imprecision. As will be shown, this tolerance has little, if
any, effect on the estimator but the gain in computational efficiency can be very large.
Meanwhile, the above iteration has a rather different statistical nature from that of Jin et al.
(2003) for a non-Gehan function. The sequence of estimates in Jin et al. are not
asymptotically equivalent in the first order to each other within a finite number of iterations,
and their sequence is not guaranteed to converge. In this regard, our estimator is superior.

3. Fast preparatory estimation via quantile regression
For the initial consistent estimation alone, the Gehan estimator as commonly adopted, e.g.,
by Jin et al. (2003) and Gray (2000), might not permit fast estimation as explained in
Section 1. Furthermore, the consistent estimation of D poses additional challenges; see Gray
(2000). We shall approach the preparatory estimation from censored quantile regression,
developing further the results of Huang (2010).

3·1 Censored quantile regression
Write the τ-th quantile of log T given Z as Q(τ) ≡ sup{t : Pr(log T ≤ t ∣ Z) ≤ τ} for τ ∈ [0,
1). The censored quantile regression model (Portnoy, 2003) postulates that

(10)

where quantile coefficient η(τ) ≡ {α(τ),β(τ)T}T and S ≡ {1, ZT}T. The above model
specializes to the accelerated failure time model if β(τ) is constant in τ, i.e., β(τ) = for all τ ∈
[0, 1). On the other hand, in the k-sample problem, the model actually imposes no
assumption beyond the conditional independence censoring mechanism and the estimation
may be carried out by the plug-in principle using the k Kaplan–Meier estimators. Huang
(2010) developed a natural censored quantile regression procedure, which reduces exactly to
the plug-in method in the k-sample problem, and to standard uncensored quantile regression
of Koenker & Bassett (1978) in the absence of censoring. The estimator

 is consistent and asymptotically normal. Moreover, the progressive
localized minimization (PLMIN) algorithm of Huang (2010) is computationally reliable and
efficient.

Nevertheless, η(τ) is only identifiable with τ up to the limit
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beyond which  is, of course, senseless and misleading. However,  is unknown and, for
any given τ > 0, the identifiability of η(τ) cannot be definitively determined in finite sample.
We shall establish a probabilistic result on the identifiability, by estimating a conservative
surrogate of . Rewrite

where det denotes determinant and ξZ(τ) is the τ-th quantile equality fraction (Huang, 2010)
of log T given Z. A conservative surrogate  for  in the sense that  is given by

(11)

for given κ ∈ (0, 1], where

Clearly,  as κ ↓ 0. Write

where [0, 1]-valued  is the estimated τ-th quantile equality fraction for individual i
from the procedure of Huang (2010). We adopt a plug-in estimator for :

(12)

The determinant operator above in the definition and estimation of a conservative surrogate
of  may be replaced by, say, the minimum eigen value. However, determinant involves less
computation.

Theorem 1—Suppose that the censored quantile regression model (10) and the regularity
conditions of Huang (2010, section 4) hold. For any given κ ∈ (0, 1],  is strongly
consistent for .

The regularity conditions of Huang (2010) are mild and typically satisfied in practice. The
above result implies that, as the sample size increases,  is less than  with probability
tending to 1. In that case, η(τ) is identifiable for . This result complements those of
Huang (2010) to provide a more complete censored quantile regression procedure.
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3·2 Initial estimation under the accelerated failure time model

Estimator  from the censored quantile regression procedure for any , with κ ∈
(0, 1), is consistent for β under the accelerated failure time model. Therefore, choices for the
initial estimate abound. We consider one that targets a trimmed mean effect given in Huang
(2010):

(13)

for pre-specified l and r such that 0 < r < l < 1.

Theorem 2—Suppose that the accelerated failure time model (1) holds. Under the

regularity conditions of Huang (2010, section 4),  given by (13) is consistent for β and

 is asymptotically normal with mean zero.

In adopting  as the initial estimate, there is flexibility with the values of l and r. To provide
some guideline, we note that det{E(S⊗2Δ)–Σ(τ)} = τp+1 det E(S⊗2Δ) for quantities in (11)
when censoring is absent; recall p is dimension of the covariates. This fact led to the choice
of l = 0.95p+1 and r = 0.05p+1 in all our numerical studies.

3·3 Derivative estimation

To estimate D, intuitively one would differentiate U(·) at  However, U(·) is not even
continuous. We turn to numerical differentiation instead:

(14)

where W ≡ (w1 … wp) is a non-singular p × p bandwidth matrix. Clearly, each column of
W needs to converge to 0 in probability. However, the convergence rate cannot be faster
than Op(n−1/2); see equation (4). Furthermore, W−1 needs to behave properly. Specifically,
the following conditions are adopted:

(15)

Equivalently, all singular values of W converge to 0 in probability at rates that are of the
same order and not faster than Op(n−1/2), by the relationship between the max and spectral
norms. These conditions are sufficient for the consistency of , as will be shown, and they
permit considerable flexibility for the bandwidth. Nonetheless, some choices of the
bandwidth are better than others. Huang (2002) suggested to use a bandwidth comparable to

, where var(·) denotes the variance and the square root denotes the Cholesky

factorization. This could motivate , where the estimated variance of  is obtained
from the re-sampling method described in Huang (2010). However, computational costs of
the re-sampling is not desirable. For this reason, we suggest a different variability measure:

(16)

and adopt W = M1/2 as the bandwidth matrix.
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Theorem 3—Suppose that the accelerated failure time model (1) and the regularity
conditions of Huang (2010, section 4) hold. The conditions given in (15) on the bandwidth

matrix are sufficient for , and W = M1/2 with M given by (16) satisfies
these conditions.

Bandwidth M1/2 is data-adaptive. Our numerical experience shows good performance over a
wide range of sample size.

4. Interval estimation
Interval estimation is an integral component of regression analysis. With censored linear
regression, the interval estimation shares the challenges for the point estimation and existing
methods further aggravate the computational burden beyond the point estimation. Wei et al.
(1990) suggested to construct confidence intervals by inverting the test based on the
quadratic score statistic, which required intensive grid search. The re-sampling methods of
Parzen et al. (1994) and Jin et al. (2001) involve, say, 500 re-samples, each with
computation comparable to the point estimation. In comparison, the consistent variance
estimator of Huang (2002) is computationally much less demanding. Nevertheless, the
computation is still p times that for the point estimation. We now propose new interval
estimation techniques.

As a standard and computationally efficient procedure, sandwich variance estimation cannot
be readily applied to the weighted log-rank estimating function due to the lack of
differentiability. Nevertheless, we suggest to use  to serve the purpose and the variance of

 can be consistently estimated by

(17)

where V(b) is defined in (7). The computation is trivial beyond the point estimation, even
much less than Huang (2002).

We can also develop a procedure to compute the confidence interval of Wei et al. (1990) for
each component of β. Write scalar β1 as a component of β and b1 as the counterpart in b. The
confidence interval of Wei et al. (1990) for β1 with level 1 – a is given by

(18)

where  is the upper a point of the χ2 distribution with 1 degree of freedom. By the
asymptotic local quadraticity of (9), the gradient and Hessian of the limiting Ω(b) in a

shrinking neighborhood of β are asymptotically equivalent to  and

, respectively. This approximation permits a Newton’s method to compute
the two boundaries that defines the interval given by (18). Specifically, it involves an inner
loop to determine minb/b1 Ω(b) for given b1 and then an outer loop to locate the two b1

values such that minb/b1 . Both loops proceed with the Newton’s method
guided by the asymptotic local quadraticity (9).
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5. Simulation studies
Numerical studies were carried out to assess statistical and computational properties of the
proposal over a wide range of sample size and number of covariates. One series of
simulations had the following specification:

where ε followed the extreme-value distribution, and Zk, k = 1,…, p, were independently
distributed as standard normal. In the presence of censoring, the censoring time C followed
the uniform distribution between 0 and an upper bound determined by a given censoring
rate.

For comparison, we also computed the estimators of Jin et al. (2003) using the R code
downloaded from Dr. Jin’s website (http://www.columbia.edu/~zj7/aftsp.R). For a non-
Gehan function, the procedure of Jin et al. (2003) may not converge and we followed their
suggestion to run a fixed number of iterations. According to Jin et al. (2003), 3 iterations is
adequate and 10 typically renders convergence for practical purposes. More iterations is
desirable for statistical performance, but not so for computation.

We focused on two common weighted log-rank functions, Gehan and log-rank. Since its
weight is censoring dependent, the Gehan estimator cannot reach the semiparametric
efficiency bound. Nevertheless, in the class of weighted log-rank functions, the Gehan
function is an exception as being monotone and thus free of inconsistent roots (Fygenson &
Ritov, 1994). For this reason, the Gehan estimator plays an important role in identifying a
consistent root to a non-Gehan function with existing methods. In fact, the linear
programming method of Jin et al. (2003) computes the Gehan estimator as the initial
estimate. On the other hand, the log-rank function is a default choice in practice, and its
estimator is semiparametrically efficient locally when ε follows the extreme-value
distribution (e.g., Tsiatis, 1990).

5·1 Finite-sample statistical performance
Table 1 reports the summary statistics for the first regression coefficient under sample size
of 100 or 200, 2 or 4 covariates, and 0%, 25%, or 50% censoring rate; results for other
coefficients were similar and thus omitted. Each scenario involved 1000 simulated samples.
In the case of the log-rank function, Jin et al. was the estimator obtained with 10 iterations.
Focus on the point estimation first. Across all scenarios considered, the proposed estimator
and that of Jin et al. were almost identical in bias and standard deviation up to the reported
third decimal point, whereas the one-step estimator showed slight differences. Also, it is
interesting to note that the proposed estimator had the smallest average quadratic score
statistic, followed by Jin et al. and then the one-step estimator. Figure 1 provides the
scatterplots of these estimators as well as the initial estimate under one set-up; plots for other
set-ups were similar. The proposed estimator and that of Jin et al. were practically the same,
especially in the Gehan function case. The one-step estimator was visibly different, but the
initial estimate was much more so. This demonstrates the effectiveness and accuracy of the
asymptotics-guided Newton algorithm, even when the sample size was as small as 100.

Table 1 also reports the performance of the two proposed interval estimation procedures.
The 95% Wald confidence interval was constructed for the sandwich variance estimation
method. With the test inversion procedure, a standard error was computed as length of the
95% confidence interval given by (18) divided by twice 1.959964. Both standard errors
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tracked the standard deviation reasonably well. However, the inverted test procedure was
superior in the case of smaller sample size, more covariates and heavier censoring.
Furthermore, both confidence intervals had coverage probabilities close to the nominal
value. For most practical situations, the sandwich variance estimation might be preferred for
its minimal computational costs and acceptable performance.

5·2 Computational comparison
The proposed method was implemented in R with Fortran source code. The R code of Jin et
al. (2003) has its core to solve a weighted Gehan function by invoking the rq function from
the Quantreg package, which is also written with Fortran source code. To use the point
estimation of Jin et al. as a benchmark, we removed their re-sampling interval estimation
component. In addition, we modified their code to permit linear programming algorithm
options in the rq function. The original code adopts the default Barrodale–Roberts simplex
algorithm. In the case of the Gehan function, we also evaluated the timing when using the
Frisch–Newton interior point algorithm, known to be more efficient as the size increases
(Portnoy & Koenker, 1997). However, the same attempt for the log-rank function gave rise
to unexpected estimation results for unknown causes and was thus aborted. The computation
was performed on a Dell R710 computer with 2.66 GHz Intel Xeon X5650 CPUs and 64 GB
RAM. Sample sizes of 100, 400, 1600, 6400, and 25600 were considered, in combination
with 2, 4, 8, and 16 covariates. The censoring rate for all set-ups was approximately 25%.

The left panel of Figure 2 shows the computer times for estimation with the Gehan function.
For a given number of covariates, the computer time for the proposed procedure consisting
of the point and sandwich variance estimation had a roughly linear increase with the sample
size. The timing was within seconds in most cases and, even with the size of 25600 and 16
covariates, it did not exceed 3 minutes. This computational efficiency is extremely
impressive in comparison with Jin et al. (2003). The computer time for their point
estimation alone was hundreds or even thousands times as long when using the simplex
algorithm for linear programming; the computer time became unavailable when the sample
size was 6400 or larger since the timing exceeded 1 day. The interior point algorithm
speeded up the computation considerably with larger sample sizes, but the computer time
was still tens to hundreds times as long. In addition, regardless of the algorithms adopted,
the method of Jin et al. (2003) required a computer memory so large that brought the R
session to either virtually a halt or crash when the sample size was 25600.

The right panel of Figure 2 corresponds to the log-rank function. In comparison with the
case of the Gehan function, the proposed method had comparable computer times. However,
the method of Jin et al. (2003) took longer since it required solving weighted Gehan
functions iteratively and only the Barrodale–Roberts simplex algorithm was reliable. Thus,
the proposed method is even more dominating when a non-Gehan function is adopted.

The proposed method has four components: initial estimation, derivative estimation, Newton
iterations, and sandwich variance estimation. To understand their shares, we broke down the
computer time in percentages. The estimation function adopted, Gehan or log-rank, made
little difference. Initial estimation and derivative estimation were dominating components,
whereas the percentage for sandwich variance estimation was always negligible. The
percentage for initial estimation increased with sample size and decreased with number of
covariates, and derivative estimation followed a reverse trend. For example, in the case of 2
covariates, the percentages of the three point-estimation components were 75%, 20%, and
5% for sample size of 400 and changed to 94%, 5%, and 1%, respectively, for sample size of
25600. When the number of covariates was 16, the corresponding percentages became 21%,
72%, and 7% for sample size of 400, and 54%, 44%, and 2% for sample size of 25600.
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As a reviewer noticed from Figure 2, the computer time, however, appeared to increase
faster for the proposed method than for the method of Jin et al. (2003), when the number of
covariates was scaled up under fixed sample size. Additional simulations confirmed the
observation. In an extreme case of 100 covariates with sample size of 1600, the computer
times for the proposed method, including both the point estimation and sandwich variance
estimation, were 197 and 178 seconds for the Gehan and log-rank functions, respectively.
The point estimation of Jin et al. using the interior point algorithm took 499 seconds for the
Gehan function. The gap between the two methods shrinks as the number of covariates
increases.

6. Illustrations
For illustration, we analyzed two clinical studies using the proposed approach and the
method of Jin et al. (2003). For the proposed approach, we adopted the sandwich variance
estimation for inference. With Jin et al. (2003), we followed their re-sampling interval
estimation with the default re-sampling size of 500.

The first was the well-known Mayo primary biliary cirrhosis study (Fleming & Harrington,
1991, app. D), which followed 418 patients with primary biliary cirrhosis at Mayo Clinic
between 1974 and 1984. We adopted the accelerated failure time model for the survival time
with five baseline covariates: age, edema, log(bilirubin), log(albumin), and log(prothrombin
time). Two participants with incomplete measures were removed. The analysis data
consisted of 416 patients, with a median follow-up time of 4.74 years and a censoring rate of
61.5%. The top panel of Table 2 reports the estimation results and their associated computer
times. When the Gehan function was used, the point estimators were very similar between
the proposed and Jin et al., and their standard errors reasonably close to each other. With the
log-rank function, the proposed and Jin et al. with 10 iterations were much closer to each
other than they were to Jin et al. with 3 iterations, and the standard errors were again
reasonably similar to each other. The quadratic score statistic favored the proposed point
estimator over the estimator of Jin et al. for both the Gehan and log-rank functions. The
most striking difference between the two methods lied in the computational costs. The
proposed method used only tens of milliseconds to complete both the point and interval
estimation. In comparison, the point estimation alone of Jin et al. (2003) took from a few
seconds up to over a minute, depending on the estimating function, the linear programming
algorithm, and the number of iterations. With both their point and interval estimation, the
computer time ranged from half an hour to several hours.

The second study was the AIDS Clinical Trials Group (ACTG) 175 trial, which evaluated
treatments with either a single nucleoside or two nucleosides in HIV-1 infected adults whose
screening CD4 counts were from 200 to 500 per cubic millimeter (Hammer et al., 1996). A
total of 2467 participants were randomized to one of four treatments: Zidovudine (ZDV),
Zidovudine and Didanosine (ZDV+ddI), Zidovudine and Zalcitabine (ZDV+ddC), and
Didanosine (ddI). In this analysis, we were interested in time to an AIDS-defining event or
death and employed the accelerated failure time model with 12 baseline covariates: ZDV
+ddI, ZDV+ddC, ddI, male, age, white, homosexuality, IV drug use, hemophilia, presence
of symptomatic HIV infection, log(CD4), and length of prior antiretroviral treatment.
Among these covariates, age, log(CD4), and length of prior antiretroviral treatment were
continuous and the rest were indicators. The mean follow-up was 29 months and the
censoring rate was 87.5%. The estimation results and computer times are summarized in the
bottom panel of Table 2. The relative statistical performance of the proposed and Jin et al.
(2003) was largely similar to that observed in the previous study. However, the standard
error for the log-rank estimator using the re-sampling approach of Jin et al. (2003) might
take weeks in computer time and thus was unavailable. In this study of a larger size, the
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proposed method exhibited more substantial practical advantage in computational
efficiency, taking within 2 seconds for both the point and interval estimation. However, it
took Jin et al. (2003) over 2 hours for the point estimation alone in the case of log-rank
estimating function with 10 iterations.

7. Discussion
Computation is an indispensable element of a statistical method. With censored data,
computational burden is perhaps the single most critical impeding factor for practical
acceptance of the accelerated failure time model. Existing methods for a weighted log-rank
estimating function are computationally too burdensome even for moderate sample size. Our
proposal in this article achieves a dramatic improvement and proves feasible in
circumstances over a broad range of sample size and number of covariates.

There are alternative estimating functions and methods for censored linear regression. The
estimating function of Buckley & James (1979) and its weighted version by Ritov (1990), as
an extension of the least squares estimation, would benefit from a similar development. The
weighted Buckley–James estimating function is asymptotically equivalent to the weighted
log-rank function (Ritov, 1990) and also suffers from discontinuity and non-monotonicity.
Parallel to Jin et al. (2003) for the weighted log-rank function, Jin et al. (2006) developed a
similar iterative method for the weighted Buckley–James with the Gehan estimator used as
the initial estimate. Conceivably, our techniques in this article can be applied to improve the
computation. To attain semiparametrically efficient estimation, both the weighted log-rank
and weighted Buckley–James require a weight function that involves the derivative of the
error density function, which is difficult to estimate and construct. Zeng & Lin (2007)
recently developed an asymptotically efficient kernel-smoothed likelihood method.
However, as typical for kernel smoothing, their estimator can be sensitive to the choices of
kernel and bandwidth in finite sample. Further efforts are needed to achieve both asymptotic
efficiency and numerical stability.
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Appendix A: Justification of the algorithm in Section 2

Recall that the initial estimate  is n1/2-consistent. Therefore,  by

equation (5). Write , corresponding to the one-step estimate with

g = 0 in (6). Then,  and equation (5) implies

Subsequently, . For the one-step estimate , similarly

. Also, since  which in turns

implies . It then follows that  is asymptotically equivalent to a
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consistent root of U(b). The same argument and conclusion apply to  for any given finite
k ≥ 1.

Before addressing the estimator , we first consider  as the  such that either 
cannot be further reduced according to the algorithm or the very next Newton-type update
would cross the boundary of shrinking neighborhood {b : ∥b – β∥ ≤ n−a} for some a ∈ (0,

1/2). Note that  is inside this neighborhood with probability tending to 1. Since

,  and so  is asymptotically equivalent to a

consistent root of U(b). Consequently,  and the step size of the next
potential Newton-type update is op(n−1/2). They imply that the probability of the next
potential Newton-type update across the aforementioned boundary approaches 0. Therefore,

 is asymptotically equivalent to  and so to a consistent root of U(b).

Appendix B: Proofs of theorems in Section 3

Proof of Theorem 1

Note that  has a finite number of components and each
component is a Donsker class by the same arguments as those in Huang (2010, appendix D).
Therefore,

almost surely. Meanwhile, Huang (2010, theorem 2) asserts

 almost surely for any τ1 and τ2 such that ,
which implies

almost surely. Furthermore, under the regularity conditions, ξZ(τ) = 0 and terms involving

 are negligible; see Huang (2010, appendix D). Combining these results yields

(19)

almost surely. On the other hand, by definition

see Huang (2010, equation (13)). Then, the left-hand side can be made arbitrarily small

uniformly in τ ∈ [0, τ1] for sufficiently small τ1 > 0, and so is  since Z is
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bounded. In the same fashion, ∥Σ(τ)∥max can be made arbitrarily small. Therefore, equation
(19) can be strengthened to

(20)

almost surely.

By the strong law of large numbers,  almost
surely. Then, we obtain

almost surely. Since positive definite E(S⊗2Δ) – Σ(τ) is strictly decreasing with τ ∈ [0, τ2],
so is det{E(S⊗2Δ)–Σ(τ)}/ det{E(S⊗2Δ)} by Minkowski’s determinant inequality (cf. Horn &
Johnson, 1985). The strong consistency of  for  then follows, upon making .

Proof of Theorem 2
Let

From the weak convergence of  (Huang, 2010, theorem 2) and Theorem 1, it is easy to

establish . The consistency and asymptotic normality of  follow those of
.

Proof of Theorem 3
The statement below (15) provides the equivalent conditions in terms of the singular values
of W. Therefore,

since ∥wq∥ is bounded between the maximum and minimum singular values. Then, equation
(4) yields

Therefore, , implying the
consistency of .
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Matrix M given by (16) is semi-positive definite. Write  for q = 0,

…, p + 1 and  for . Then,

From the weak convergence results in Huang (2010), Peng & Huang (2008), and Theorem 2,

it can be verified that  converges weakly to a non-
degenerate Gaussian distribution with mean zero and so does

. Therefore,  and
subsequently det(nM) are bounded away from 0 in probability. On the other hand, det(nM) =
Op(1), which can be established from convergence of  and  by from asymptotic Theorem

1 and normality of  by Huang (2010, theorem 2) and  by Theorem 2. Therefore, all
eigenvalues of nM are bounded both above and away from 0 in probability, and so are the
singular values of n1/2W. The conditions in (15) are then satisfied by the equivalence of the
max and spectral norms.
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Figure 1.
Scatterplots to compare different estimators for the first coefficient with sample size of 100,
2 covariates, and 25% censoring. In the case of the log-rank estimating function, Jin et al.
was the estimator with 10 iterations.
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Figure 2.
Timing comparison of the proposed method versus Jin et al. (2003). The timing of the
proposed accounted for both the point estimation and the sandwich variance estimation,
whereas that of Jin et al. (2003) was for the point estimation alone. The number of
covariates, 2, 4, 8, or 16, is marked on each line.
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