
Review

Immune-based mechanisms of cytotoxic
chemotherapy: implications for the design of novel and
rationale-based combined treatments against cancer
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Conventional anticancer chemotherapy has been historically thought to act through direct killing of tumor cells. This concept
stems from the fact that cytotoxic drugs interfere with DNA synthesis and replication. Accumulating evidence, however,
indicates that the antitumor activities of chemotherapy also rely on several off-target effects, especially directed to the host
immune system, that cooperate for successful tumor eradication. Chemotherapeutic agents stimulate both the innate and
adaptive arms of the immune system through several modalities: (i) by promoting specific rearrangements on dying tumor cells,
which render them visible to the immune system; (ii) by influencing the homeostasis of the hematopoietic compartment through
transient lymphodepletion followed by rebound replenishment of immune cell pools; (iii) by subverting tumor-induced
immunosuppressive mechanisms and (iv) by exerting direct or indirect stimulatory effects on immune effectors. Among the
indirect ways of immune cell stimulation, some cytotoxic drugs have been shown to induce an immunogenic type of cell death in
tumor cells, resulting in the emission of specific signals that trigger phagocytosis of cell debris and promote the maturation of
dendritic cells, ultimately resulting in the induction of potent antitumor responses. Here, we provide an extensive overview of the
multiple immune-based mechanisms exploited by the most commonly employed cytotoxic drugs, with the final aim of identifying
prerequisites for optimal combination with immunotherapy strategies for the development of more effective treatments against
cancer.
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Facts

(1) Immune competence is crucially required for chemo-
therapy efficacy.

(2) The antitumor effects of chemotherapy rely on tumor–host
interplay.

(3) Tumor-induced immune tolerance needs to be overcome
in order to allow the full recovery of immune surveillance
and hamper tumor spreading or recurrence.

(4) The capability of some cytotoxic drugs to induce an
immunogenic cell death makes apoptotic tumor cells a
good endogenous vaccine.

(5) Some cytotoxic agents induce a lymphodepletion-
associated bystander immune stimulation.

Open Questions

(1) Patient’s immune status and tumor cells’ intrinsic
characteristics need to be investigated deeper, so as to
identify the requisites predicting full benefit of defined
single or combined anticancer treatments.

(2) Off-target effects of chemotherapy need further elucida-
tion in order to allow a rationale-based, rather than
empirical, selection of combinatorial regimens.

(3) Adjuvant chemotherapy regimens using cytotoxic drugs
with immunomodulatory properties, possibly in combina-
tion with immunotherapy approaches, should be evalu-
ated as strategies for tertiary prevention of cancer.

(4) Strategies to be pursued should be aimed at selectively
hitting tumor-induced inhibitory cells/mechanisms,
sparing effector cells and other subsets capable of
suppressing undesirable autoimmune responses.

Conventional anticancer chemotherapy is generally thought
to act through selective killing of tumor cells or by irreversibly
arresting their growth. Cytotoxic drugs interfere with DNA
synthesis, or produce chemical damage to DNA, ultimately
leading to tumor cell death (TCD; see Table 1). However, this
concept neglects the possible contribution of the host to
the therapeutic process of chemotherapy. Accumulating
evidence indicates that several chemotherapeutic drugs are
more efficient against tumors that are implanted in immuno-
competent, with respect to immunodeficient, hosts.1
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Conventional chemotherapy can stimulate the immune
system in two ways. Some agents elicit cellular rearrange-
ments that render dying tumor cells visible to the immune
system. Other drugs induce a transient lymphodepletion,
subvert immunosuppressive mechanisms, or exert direct or
indirect stimulatory effects on immune effectors. Immuno-
modulatory properties are being ascribed also to targeted
chemotherapeutic agents, that is, compounds designed to hit
biochemical pathways essentially required for tumor cell
survival and/or growth (Box 1). All these observations
open to the intriguing possibility that immunomodulatory
chemotherapeutic agents may be good candidates for
combination with immune-based therapeutic approaches.

This review will provide an overview on the immune-based
mechanisms exploited by some cytotoxic drugs (Figure 1),
with the final aim of identifying prerequisites for optimal
combination with immunotherapy strategies for the develop-
ment of more effective, rationale-driven treatments against
cancer.

Effects on the Innate Immune System

Several direct effects of cytotoxic drugs have been described
for macrophages, dendritic cells (DCs) and natural killer (NK)
cells. Earlier studies on NK-cell function in cancer patients

undergoing cytotoxic chemotherapy have shown variable
effects, especially in correlation with the clinical outcome.2,3 In
breast cancer patients with localized and metastatic disease,
cytotoxic drug regimens were shown to induce an overall
impairment of NK-cell responses.4,5 Recently, a metronomic
(that is, low dosage for a prolonged period of time) cyclophos-
phamide (CTX) regimen was shown to potently stimulate
NK-dependent antitumor immunity in end-stage cancer
patients6 and the prompt recruitment of DCs, macrophages
and NK cells to the tumor site in diverse mouse models.7,8

Interestingly, combined treatment with 5-Fluorouracil (5-FU)
and IFN-a resulted in higher numbers of infiltrating NK cells
with enhanced cytotoxicity in a pancreatic tumor model.9

Effects of chemotherapy on macrophages have also been
documented. Macrophages can differentiate from blood
monocytes into two distinct subtypes, namely classically
activated (M1) and alternatively activated (M2) macrophages
endowed with effector or suppressive functions, respec-
tively.10,11 Macrophages infiltrating solid tumors (that is,
tumor-associated macrophages or TAMs) share many char-
acteristics with M2 macrophages and exert a pro-tumorigenic
function in virtue of their direct or indirect (via cytokine
production) immune-suppressive effects towards NK and
T-cells.12 In cancer patients, the presence of TAMs favors
tumor progression.12 Several studies have investigated the

Table 1 Biochemical and biological properties of conventional antineoplastic drugs

Class Examples Biochemical activity Biological effects Use in clinical oncology

Antimetabolites 5-Fluorouracil Analog of pyrimidine
nucleoside

Perturbation of RNA and
DNA synthesis

Colorectal cancer, pancreatic cancer

Gemcitabine Non-small cell lung cancer, pancreatic
cancer, bladder cancer, breast cancer

Methotrexate Inhibits dihydrofolate
reductase

Reduction of folates
required for DNA synthesis

Breast, head and neck, leukemia, lymphoma,
lung, osteosarcoma, bladder and
trophoblastic neoplasms

Alkylating agents Cyclophosphamide Adds an alkyl group to
DNA

Inhibition of DNA replication Lymphomas, leukemias, brain tumors

Dacarbazine Metastatic melanoma, Hodgkin’s lymphoma
Melphalan Multiple myeloma, ovarian cancer, malignant

melanoma

Anthracyclines Doxorubicin Intercalates base pairs
of nucleic acids

Inhibition of RNA and DNA
synthesis

Leukemias, Hodgkin’s lymphoma, bladder
cancer, breast, stomach, lung, ovaries,
thyroid, soft-tissue sarcoma, multiple
myeloma

Antimicrotubule
agents

Vinblastine Binds tubulin, thereby
inhibiting the assembly
of microtubules

M-phase-specific cell cycle
arrest by disrupting
microtubule assembly

Hodgkin’s lymphoma, non-small cell lung
cancer, breast cancer, head and neck
cancer, and testicular cancer

Platinum
compounds

Cisplatin Crosslinks DNA strands Inhibition of DNA replication
and transcription

Head and neck, lung and ovarian
carcinomas, lymphomas, germ cell tumors

Oxaliplatin Colorectal cancer

Taxanes Paclitaxel Stabilizes GDP-bound
tubulin in microtubules

Inhibition of mitosis Lung, ovarian, breast, head and neck cancer,
advanced forms of Kaposi’s sarcoma

Docetaxel Breast, ovarian, prostate and non-small cell
lung cancer

Topoisomerase
inhibitors

Irinotecan Interferes with type I
topoisomerases
inducing DNA strands
breaks

Cell cycle arrest and
apoptosis

Colorectal cancer

Etoposide
phosphate

Interferes with type II
topoisomerases
inducing DNA strands
breaks

Kaposi’s and Ewing’s sarcomas, certain
leukemias, lung, ovarian, gastrointestinal
cancers, glioblastoma multiforme

Mitoxantrone Metastatic breast cancer, acute myeloid
leukemia and non-Hodgkin’s lymphoma
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effects of cytotoxic chemotherapy in subverting the pro-
tumorigenic activities of macrophages. For example, low-
dose CTX can promote the skewing of M2 macrophages into
M1 in vivo, thus enhancing the production of oxygen radicals,
IL-6 and IL-12, and potentiating innate responses.13 Similarly,
in mice bearing B16.F10 melanoma, combined treatment with
vincristine, CTX and doxorubicin resulted in substantial
enrichment of a TAM subpopulation that can be M1-polarized
upon concomitant immunotherapy.14 Interestingly, whereas
tumor sensitivity to CTX or cisplatin in vitro is increased when
tumor cells are cultivated with macrophages, coculture of
macrophages with human primary ovarian tumor cells
decreased tumor sensitivity to 5-FU.15 Likewise, the taxane
paclitaxel can stimulate TAMs cytotoxicity directly16 and
induce the activation of DCs, NK and tumor-specific CTL via
the secretion of IL-12 and TNF-a and inducible nitric oxide
synthase (iNOS) by TAMs,17 resulting in tumor regression.
Conversely, paclitaxel-induced influx of TAMs was detrimen-
tal to chemotherapy response in mouse mammary carcinoma
and breast cancer patients.18,19

Chemotherapy has influence on bone marrow (BM)
hematopoiesis, affecting myeloid cell mobilization differen-
tially. A single injection of low-dose CTX was shown to spare
DC precursors in the BM, promoting their expansion and
differentiation in the peripheral lymphoid organs. CTX exerted
its effects preferentially on the CD8a-expressing-DC subset,
determining an initial ablation of lymphoid organ-resident
CD8aþ DCs, followed by overshoot replenishment after drug
discontinuation.20,21 Data from our laboratory have revealed
that, after CTX administration, CD8aþ DCs migrate to the
tumor site where they cross-present tumor-associated anti-
gen (Figure 2). The platinum-based compound cisplatin was

also reported to modulate the percentages of myeloid cells by
increasing DCs and eliminating myeloid-derived suppressor
cells (MDSCs), thus favoring immune effector responses in
melanoma-bearing mice.22 Moreover, an overall increase of
CD14þ monocytes, CD11cþ myeloid DCs and CD123þ

plasmacytoid DCs was observed in patients with advanced
pancreatic cancer receiving gemcitabine for 2 months, with
respect to untreated patients.23

Direct immunostimulatory effects of cytotoxic drugs on DC
activities were also reported. An unbiased functional screen of
54 chemotherapeutic agents unveiled striking diversity of the
tested drugs on the maturation, survival and growth of DCs.24

The drugs delivering DC maturation signals at concentrations
causing only marginal DC death included topoisomerase
inhibitors (for example, etoposide, mitoxantrone, doxorubi-
cin), antimicrotubule agents (for example, vinblastine,
paclitaxel, docetaxel) and the two alkylating agents
mechlorethamine and diaziquone.24 In another report, pacli-
taxel, doxorubicin and methotrexate were shown to promote
the ability of murine BM–DCs to present antigens to T-cells
in vitro by upregulating antigen-processing machinery gene
components, costimulatory molecules and IL-12p70.25 Simi-
lar results were observed with human monocyte-derived
DCs.26 Notably, vinblastine at low concentrations (0.1–1 mM)
induces phenotypic and functional maturation of DCs in vitro
and in vivo, when injected into the skin of mice, by triggering
in situ maturation of skin-resident DCs and by boosting
humoral and cellular immune responses.27 A recent study on
human 6-sulfo LacNAcþ (slan) DCs, a major subpopulation of
human blood DCs, showed that doxorubicin impairs the ability
of these cells to produce proinflammatory cytokines and to
activate T lymphocytes and NK cells, whereas methotrexate
and paclitaxel sustain their effector properties.28

Cytotoxic chemotherapy can affect DC activities also
through indirect mechanisms. Pioneering studies showed
that 5-FU and doxorubicin induced in vitro cancer expression
of heat shock proteins (HSPs) that promote the engulfment of
cell debris by human DCs and the subsequent cross-
presentation of tumor antigens to T-cells.29,30 More recently,
Casares et al.31 showed that doxorubicin-killed tumor cells
elicit tumor-specific immune responses when injected into
syngeneic mice, by stimulating DC phagocytosis and CD8
T-cell responses. Subsequent work from L. Zitvogel’s
laboratory identified the molecular mechanism linking
immunogenic apoptosis induced by chemotherapy to DC
activation, as detailed below.

Effects on the Adaptive Immune System

Treatment of cancer patients with intensive chemotherapy
results in profound depletion of all lymphocytic populations,
especially of B cells.32,33 A study conducted on breast cancer
patients to evaluate the effect of combination chemotherapy
regimens with epirubicin (5-FU, epirubicin, CTX) versus
doxorubicin (5-FU, doxorubicin, CTX) on subsets of immune
cells revealed an increase in the percentages of cytotoxic
T and NK cells, and a dramatic decrease in that of B cells in the
blood following either regimen.34 Similarly, repeated gemci-
tabine cycles reduced B cell frequencies and induced a
profound suppression of antigen-specific IgG antibody

Box 1 Immune-based effects of targeted anticancer
compounds

Targeted therapies act by blocking biochemical pathways or
mutant proteins essentially required for tumor cell growth and
survival. Most targeted therapies induce dramatic tumor regres-
sions, although long-term clinical benefit is hampered by the
occurrence of drug-resistant variants. Similar to conventional
chemotherapeutic agents, some targeted agents display immu-
nomodulatory properties. The receptor tyrosine kinase (TK)
inhibitor sunitinib dampens the immunosuppressive activity of
Treg and MDSCs,133,134 whereas the TK inhibitor imatinib
challenges IDO expression in myeloid cells.135 mTOR kinase
inhibitors (e.g., everolimus, temsirolimus) trigger autophagy and
inhibit angiogenic activity by both direct effects on vascular cell
proliferation and indirect effects on growth factor production.106

Diverse Janus kinase inhibitors, small molecules interfering with
cytokine signaling, prove effective in stimulating DC maturation
and antigen-specific T-cell priming.136 The proteasome inhibitor
Bortezomib, which is approved for use in multiple myeloma,
sensitizes tumor cells to TRAIL- and NK-mediated cell lysis.137

Vemurafenib, a specific BRAF inhibitor recently approved for
treatment of some melanomas, enhances the expression of
several tumor antigens, enabling immune recognition by
T lymphocytes.138 Trastuzumab and cetuximab, monoclonal
antibodies directed against tumor-associated receptor TK HER-2
and EGFR, respectively, augment antigen presentation through
the formation of immune complexes, leading to stimulation of
T-cell-mediated immune responses.139,140 Altogether, these
observations pave the way to clinical studies aimed at evaluating
the possible synergism of targeted compounds and immunother-
apy strategies.
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responses, but enhanced T-cell responses, in a mouse model
of malignant mesothelioma.35 The reason for this differential
effect on the two lymphocytic populations was partly attributed
to an increased sensitivity of B cells to the antiproliferative
effects of gemcitabine in vitro, with respect to T-cells,35

although it is not clear whether this mechanism also applies
in vivo, or in the case of other chemotherapeutic agents.
Instead, gemcitabine given at a single dose (120 mg/kg)
preserved both T and B lymphocytes in the spleens of animals
bearing large tumors,36 and 5-FU-based adjuvant chemo-
therapy induced prominent tumor-specific antibody responses
in colon cancer patients.37

The effects of CTX on humoral responses appear con-
troversial. In some reports, CTX, even at low-dose regimens,
exerted suppressive effects on humoral responses while
boosting cellular responses, suggesting that B cells are
particularly sensitive to CTX-induced cytotoxic effects.38,39

In other reports, low-dose CTX was shown to increase the
relative percentages of B and T-cells in mice bearing SW1C
melanoma,7 and the cellular and antibody responses in
patients with advanced cancer.40 Subsequent studies showed
that the lymphodepleting effects induced by CTX are transient
and that, soon after drug discontinuation, a homeostatic
rebound overshoot of the lymphocytic pool occurs.41,42 This
implies that after drug administration, a reduction of both
humoral and cellular responses may occur, but with different

timing and kinetics. It has been proposed that the homeostatic
replenishment of B and T lymphocyte compartments is
sustained by a drug-induced ‘cytokine storm’ during which
several hematopoietic and homeostatic factors, danger
signals, pattern recognition receptors, inflammatory media-
tors and growth factors are expressed, thus boosting
peripheral expansion.41,43 One might speculate that these
mediators cooperate in sensing and amplifying drug-induced
myelo- and lymphotoxicity, thus stimulating a DNA damage
response that, in turn, promotes immune activation. Interest-
ingly, genotoxic stress activates the expression of IFN-a and
IFN-l genes, leading to the ultimate stimulation of immune
responses resembling those evoked during viral infections.44

In addition, CTX and fludarabine combination greatly
improved the therapeutic efficacy of adoptively transferred
tumor-specific B cells in a mouse melanoma model of
experimental metastasis.45 Likewise, combined high-dose
CTX and doxorubicin treatment augmented long-lasting
humoral response in vivo to a cancer vaccine.46

Numerous evidence indicate the benefits of chemotherapy
on T-cell-mediated immune responses. Mice vaccinated with
doxorubicin- or cisplatin-treated ovarian cancer cells have
enhanced antitumor immunity, and prolonged survival largely
dependent on CD4 T-cell-mediated immune responses.47

Low-dose cisplatin and paclitaxel synergize to generate
strong tumor-specific CD8 T-cell responses, through IL-2

Figure 1 Immunomodulation by conventional cytotoxic drugs. Conventional antineoplastic drugs can activate anticancer immune responses through different
mechanisms: (i) the inhibition of tumor-induced-suppressive mechanisms, (ii) the direct stimulation of T and B cell responses, (iii) the enhancement of tumor immunovisibility by
cytotoxic cell subsets or phagocytes. Low-dose CTX and gemcitabine deplete regulatory T-cells or myeloid suppressor cells and facilitate tumor attack by effectors. Paclitaxel,
cisplatin and doxorubicin induce the upregulation of mannose-6-phosphate receptors on the surface of tumor cells, rendering them permeable to granzyme B. Paclitaxel
induces proinflammatory cytokines’ secretion from macrophages, leading to DC, NK and T-cell activation. Anthracyclines, oxaliplatin and CTX promote tumor expression of
ecto-CRT, and release of HMGB1 and ATP by dying tumor cells, thus stimulating antigen phagocytosis and cross-presentation by DC
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and IFN-g secretion, and high therapeutic efficacy on
platinum-resistant ovarian cancers in both mice and
patients.48 5-FU was also reported to increase IFN-g produc-
tion by tumor-specific CD8 T-cells infiltrating the tumor, and to
boost T-cell-dependent antitumor responses by in vivo
elimination of MDSCs.49 In both mouse models and patients
with esophageal squamous cell carcinoma, neoadjuvant
chemotherapy with 5-FU and cisplatin increased the intra-
tumoral trafficking of CD4 and CD8 T-cells.50,51 In experimental
carcinogen-induced adenocarcinomas and fibrosarcomas,
doxorubicin treatment enhanced tumor-specific proliferation
of CD8 T-cells in tumor-draining lymph nodes (LNs) and
promoted tumor infiltration of activated, IFN-g-producing CD8
T-cells.52 In this setting, therapeutic efficacy of doxorubicin
required both IL-1b and IL-17, and the presence of gd T-cells.

A single CTX injection potently enhances the antitumor
response of tumor-bearing mice following adoptive transfer of
tumor-reactive T-cells.42,53,54 Several mechanisms have
been proposed to explain this effect: (i) drug-induced
bystander proliferation of memory CD4 and CD8 T-cells;55

(ii) drug-induced stimulation of CD8 T-cells proliferation and
IFN-g production;41 (iii) differentiation of adoptively transferred
antigen-specific CD4 T-cells into activated polyfunctional
T helper cells with potent antitumor activity;56 (iv) specific

homing of transferred T-cells to the lymphoid organs and
tumor mass soon after drug discontinuation.41,57 Accordingly,
the therapeutic efficacy of combined CTX and adoptive
transfer of tumor-specific spleen cells was shown to critically
require donor CD4 T-cells.42 Combined treatment with anti-4-
1BB and CTX produced synergistic CD8-mediated anticancer
effects in the B16 melanoma mouse model.58

Evidence for the positive impact of chemotherapy on
antitumor immune responses also arises from pilot clinical
trials with cancer vaccines. Gene expression analysis of
peripheral blood mononuclear cells (PBMCs) from melanoma
patients treated with dacarbazine and a peptide-based
vaccine revealed, by 1 day after chemotherapy, increased
expression of immunoregulatory factors that can account for
the enhancement of tumor antigen-specific CD8 T-cell
responses observed in those patients, compared with patients
treated with vaccine alone.59 These effects were paralleled by
a widening of the antigenic repertoire and by an expansion of
antigen-specific T-cell tumor reactivity.60

Cancer often results in an imbalance of Th1/Th2 immunity,
which can be restored by some antineoplastic drugs. As an
example, paclitaxel augments Th1 cellular immunity in
patients with advanced non-small cell lung cancer by
increasing the levels of circulating IFN-g-secreting CD8

Figure 2 Induction of immunogenic tumor cell death and stimulation of DC cross-presentation by CTX in vitro and in vivo. (a) Ecto-CRT exposure at 4 h and extracellular
HMGB1 release (48 h) in tumor cells following UV irradiation or treatment with the CTX-analog Mafosfamide (MAFO). (b) In vitro uptake of CFSE-labeled OVA-expressing EG7
tumor cells, killed by UV irradiation or MAFO treatment, by splenic CD8aþDC. (c) Stimulation of OT-I CD8 T-cell cross-priming by CD8aþDC that had captured MAFO-killed
EG7 tumor cells. Proliferative response (left) and IFN-g ELISPOT assay (right) are shown. (d) Induction of tumor apoptosis in EG7 tumor-bearing mice 2 days after a single
injection of CTX (100 mg/kg), as detected by FLIVO staining in the tumor tissue. (e) In situ cross-presentation of tumor-associated antigen by tumor-infiltrating DC in mice
bearing EG7 tumors following CTX injection (7 days). Co-expression of CD11c and OVA-derived peptide SIINFEKL bound to MHC class I (MHC-I-OVAp) in EG7 tumor tissue
sections were detected by confocal laser-scanning microscopy. Modified from Schiavoni et al 21
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T-cells and IL-2-secreting CD4 T-cells.61 Moreover, CTX
induces Th1-polarizing cytokines (IL-2 and IFN-g) and
decreases Th2 cytokines (IL-4 and IL-10) both in tumor-
bearing mice41 and rats.62 Notably, in tumor-bearing mice
CTX increased the frequencies of splenic Th1 and Th17 cells,
which displayed a faster recovery from drug-induced lympho-
depletion, with respect to Treg cells.43

Th17 cells are a T-cell subset having important roles in
inflammatory and autoimmune diseases.63 However, their
role in tumor pathogenesis and treatment remains controver-
sial.64,65 Recently, gemcitabine and 5-FU were shown to
activate the inflammasome pathway in MDSCs, leading to
IL-1b production, which, in turn, induced IL-17 secretion by
CD4 T-cells and blunted the anticancer efficacy of chemother-
apy.66 In another report, however, optimal anticancer
responses during doxorubicin treatment have been shown
to require the IL-17-producing gd T-cell population.52 A dose-
dependent effect on the expansion or differentiation of CD4 T-
cells producing IL-17A was also observed in naive and tumor-
bearing mice following treatment with CTX.67 In the same
report, it was shown that the levels of IL-17 secretion in
PBMCs after T-cell receptor stimulation were significantly
enhanced in patients treated with metronomic CTX, with CD4
T-cells being the major source of IL-17.67 Nevertheless,
whether CTX-induced Th17 contributes to the antitumor
efficacy of CTX remains unclear.

Effects on Regulatory Subsets and Pathways

Besides the active stimulation of effector cells, immuno-
potentiation by cytotoxic chemotherapy can also be achieved
through the inhibition of tumor-induced immune suppression.
Several subsets of immunoregulatory cells have been
identified so far in cancer patients.68 CD4-CD25-expressing
Tregs and myeloid cells with suppressive functions, namely
MDSCs and TAMs, accumulate in the blood and, especially,
within tumor burden, thus contributing to disease progression
through various mechanisms.68,69

Different strategies to achieve therapeutic depletion of
suppressive cell subsets have been described so far.70–72

Gemcitabine kills MDSCs, both in vitro and in vivo,49,73 with no
significant reduction in other cell subsets. The selective loss of
MDSCs was accompanied by an increase in the antitumor
activity of CD8 T and NK cells.36 Most platinum-based
compounds inhibit STAT6-regulated expression of pro-
grammed death ligand-2, thus limiting immunosuppression
by both DCs and tumor cells.74 Low-dose CTX selectively, but
transiently, suppresses Tregs43,75,76 and impairs the produc-
tion of immune-suppressive cytokines, such as IL-4, IL-10 and
IL-13.41,77 A prolonged and more effective Treg inhibition was
achieved by metronomic CTX regimens in patients with
advanced solid tumors6 or with metastatic breast cancer.78

Moreover, metronomic temozolomide, an analog of dacarba-
zine, reduced the number and the suppressive function of
circulating Tregs in rats bearing glioma, although it did not
restrain tumor growth.79

The role of CTX on MDSCs is more controversial. Early
reports have supported the concept that CTX induces the
development of natural suppressor cells.80–82 Increased
circulating MDSC frequencies were observed in breast cancer

patients and in B16 melanoma-bearing mice injected with
CTX plus doxorubicin.83,84 Recently, low-dose CTX treatment
of mice spontaneously developing melanomas led to an
accumulation of inflammatory mediators, such as GM-CSF,
IL-1b, IL-5, IL-10, IFN-g and TNF-a, in skin tumors and
metastatic LNs, inducing accumulation and activation of
MDSCs that abrogated CTX antitumor effects.85 Other
reports, however, show that CTX induces early myeloid
effector cells that may inhibit tumor cell growth through nitric
oxide (NO) release,86 and that metronomic CTX plus
gemcitabine mitigates Treg- and MDSC-mediated immuno-
suppression and elicits antitumor immunity in vivo.87

Among taxanes, paclitaxel specifically impairs viability and
cytokine production in FOXP3þTreg cells, but not in FOXP3�

CD4 effector cells.88 Docetaxel, another antimicrotubule
agent, was shown to polarize MDSCs toward an M1-like
phenotype, and to selectively kill MDSCs while sparing
the M1-like cells.89 Recently, 5-FU has been shown to
selectively induce MDSC apoptosis in vitro and in vivo,49,90

resulting in enhanced IFN-g secretion by tumor-infiltrating CD8
T-cells and T-cell-mediated antitumor responses in vivo.90

Suppressor cells adopt various means to inhibit the
antitumor activity of effector lymphocytes. Some studies
suggest that several enzymes, such as arginase I, indolea-
mine 2, 3-dioxygenase (IDO) and iNOS, as well as surface
molecules, such as latency-associated peptide and CD124,
are related to immune suppression and tumor progres-
sion.68,91 Therefore, the effects of chemotherapy on these
suppressive mediators also appear to be relevant for rupture
of tumor-induced tolerance. A serial analysis of blood samples
from advanced non-small cell lung cancer patients treated
with platinum-based compounds revealed decreased iNOS,
IDO and CD124 expression after chemotherapy.92 In con-
trast, gemcitabine and 5-FU were recently shown to activate
immune regulatory cells, which stimulated the emergence of
pro-tumorigenic cytokines via inflammasome pathways, thus
limiting the therapeutic efficacy of the drugs.66

Effects on Tumor Cells and on Tumor Microenvironment

TCD is the main goal of chemotherapy. Cytotoxic drugs kill
tumor cells in different ways and modulate the host immune
system accordingly, with consequences that are only now
beginning to be elucidated. In addition, there is now evidence
that the nature of the immune infiltrate, which often out-
numbers neoplastic cells, is relevant for cancer prognosis.93

Therefore, changing the composition of the immune infiltrate
by anticancer treatments may prove beneficial for cancer
elimination. Under defined circumstances, chemotherapy-
induced TCD can set the stage for an effective antitumor
immune response. For example, some anticancer drugs
increase the expression of death receptors, including FAS,
TNF receptors and TNF-related apoptosis-inducing ligand
receptors.94 Other drugs trigger apoptosis by inducing release
of cytochrome c from mitochondria.94 The degree of TCD
correlates with clinical outcome in several tumor settings.95,96

Some chemotherapeutics, including anthracyclines, oxali-
platin and CTX, are unique in their capacity to induce an
immunogenic type of TCD,21,97 thereby converting dying
tumor cells into adjuvanted-endogenous vaccines. The
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rational base of vaccination is that tumor antigens must be
captured by activated DCs, which would activate CD4 and
CD8 T-cell-mediated adaptive immune responses. In an
immunogenic type of TCD, antigen is provided by the dying
tumor cells in the context of an immunostimulatory environ-
ment for DCs. The molecular mechanisms that distinguish
immunogenic from non-immunogenic cell death have been
elucidated and rely on at least three independent events:
(i) early surface exposure of calreticulin (ecto-CRT) on
stressed cells, (ii) subsequent secretion of ATP and (iii)
release of high-mobility group box-1 (HMGB1) and HSPs by
dying tumor cells.1,98 Ecto-CRT favors the engulfment of
apoptotic bodies by DCs, whereas HMGB1 and ATP
modulate DC-mediated tumor antigen cross-presentation
and T-cell polarization. Recently, ATP was shown to also
mediate the recruitment and differentiation of myeloid DC to
the tumor site following anthracycline treatment in mice.99

Exposure of human colon carcinoma cells to a multidrug
regimen, including gemcitabine, oxaliplatin, leucovorin and
5-FU induced high levels of tumor necrosis and apoptosis
that activated DC cross-presentation and stimulated potent
antigen-specific CTL responses in vitro.100 Similarly to
anthracyclines, some alkylating agents have also been
shown to induce an immunogenic TCD that stimulates
antigen cross-presentation by DC, and CD8 T-cell cross-
priming.21,101

Seldom, non-apoptotic death pathways are also induced by
chemotherapy with mechanisms that are now beginning to be
explained. Some alkylating agents (nitrogen mustard and
N-methyl-N-nitro-N-nitrosoguanidine) induce necrosis, an
unregulated process rising from acute cellular stress or
massive cell injury.102 Unlike apoptosis, necrosis is intrinsi-
cally immunogenic due to the immediate release of proin-
flammatory mediators, such as IL-8, IL-10, TNF-a and
HMGB1.102 Paclitaxel induces mitotic catastrophe, a type of
cell death that occurs as a consequence of failed mitosis.102

Tumor cells undergoing mitotic catastrophe often have
checkpoint deficiencies that result in incomplete DNA repair,
replicative infidelity and chromosomal desegregation.103 The
immunogenic potential of tumor cells dying by mitotic
catastrophe has not been fully clarified.

A number of antineoplastic therapies were shown to induce
autophagy in human cancer cells.104 However, whether
autophagy contributes to TCD after cytotoxic therapy or
represents a mechanism of resistance is still a matter of
debate. During unfavorable metabolic conditions (for exam-
ple, cell stress/damage by cytotoxic compounds), apoptosis-
defective tumor cells can survive by invoking a protective
autophagic process, that is, degradation of proteins and
organelles to provide amino acids, fatty acids and nucleotides
for reuse.102,104 Some findings suggest that prolonged
stimulation of autophagy may be detrimental to cancer cells
and that therapies that inhibit autophagy may lead to
enhanced tumor growth.105 Other studies, however, support
the use of autophagy inhibitors as potentiators of anticancer
agents.106,107 As an example, the mammalian target of
rapamycin (mTOR) kinase inhibitor everolimus, which
induces autophagy, prolonged the survival of patients affected
by renal cell carcinoma in a phase-III clinical trial.106

Interestingly, Michaud et al.108 reported that autophagy is

dispensable for chemotherapy-induced TCD, but is required
for its immunogenicity.108 These findings imply that only
patients bearing autophagy-competent cancers might benefit
from immunogenic chemotherapy.

Chemotherapy can also render cancer cells more suscep-
tible to CTL and NK-cell killing. 5-FU, irinotecan and cisplatin
were all shown to increase the sensitivity of the SW480 colon
cancer cell line to CTLs.109 Paclitaxel, cisplatin and doxo-
rubicin sensitize tumor cells to CTLs by rendering them
permeable to granzyme B via upregulation of mannose-6-
phosphate receptors on tumor cell surface.110 Furthermore,
CTX sensitizes tumor cells to TRAIL-dependent CD8 T-cell-
mediated immune attack,111 suggesting that TRAIL-mediated
tumor cell killing contributes to immunogenic TCD.112

Platinum derivatives and dacarbazine were shown to
stimulate the expression of ligands for NKG2D, an NK cell-
activating receptor, resulting in augmented NK-cell cytotoxi-
city and IFN-g production.113 Numerous agents promote
functional downregulation of the inhibitory NK ligand Clr-b
and upregulation of stimulatory NKG2D ligand on tumor cells,
thus enhancing the susceptibility of target cells to NK cell-
mediated lysis.114 Interestingly, gemcitabine has been shown
to increase the expression of HLA on malignant cells,115 and
to enhance the cross-presentation of tumor antigens to CD8
T-cells.115,116 Similarly, combined 5-FU/IFN-a treatment
increased the expression of MHC class I and NKG2D ligands
on murine pancreatic tumor cells.9 In another study, low-dose
chemotherapy triggered the expression of ligands for NKG2D
and DNAM-1 on multiple myeloma, and promoted NK-cell
degranulation against tumor.117

Other Off-Target, Non-Immune-Based Effects of
Chemotherapy

Myelosuppression, which develops after cytotoxic chemo-
therapy, represents the major toxic side effect of cancer
treatment, thus limiting its use. As the BM contains the
most mitotically active cells in the organism, it becomes a
preferential target for chemotherapy-induced cytotoxicity.
However, it is now becoming clearer that not all side effects
of cytotoxic chemotherapy are necessarily harmful. Genome-
wide expression analysis of different tissue samples from
CTX-treated tumor-bearing animals revealed the occurrence
of an immunogenic apoptosis not only in tumor cells but also
in BM and spleen cells, which paralleled with activation of
bystander inflammatory responses.43

Moreover, the drug type and dosage crucially dictate the
outcome of drug-induced cytotoxicity. For example, it has
been reported that CTX and 5-FU are less damaging for most
primitive cells than other cytotoxic drugs.118 Furthermore,
although high-dose CTX kills BM-resident DC precursors,
thus hampering DC mobilization at the peripheral level,119,120

these precursors are resistant to low-dose CTX, which instead
boosts the differentiation of mature DCs in vivo and
ex vivo.21,121,122 Of note, CTX-induced mobilization and
maturation of DCs from their BM precursors was mediated
by endogenous type I IFN.21,55,123

Other non-immune targets of cytotoxic chemotherapy are
the endothelial cells. Indeed, the collateral damage inflicted
upon dividing endothelial cells within the tumor bed indirectly
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helps tumor destruction.124 Moreover, the majority of antic-
ancer drugs can inhibit angiogenesis.125 Low-dose CTX
exhibits antiangiogenic activity by killing circulating endothe-
lial progenitors126 and decreasing NO concentrations in
serum.127 A more comprehensive and integrated under-
standing of the multifaceted off-target effects of cytotoxic
drugs may help designing more efficacious combined treat-
ments while avoiding ineffective or possibly antagonistic
combinations.

Implications for Combination with Other Treatments

The observations reported above have several implications
for planning future clinical trials combining chemotherapy with
immunotherapy. First, cytotoxic agents that elicit immuno-
genic TCD, which converts the tumor itself into an endo-
genous vaccine and provides adequate DC stimulation,
through release of danger signals, are ideal candidates for
combination with adoptive immunotherapy strategies aimed
at eliminating immune suppressor cells. For example,
combining standard chemotherapy with ipilimumab, a human
anti-CTLA-4 monoclonal antibody that blocks the CTLA-4
inhibitory signal on T-cells, proved extremely effective in a
phase-III clinical trial on advanced melanoma patients,128,129

as well as in a phase-II clinical trial on lung cancer patients.130

Second, as chemotherapy increases the immune visibility of
surviving or damaged tumor cells by upregulating HLA
molecules and NK-related or TRAIL ligands, co-administra-
tion of immunostimulatory molecules (for example, TLR
ligands, cytokines, and so on) may further facilitate immune
recognition by DCs and NK, thus potentiating antitumor T-cell
responses. As type I IFN enhances the cross-presentation of
tumor-derived antigens by DCs131 and synergizes with CTX
when injected intratumorally,21 these cytokines are attractive
candidates to be combined with chemotherapy. Third, the
selective depletion of inhibitory subsets by some anticancer
drugs (for example, CTX or gemcitabine) or regimens (for
example, metronomic) provides the optimal setting for
combination, with active vaccination strategies aimed at
expanding the already existing tumor-reactive immune
responses. In this respect, several targeted compounds such
as imatinib (an IDO inhibitor), sunitinib (MDSC and Treg
antagonist) are also gaining applicability.132 Fourth, some
agents exert bystander effects on the host, which are crucially
required for synergism with active or adoptive immuno-
therapy.33 In all cases, the time-window for optimal combina-
tion must be carefully considered. Data obtained in both
animal models and humans suggest that immunotherapy
should immediately follow chemotherapy (1–2 days interval)
to achieve the best synergism between the two treatments.33

Conclusions

It is now becoming evident that standard chemotherapy
agents can deeply have an impact on both tumor and host
immune system. Although to our knowledge no systematic
analysis has been carried out to evaluate differences in the
immune-based effects of conventional chemotherapeutic
agents depending on cancer histology or stage, it is now
clear that the existence of tumor–host interplay dictates the

magnitude, quality and efficacy of most anticancer strategies.
Advances in tumor immunology have now undisclosed some
key mechanisms that represent the basis of therapeutic
synergy or of antagonism with other treatments. The
ensemble of results discussed herein contributes to pave
the way towards mechanism-based, rather than empirical,
rationales for combination of specific chemotherapeutic
agents with selective immunotherapeutic interventions, open-
ing novel horizons for more effective management of cancer
patients.
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