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Multimodal immunogenic cancer cell death
as a consequence of anticancer cytotoxic treatments

H Inoue1,2,3 and K Tani*,1,3

Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially
non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found
to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various
danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell
death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune
responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several
immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional
chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction.
Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death
(ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer
treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure,
high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically
distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell
death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other
immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is
increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of
reasonably multifaceted anticancer modalities to maximize ICD-triggered antitumor immunity and eliminate residual or
metastasized tumors while sparing autoimmune diseases.
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Facts

� Accelerated progresses and discoveries in the field of
oncology, immunology, and virology have made it
possible to translate several emerging immunostimulatory
strategies to treat malignant cancers towards promising
clinical benefits.

� Profound understanding of the process of immunogenic
cell death (ICD) induction by different ICD inducers such as
certain chemotherapeutic agents and oncolytic viruses has
highlighted the importance of immunological antitumor
effects and proposed novel anticancer therapies.

� The execution of different types of programmed cell death
(PCD), including apoptosis, autophagy, necroptosis, and
pyroptosis, which are driven by a plethora of stimuli, was
recently found to be regulated by orchestrated interactions

among them, and importantly, some of these types of PCD
exhibit an ICD property.

� Tumors and cancer cells treated with certain chemother-
apeutic agents and oncolytic viruses can undergo
ICD and release tumor-associated antigens (TAAs)
accompanied by diverse danger-associated molecular
patterns (DAMPs) and inflammatory cytokines to restore
the tumor microenvironment and incite TAA-specific
antitumor immunity.

Open Questions

� What are the recent advances in the development of
anticancer immunotherapeutic modalities in clinical
settings?
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� In response to diversified ICD inducers, how are
DAMPs such as CRT, high-mobility group protein B1

(HMGB1), and ATP expressed by or released from the

dying cancer cells?
� How do the diverse types of PCD differentially induce ICD

to mount an efficient antitumor immunity?
� What are the prerequisites for an ideal ICD inducer to

obtain an optimum level of ICD for long-lasting antitumor
effects?

� It is vital to understand the molecular mechanisms of how
ICD inducers, for example, infection with oncolytic viruses

and resultant DAMPs, affect the host immune system. Can

manipulation of ICD induction and/or combined strategies

synergize with current or emerging oncolytic virotherapies?

The concept of immunogenic cell death (ICD) has recently
been introduced to describe dying cancer cells that release

endogenous danger molecules, the so-called damage-

associated molecular patterns (DAMPs), after the exposure

to certain cytotoxic agents to be recognized by antigen-

presenting cells (APCs) such as dendritic cells (DCs) followed

by formation of T-cell-mediated adaptive immunity.1 Although

it has long been considered that apoptotic cell death is

tolerogenic, DAMPs have also been found to be released from

cells undergoing apoptosis, providing a promising anticancer

efficacy.2–4 Therefore, comprehension of ICD induction

gradually increases its significance, particularly in the field of

cancer immunotherapy.
Overall prognosis of advanced cancer patients still

remains dismal, thus making it imminent for oncologists to

develop novel anticancer strategies. Recently, sipuleucel-T

(Provenge, Dendreon, Seattle, WA, USA), indicated for patients

with metastatic castration-resistant prostate cancer, received

FDA’s approval as the first therapeutic cancer vaccine.5 In

addition, extensive Phase II clinical trials have demonstrated that

the oncolytic herpes simplex virus talimogene laherparepvec

(T-Vec, Amgen Inc., Thousand Oaks, CA, USA)6 and vaccinia

virus JX-547 (Pexa-Vec, Jennerex Biotherapeutics, Inc., San

Francisco, CA, USA),7 both of which carry the gene encoding

the immunostimulatory cytokine granulocyte–macrophage

colony-stimulating factor (GM-CSF), hold great promise for the

treatment of advanced cancer patients. Furthermore, cytotoxic

T-cell responses directed against oncolytic virus-infected cancer

cells have been identified as an essential factor in the process of

destruction of cancer.8 Moreover, proinflammatory cytokines

generated in the virus-infected cancer cells can restore the

immunosuppressive tumor microenvironment.9–11 Thus,

oncolytic viruses are recently viewed as anticancer immu-

notherapeutic agents. These backgrounds make it imperative

to update the molecular pathways and/or cellular constituents

that regulate ICD.
Here, we review the progress of research on ICD,

emphasizing how apoptotic, autophagic, and necroptotic

cell death, called type 1, 2, and 3 PCD, respectively,

are induced by various ICD inducers to achieve

successful antitumor immunity. These multiple modes can

be categorized by describing initiating events, intermediated

changes, terminal cellular events, and their immunological

responses, which are summarized in Table 1. In the

later section, we outline the characteristics of anticancer
agents and oncolytic viruses and how they induce
diversified forms of cell death and interact with host’s
immune system.

Apoptotic Cell Death as ICD

From ten million to billions of cells die per day as a
consequence of normal tissue turnover,12 which are vital for
organisms to retain homeostasis.13,14 Therefore, the exis-
tence of multiple modes of cell death in nature is not
surprising. Apoptosis, type 1 PCD, is a specialized form of
cell death, characterized by typical morphological changes,
including chromatin condensation, nuclear fragmentation,
and membrane blebbing (Table 1).15 Apoptosis occurs
ubiquitously in normal tissues and causes ‘quiet’ cell death
that uses phosphatidylserine (PS) as an ‘eat-me’ signal to be
quickly recognized by peripheral APCs. Although apoptotic
cell death has been historically considered to be non-
immunogenic,16 recent studies unraveled that several anti-
neoplastic agents, including doxorubicin,1,17 oxaliplatin,18,19

cisplatin,20 and irradiation,21,22,23 can trigger immunogenic
apoptosis.2 Mechanistically, the immunogenic apoptotic bodies
induced by exposure to doxorubicin are sensed by APCs
through their TLR-2/TLR-9-MyD88 signaling pathways.17

DAMPs: as Effectors in ICD

The primary conceptual theory of the pattern recognition of
pathogen-associated molecular patterns (PAMPs), such as
viral or bacterial components, has failed to fully explain the
consequence of immunogenicity. Thus, the secondary
concept of DAMPs has been proposed, which could provoke
an immune response.24 Released DAMPs as hallmarks of ICD
consisted of adenosine triphosphate (ATP), high-mobility group
protein B1 (HMBG1), and exposed molecules on the outer
membrane of dying cells such as CRT (ecto-CRT),
heat-shock proteins (Hsp90 and Hsp70), and endoplasmic
reticulum (ER) sessile proteins.25,26,27 The excretion of DAMPs
was considered to occur during necrosis under inflammatory
and/or pathological conditions. However, DAMPs have recently
been reported to be produced from apoptotic cancer cells
treated with chemotherapy1,18 or radiotherapy.21

ICD Inducers

ICD inducers include multiple anticancer therapeutic
modalities. It has been recently proposed that they can be
classified into two categories, type I or II ICD inducers, based
on their distinct actions to induce ER stress leading to
apoptotic cell death (Tables 2 and 3).27,28 The majority
of ICD inducers such as chemotherapeutic agents
(mitoxantrone,29 anthracyclines,2,30,31 oxaliplatin,18,19 and
cyclophosphamide32), shikonin,33,34 the proteasome inhibitor
bortezomib,35 and 7A7 (an epidermal growth factor
receptor-specific antibody),36 cardiac glycosides,37 and the
histone deacetylase inhibitor (vorinostat)38 are categorized as
type I ICD inducers that primarily target cytosolic proteins,
plasma membranes, or nucleic proteins. They also induce ER
stress via collateral effects. Bortezomib, cardiac glycosides,
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and shikonin effectively impede protumorigenic cytokine
signaling.27 Shikonin has been found to induce type 1 or 3
PCD, which is determined by caspase-8 activation as the
‘decision-making switch’.39 On the other hand, type II ICD
inducers, which preferentially target the ER, include
hypericin-based photodynamic therapy (PDT)40,41,42 and
oncolytic coxsackievirus B3 (CVB3).9 Hypericin-based PDT
is an anticancer therapy that utilizes hypericin to induce
reactive oxygen species (ROS) in the vicinity of the ER.43

Cancer cell infection with oncolytic viruses produce large
amounts of viral proteins, which inevitably cause ER stress
and ROS production to promote viral replication.44,45 The
quality and/or quantity of ER stress linking ROS triggered by
ICD inducers may determine the ICD properties. Indeed, the
previous finding that rigorous ROS-mediated ER stress
augmented the release of DAMPs revealed an unrecognized
role of RNA-dependent protein kinase (PKR)-like ER kinase
(PERK) as a constituent of mitochondria-associated
ER membranes to exert ROS-mediated mitochondrial
apoptosis.40,41,46 These observations indicate the superiority
of type II ICD inducers with respect to immunological
antitumor efficacies. However, further investigations to
elucidate the precise interconnection between the ER stress
and ROS production will be required to optimize antitumor
immune responses.

Calreticulin Exposure

In response to specific chemotherapeutic agents, oncolytic
viruses, and vorinostat, ecto-CRT has been found only on
cells succumbing to immunogenic apoptosis.2,9,38 This ‘eat-me’
signal promotes phagocytosis by DCs, thereby facilitating
their tumor antigen presentation and incitement of TAA-specific
cytotoxic T cells.2,47 It has been shown that blockade of CRT
inhibits phagocytosis of anthracycline-treated tumor cells by
DCs and impairs their immunogenicity in mice.2,47 In general,
CRT exposure during ICD is an earlier process occurring
within a few hours than PS externalization.48 The ecto-CRT
induction capacity of ICD inducers has been shown to depend
on the properties of ER stress and ROS production.2,37,49

Cancer cells can induce ecto-CRT followed by disturbance of
the ER structure with GADD34 activation and PERK
phosphorylation. It has been shown that depletion of PERK
abolishes anthracycline-driven ecto-CRT and immunogenicity
of cellular death (ER stress module),19 and that caspase-8
acts upstream of apoptotic proteins Bax and Bak, and
subsequent cleavage of its substrate Bap31 (apoptotic
module) is indispensable for ecto-CRT induction.19 Furthermore,
a direct interaction between ecto-CRT and ERp57 was shown
to be required for their cotranslocation to the cell surface
(Figure 1).29 Unlike the release of HMGB1 and ATP,

Table 1 Comparison of multiple forms of programmed cell death and necrosis

Apoptosis (type 1
PCD)

Autophagic cell
death (type 2 PCD)

Necroptosis (type 3 PCD) Pyroptosis Necrosis

Mode of cell
death

Programmed Programmed Programmed Programmed Accidental

Initiators TNF-a, FasL, or
TRAIL, infectious
pathogens

Nutrient deprivation,
HDAC inhibitors,
hypoxia,
infectious pathogens

TNF-a, FasL, or TRAIL,
microbial infections
Ischemic injury

DAMPs, microbial infections Toxins, infections,
inflammation,
trauma

Intermediate
signalings

Mitochondrial
pathway
Caspase-3, -6,
-7-dependent

Caspase-independent
autophagosome for-
mation
Lysosomal protease

TNF receptor signaling
JNK activation
Caspase-independent RIP1/
RIP3 necrosome

Nod-like receptors
Caspase 1-dependent
pyroptosome
Inflammasome

-

Terminal
cellular events

Non-lytic cell shrink-
age
DNA fragmentation
apoptotic bodies

Non-lytic autophagic
bodies

Non-lytic, loss of plasma
membrane, swollen cellular
organelles

Lytic, rapid loss of plasma
membrane, cell swelling, pore
formation

Lytic, plasma
membrane rup-
ture, leak of
content

Inflammation Non-inflammatory Non-inflammatory Proinflammatory Proinflammatory Proinflammatory
Immunogenicity þ þ þ þ þ þ þ þ þ
DAMPs
released

Ecto-CRT HMGB1
and ATP release

HMGB1 and ATP
release

Long genomic DNA IL-6 HMGB1 and ATP release
IL-1a, IL-1b, IL-6, IL-18, and
TNF-a chemokines

HMGB1 and ATP
release
IL-1a, IL-33
mRNA, and
genomic DNA

Eat-me signals Ecto-CRT LPC secretion
PS exposure

LPC secretion
PS exposure

PS exposure PS exposure

Abbreviations: TNF-a, tumor necrosis factor- a; FasL, Fas ligand; TRAIL, TNF-related apoptosis-inducing ligand; HDAC, histone deacetylase; IL-1a, interleukin-1a ;
IL-1b, interleukin-1b; IL-6, interleukin-6; IL-18, interleukin-18; IL-33, interleukin-33; ICD, immunogenic cell death; LPC, lysophosphatidylcholine; PS,
phosphatidylserine; JNK, c-Jun N-terminal kinase.
The table gives a schematic overview of the multiple forms of cell death incuding apoptotic cell death (type 1 PCD), autophagic cell death (type 2 PCD), cell death
induced by necroptosis (type 3 PCD), pyroptosis and necrosis. The extent of immunogenicity in each cell death subsection is scored as þ , þ þ , and þ þ þ ,
according to the expression levels of ‘eat-me’ signals and DAMPs emission. ICD in cancer can display different ‘eat-me’ signals, including ecto-CRT and LPC, on the
cell membrane, as well as emission of DAMPs, ATP, and HMGB1. This peculiar ecto-CRT, which facilitates engulfment of TAAs from cancer cells by DCs, can only be
found on cells that succumb to immunogenic apoptosis, whereas it is not present on cells dying in an immunologically silent manner. LPC secretion, PS exposure, and
ATP release require autophagy induction. Numerous exquisite expression patterns shaped by the constituents of DAMPs and the interactive status of the immune
system will predominantly determine the fate of subsequent immune responses, namely, immune tolerance or antitumor immunity
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Table 3 Classification of type II ICD inducers determined by their major targets to provoke antitumor responses

Anticancer agents Type of cell death
induced

DAMPs Major
targets by
ICD
inducers

Preclinical observations for inciting
antitumor immunity

PDT with hypericin Apoptosis, autophagic
cell death dependent on
Bax/Bak, necroptosis

Ecto-CRT, ecto-
Hsp70, ectp-Hsp90,
HMGB1, and ATP
release

ER (ROS
generation)

PDT -hypericin therapy provokes antitumor
immunity in both prophylactic and therapeutic
murine tumor models. Same therapy-treated
tumor cells result in phenotypic maturation of
DCs and robust CD4þT and CD8þT cell
expansion

CVB3 Apoptosis Ecto-CRT, HMGB1
translocation, ATP
release

ER (ROS
generation)

Intratumoral CVB3 administration markedly
recruited NK cells and granulocytes, both of
which contribute to the antitumor effects as
shown by depletion assays, macrophages, and
mature DCs into tumor tissues

Ad5/3-hTERT-E1A-hCD40L:
chimeric Ad5/3 capsid, an
hTERT promoter and human
CD40L

Apoptosis Ecto-CRT, HMGB1
release, ATP release

ER (ROS
generation)

In two syngeneic mouse models, murine CD40L
induced activation of APCs, leading to increased
IL-12 production in splenocytes, associated with
induction of the Th1 cytokines IFN-g, RANTES,
and TNF-a. Tumors treated with Ad5/3-CMV-
mCD40L displayed an enhanced presence of
macrophages and cytotoxic CD8þ T cells

Edmonston strain MV Apoptosis IL-6 production,
HMGB1 release

ER (ROS
generation)

Coculture of MV-infected melanoma cells with
human DCs led to both CD80 and CD86
upregulation on them. CD8þ T cells cocultured
with tumor cell-loaded and MV-infected DCs
degranulated CD107a to target tumor cells with
functional killing activity

Abbreviations: PDT, photodynamic therapy; CVB3, coxasackievirus B3; MV, measles virus; ROS, reactive oxygen species; ER, endoplasmic reticulum; hTERT,
telomerase reverse transcriptase; hCD40L, human CD40 ligand; Th1, T helper type 1; RANTES, regulated and normal T cell expressed and secreted; TNF-a, tumor
necrosis factor-a; IL-6, interleukin-6

Table 2 Classification of type I ICD inducers determined by their major targets to provoke antitumor responses

Anticancer agents Type of cell
death induced

DAMPs Major targets by ICD
inducers

Preclinical observations for inciting antitumor
immunity

Cytotoxic agents
(mitoxantrone,
oxaliplatin,
anthracyclines)

Apoptosis,
autophagic cell
death,
necroptosis

Ecto-CRT, ERp57,
HMGB1, and ATP
release

Nucleus (DNA or DNA-
related proteins for cell
mitosis)

In vivo antitumor effect is mitigated by depletion of
CD8þ

T cells. Immunogenicity requires ecto-CRT in
prophylactic tumor vaccination mouse models.

Cyclophosphamide
(CTX)

Apoptosis Ecto-CRT, HMGB1
release

Nucleus (DNA) Metronomic doses of CTX deplete Treg from bed
and tumors, CTX modulates DCs to produce IL-12

Shikonin Apoptosis,
necroptosis

Ecto-CRT, ecto-Hsp70 Cytosol (pyruvate kinase-
M2 protein)

DCs incubated with shikonin increase Th1 cells
but decrease Treg cells

Bortezomib Apoptosis,
autophagic cell
death

Ecto-Hsp90 Cytosol (26S proteasome) Cytotoxicity of NK cells against bortezomib-
treated cells increased

7A7 (EGFR-specific
antibody)

Apoptosis Ecto-CRT, ERp57,
ecto-Hsp70, ectp-
Hsp90

Cell surface receptor
(EGFR)

Contribution of CD4þ T and CD8þ T to 7A7-
triggered suppression of metastasis in mice model

Cardiac glycosides Apoptosis Ecto-CRT HMGB1 and
ATP release

Cell surface (Naþ /Kþ -
ATPase, enzyme)

Prophylactic antitumor immunity is partially
dependent on CD8þ T cells accompanied with
Th17 cells

UVC irradiation Apoptosis,
necroptosis,
necrosis

Ecto-CRT and ERp57,
HMGB1 and ATP
release

Nucleus (DNA) UVC-treated cells increase susceptibility to attack
by NK cells and total splenocytes

Vorinostat (HDAC
inhibitor)

Apoptosis
Autophagic cell
death

Ecto-CRT Nucleus (chromatin
structure)

Promote the differentiation of CD8þ T cells to
memory cells

Abbreviations: Ecto-CRT, calreticulin exposure; DAMPs, damage-associated molecular patterns; ICD, immunogenic cell death, HMGB1; high-mobility group protein
B1; Hsp, heat-shock protein; Treg, regulatory T cells; DCs, dendritic cells; IL-12, interleukin-12; NK, natural killer; EGFR, epidermal growth factor receptor;
ATP, adenosine triphosphate; UVC, ultraviolet C
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ecto-CRT could be one of the determinants that distinguishes
between immunogenic and non-immunogenic cell death.47

HMGB1

HMGB1, one of the DAMPs, is a DNA-binding protein
originally known as a nuclear non-histone chromatin-binding
protein.50 Although extracellular HMGB1 had been deemed to
be released mainly from the nucleus during necrosis,42 it was
found to be excreted from cells undergoing late stage of
apoptosis and autophagy.30,51 HMGB1 inhibition in cancers
undergoing immunogenic apoptosis impaired their ability to
incite antitumor immunity in a prophylactic vaccination
model.30 HMGB1 initiates potent inflammation by stimulating
the production of proinflammatory cytokines52 from APCs via
its binding to different surface receptors including receptor for
advanced glycation end-products (RAGE), TLR2, TLR4,
TLR9, and TIM3 (Figure 1).53,54 Importantly, the binding of
HMGB1 to TLR4 on APCs was required to suppress tumor
development, which is consistent with clinical study showing
that breast cancer patients harboring a single-nucleotide
polymorphism (Asp299Gly) in the TLR4 gene undergo an
early relapse after anthracycline treatment.30,55,56 In contrast,
secreted HMGB1 could induce a protumor inflammation to
facilitate tumor progression.57 In addition, HMGB1 expression

is significantly associated with overall survival of patients with
bladder cancer.58 As HMGB1 is an intrinsic sensor of
oxidative stress,59 the immunomodulatory properties of
HMGB1 might be determined by its redox status.60,61 Indeed,
reduced HMGB1 production from dying cells was shown to
trigger the immunogenic DCs, whereas oxidized HMGB1
during apoptosis fails.51 As the extracellular space is usually
oxidative under physiological conditions but is unpredictably
variable under pathogenic conditions,62 the unstable redox
status of the tumor microenvironment might account for these
inconsistent findings. However, the observation that the tumor
microenvironment tends to be pro-oxidative63 implies that a
therapeutic approach using antioxidants to decrease ROS
production would be favorable to stimulate antitumor immunity.
Importantly, many anticancer agents, including chemotherapy,30

radiation,22 or oncolytic viruses,9,64,65 have been shown to
induce HMGB1 release from cancer cells, highlighting the
significance of further addressing the mechanism of how
these modalities affect the redox status of HMGB1.

Adenosine Triphosphate

Extracellular ATP released from apoptotic cells is another
important factor in ICD induction. ATP signaling recognized by
P2Y2 receptors on phagocytes as a ‘find-me’ signal enables

Figure 1 Oncolytic virus (CVB3) infection-triggered cancer cell death induces innate immune cell-mediated antitumor immunity. Intratumoral CVB3 infection-activated
natural killer (NK) cells and granulocytes with enhanced expression of CD107a, a cytolytic degranulation marker, have been found to contribute to substantial antitumor effects
as evidenced by NK cell and granulocyte depletion assays. Upon CVB3 infection, tumor cells can partially induce ecto-CRT on human tumor cells during early apoptosis,
whereas majority of other viruses subvert ICD by circumventing ecto-CRT induction, and followed by robust release of DAMPs, including ATP and HMGB1, during later stages
of cell death, which facilitates maturation of DCs via binding to Toll-like receptor 4 (TLR4)/RAGE and P2� 7R, respectively. Viral genomes and/or viral progenies also stimulate
DCs for their activation. Mature DCs may then efficiently phagocytose TAAs simultaneously released from dying cells and ultimately cross-present them to CD8þ T cells with
the support with CD4þ T cells to elicit substantial antitumor immunity. Although ATP secretion relies on autophagic machinery, the other forms of cancer cell death, such as
autophagic cell death and necroptosis, triggered by CVB3 infection have not yet been fully investigated
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them to migrate into inflamed sites.66 Indeed, ATP released
from cancer cells treated with chemotherapeutic agents is
essential for effective antitumor immune responses.67 In
addition, small interfering RNA-mediated inhibition of
autophagic machinery abolishes ATP release from
chemotherapy-treated tumor cells and mitigates the antitumor
response.68 Radiotherapy triggers ATP release from dying
tumor cells through its interaction with the P2� 7 purinergic
receptor,69 possibly resulting in the activation of the
NLRP3–ASC–inflammasome axis and subsequent secretion
of IL-1b.70

We and others recently showed that oncolytic viruses
induce secretion of extracellular ATP from human cancer cells
(Figure 1).9,65 Unlike ecto-CRT induction, the release of ATP
and HMGB1 is triggered by a range of death-inducing stimuli,
and is not restricted to induction in apoptotic cell death.47

Although ATP production is required for efficient vaccinia
virus production71 and facilitates HIV infection through its
interaction with P2Y2 receptors,72 there is little knowledge of
how oncolytic viruses provoke ATP release.

Autophagic Cell Death

Autophagy physiologically has catabolic roles, particularly in
cell survival.73 However, persistent autophagy causes a
caspase-independent form of cell death that is, morphologi-
cally defined as autophagic cell death (ACD), termed as type 2
PCD, through lysosomal proteinase-regulated elimination of
cellular organelles.74,75 Autophagy sometimes directs itself to
cellular death, either in cooperation with apoptosis or as a
back-up system, and thus is deemed as a cellular program
with a ‘double-faced’ role.

Interestingly, the key molecules of autophagy and
apoptosis pathways are intricately intertwined with shared
several molecules including regulatory genes such as p53 and
p19ARF.76 This crosstalk therefore can be viewed as a
significant clue to understand the fate of dying cancer cells
from therapeutic view points. Although ACD occurs without
chromatin condensation but with massive autophagic vacuo-
lization,77 autophagy, often disabled in cancer, has been
shown to be required for induction of immunogenicity.68 First,
dying cells in embryoid bodies that lack autophagy-related
gene are unable to express the ‘eat-me’ signals and secrete
lower levels of the ‘come-get-me’ signal, lysophosphatidyl-
choline.78 Second, autophagy deficiency hinders ATP
secretion from dying cancer cells, resulting in the impairment
of DC recruitment and formation of adaptive immunity
responses (Table 1).68 Third, the inability of autophagy-
deficient cancer cells to provoke antitumor immunity after
chemotherapy can be reverted by suppression of extracellular
ATP-degrading enzymes.68,79 Therefore, immunogenicity of
ACD could be mediated by subtle spatiotemporal alterations
in the treated cancer cells.

Novel strategy of autophagy inhibition is therapeutically
effective for eliminating apoptosis-resistant cancer cells
based on the rationale that growing tumors may
harness autophagy as an adaptation to resist therapeutic
stresses.80,81,82 Hence, more efforts should be made to
elucidate the intricate interaction between autophagy
inhibition and resulting effects on the immunogenicity.

Necrotic Cell Death and Necroptosis

Necrotic cell death is induced by external factors such as
toxins, cancer, infections, and trauma, and is morphologically
characterized by cellular swelling, rupture of the plasma
membrane, and loss of cytoplasmic contents.83 Understanding
the immunogenicity of necrotic cell death is becoming
important because it frequently induces robust inflammatory
reactions to mount protective immune responses
(Table 1).84,85,86 Although necrosis has long been viewed as
non-PCD, its execution was shown to be controlled by
specific signal-transduction pathways and catabolic
mechanism.87,88,89 This alternative form of necrotic PCD,
aptly termed necroptosis (type 3 PCD), is induced by tumor
necrosis factor (TNF) receptor signaling that involves
activation of the receptor-interacting protein (RIP) family.
Upon inhibition of apoptotic pathway by the caspase inhibitor,
activation of RIP1 and RIP3 kinase leads to mitochondrial
instability and cell death.90,91 Phosphorylated RIP1 and RIP3
generate a molecular complex called the necrosome, which
initiates necroptosis. ROS production under necroptosis has
been shown to facilitate TNF-a-induced cell death by
sustaining c-Jun N-terminal kinase activation.92 Intriguingly,
necroptosis can also be executed via stimulation by
apoptosis-inducible ligands such as TNF-a, FasL, or TRAIL
(Table 1). Notably, cytotoxic agents are shown to induce
necrotic cell death in apoptosis-defective cancer cells,93

probably because necroptosis is principally induced
when a cell cannot die via apoptotic pathways.94 On the other
hand, conventional therapy-resistant cancer stem cells
(CSCs) have a higher antiapoptotic activity than that of
their counterparts.95,96 Therefore, it would be vital to
clarify the key machinery of not only the necroptosis induction
in cancer cells for CSC-directed therapeutic application
but also the resultant immunogenicity to modulate antitumor
immunity.

Pyroptosis

Pyroptosis is a recently indentified form of PCD stimulated by
microbial infections and non-infectious stimuli such as
myocardial infarction and cancer. In contrast to apoptosis,
pyroptosis is uniquely mediated by caspase-1 activity
triggered by the formation of a cytosolic complex termed the
‘inflammasome’, resulting in highly inflammatory outcomes
(Table 1). Pyroptotic cells represent morphological
characteristics, some of which are shared with apoptosis
and necrosis.97 The function of activated caspase-1 is to
cleave proteolytically the proforms of the proinflammatory
cytokines, IL-1b and IL-18, to their active forms.97 Although
pyroptosis has been intensively studied in the context of
bacteria-infected macrophages,98 it can also be triggered in
human cancer cells infected with recombinant herpes simplex
virus 2 (HSV-2) (Table 4).99 Pyroptotic cancer cells induced by
microbial infection have been recently shown to facilitate
phagocytosis by macrophages, presumably through
their PS exposure and ATP release.100 Accordingly, the
caspase-1-dependent generation of proinflammmatory
cytokines and other DAMPs could be essential factors to
provide a suitable inflammation for ICD induction.
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DAMPs Induced by Infection with Oncolytic Viruses

Because oncolytic viral infection can produce abundant
PAMPs, including viral proteins and nucleic acids, followed
by the release of DAMPs and the entire repertoire of TAAs
from treated tumors,101 oncolytic virus-triggered ICD may be
more effective for induction of antitumor immunity. As viruses
have developed sophisticated machineries to evade apoptotic
cell death and interfere with ER stress and autophagy
responses for their survival,102,103 ICD may have played an
essential role in the everlasting war between viruses and
their hosts. We and other groups have found that many
oncolytic viruses can induce apoptotic cell death and/or
necrosis in cancer cells,9,104,105,106 supporting their
immunostimulatory potential to augment antitumor efficacy
(Tables 4 and 5).107,108 CVB3 infection induces multiple
DAMPs including ecto-CRT, HMGB1 translocation from
nuclei, and ATP release from human lung cancer cells.
Importantly, intratumoral CVB3 administration can prominently
recruit cytolytic degranulation marker CD107a-mobilized
NK cells and granulocytes, and mature DCs into the tumor
bed (Figure 1).9,27 As pathogenic viruses have developed
their strategies to subvert ecto-CRT and circumvent ICD
induction,109 it is noteworthy that CVB3 infection can induce

ecto-CRT accompanied by other DAMPs.9 Furthermore,
we demonstrated that both NK cells and granulocytes
substantially contributed to the CVB3-mediated antitumor
efficacy as evidenced by in vivo depletion assays.9

Upon intratumoral replication of oncolytic viruses, resultant
alterations in tumor microenvironment may restore the
compromised antitumor immunity, presumably through
induction of IFNs and/or cytokines that activate NK cells and
APCs.110,111 Although tumor-infiltrating DCs were impaired
at maturation by immunosuppressive IL-10, PGE2, and
transforming growth factor b produced from tumor cells,112

unidentified components in the culture media from
reovirus-infected cancer cells facilitated maturation of DCs.113

Recent studies delineated that oncolytic viruses such as
vaccinia, measles, HSV-2, and adenovirus cause the release
of HMGB1.64,65,114,115,116,117 Although HMGB1 interacts with
viral components and may modulate viral replication,117

the molecular mechanisms of how each oncolytic virus
differentially produces these DAMPs remain largely elusive.

Multimodal PCD Induced by Oncolytic Viruses

We showed that approximately 20% of CVB3-mediated
cytotoxicity of A549 cells resulted from apoptotic cell death.9

Table 4 DNA oncolytic viruses and their differential properties to induce either multiple forms of cell death or antitumor immunity

Oncolytic viruses Type of cancer cells Type of cell death
induced

DAMPs Possible mechanism of
antitumor immunity

hTERT-Ad: CRAds regulated by
human hTERT promoter

Human glioma, cervical and
prostate cancer

Autophagy NA NA

hTERT-Ad Human lung cancer Autophagy via
E2F1-miR-7-
EGFR

NA NA

OBP-702: p53-armed hTERT-Ad Human osteosarcoma Apoptosis
Autophagy

NA NA

CRAd-S-RGD: Ad5 carrying the RGD
motif and survivin promoter

Human glioma cells Autophagy NA NA

Ad5/3-hTERT-E1A-hCD40L:
chimeric Ad5/3 capsid with hTERT
promoter

Murine urothelial
carcinoma, melanoma

Apoptosis Ecto-CRT, ATP and
HMGB1

Enhanced recruitment of
macrophages and CD8þ

T cells

ZD55-IFN-b: Oncolytic adenovirus
carrying IFN-b

Human hepatoma, breast
cancer

Apoptosis
Necroptosis

NA NA

Vaccinia virus Human colon, breast,
ovarian cancer

Not apoptosis
Possibly necrosis

HMGB1 release NA

vSP: antiapoptosis genes,
SPI-1- and SPI-2-deleted
vaccinia virus

Murine colon
adenocarcinoma

Apoptosis
Necrosis

HMGB1 release NA

HSV2: Human simplex virus 2 Human endometrial cancer Apoptosis
Necrosis

HMGB1 release NA

HSV-1716: a replication-restricted
mutant herpes simplex virus

Murine ovarian cancer NA NA Intratumoral injection
induced IFN-g,
CXCL9 and CXCL10 with
increase
in NK and CD8þ

T cells

HSV-2 mutant DPK: ICP10PK-deleted
HSV-2 virus

Human melanoma cells Apoptosis
Pyroptosis

NA Dominant induction of
CD4þ Th1 cells

Abbreviations: hTERT, telomerase reverse transcriptase; CRAds, conditionally replicative adenoviruses; miR-7, microRNA-7, EGFR, epidermal growth factor
receptor, ecto-CRT, calreticulin exposure; DAMPs, damage-associated molecular patterns; ICD, immunogenic cell death, HMGB1; high-mobility group protein
B1;ATP, adenosine triphosphate; IFN-b, interferon-b; HSV, herpes simplex virus; IFN-g, interferon-g; CXCL9, chemokine (C–X–C motif) ligand 9; CXCL10,
chemokine (C–X–C motif) ligand 10; NK, natural killer cells; NA, not assessed; Th1, T helper type 1
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This induction was presumably due to the capacity of CVB3
infection to induce PKR-mediated phosphorylation of eIF2
and caspase-8-mediated activation of proapoptotic mediator,
caspase-3 (Figure 1).118,119 Other DNA and RNA oncolytic
viruses have been reported to induce apoptotic cancer cell
death (Tables 4 and 5). However, there are only two reports
showing that virus-induced ecto-CRT was correlated with
enhanced intratumoral infiltrations of immune subpopulations,
which accounted for the ‘in vivo’ remarkable antitumor
immunity.9,65

Several studies showed that recombinant oncolytic
adenoviruses induced ACD in human malignant glioma
cells,120 brain tumor stem cells,121 osteosarcoma cells,105

and lung cancer cells.122 Newcastle disease virus also
triggered autophagy in glioma cells to promote its viral
replication.123 Reovirus-mediated oncolysis of multiple
myeloma was reported to be orchestrated via
upregulation of autophagy.124 Because cancer cells are
largely refractory to apoptotic inducers but vulnerable to
necroptosis,39 overcoming anticancer drug resistance may
be achieved by activation of necroptotic rather than
apoptotic pathways, where the former might be the
intrinsic ‘Achilles heel’ of cancers.125 So far only recombi-
nant adenovirus has been shown to facilitate both
necroptotic and apoptotic cell death with a synergistic
effect on cancer cells when combined with doxorubicin
(Tables 4 and 5).126 In addition, most oncolytic viruses
may induce pyroptotic cancer cell death accompanied
by abundant proinflammatory cytokines and DAMPs.
Accordingly, some oncolytic viruses may induce multimodal

ICD, allowing them to be a plausible modality as promising
agents of immunotherapy.

Strategies to Enhance the Potentials of ICD Induced by
Oncolytic Viruses

Besides DAMPs, massive production of type I IFNs (IFN-a/b)
upon oncolytic viral infection can be a potent immunomodu-
lator through their indirect immunostimulatory effects on
neutrophils and T cells,127,128 as well as through their direct
antiproliferative effects.129 Despite a creation of multimodal
ICD by oncolytic viruses to facilitate antitumor immunity, much
attention should be paid to the preferential antiviral immunity
that might impede direct viral oncolysis-mediated tumor
destruction. To avoid this, cyclophosphamide is shown to
retard immune removal of oncolytic viruses, enhancing the
persistence of viral infection.130 Another promising strategy to
overcome antiviral immunity could be potentiating immune
responses by gene modification of oncolytic viruses to arm
them with immunostimulatory cytokines, such as GM-CSF,
IL-2, IL-12, and IL-15. Indeed, the results of clinical trials of the
GM-CSF gene-harboring oncolytic vaccinia virus JX-594
and the GM-CSF gene-harboring oncolytic herpes virus
talimogene laherparepvec demonstrated that a clinical
benefit can be accomplished by combined respective
oncolytic activity with the recruitment of immune cells.6,7,131

The combination of adoptive T-cell therapy with oncolytic
viruses is shown to elicit an increased antitumor effect.131,132

Collectively, the design of combinatorial therapies of
oncolytic viruses with immunotherapeutic modalities may

Table 5 RNA oncolytic viruses and their differential properties to induce either multiple forms of cell death or antitumor immunity

Oncolytic viruses Type of
cancer cells

Type of cell
death
induced

DAMPs Possible mechanism of antitumor immunity

Edmonston vaccine strain of MV Human
melanoma

NA IL-6 HMGB1 release Human DC maturation Priming an adaptive
T-cell response

MV-NPL: genetically engineered MV Human renal
cell carcinoma

Apoptosis NA NA

MV-CEA:Edmonston vaccine MV
genetically engineered to produce
CEA antigen

Human breast
cancer

Apoptosis NA NA

CVB3 Human non-
small-cell lung
cancer

Apoptosis Preapoptotic
ecto-CRT, HMGB1
translocation, ATP
release

Phenotypic activation of immature DCs and
lytic
NK cells in tumors. Deletion of NK and
granulocytes abrogated the CVB3-induced
in vivo antitumor
immunity

NDV Human glioma Autophagy NA NA

Reovirus Human multiple
myeloma

Apoptosis
Autophagy

NA NA

Live-attenuated poliovirus Human
neuroblastoma

Apoptosis NA NA

M51R: M protein mutant VSV Human
glioblastoma
multiforme

Apoptosis NA NA

Interferon-sensitive VSV (AV3 strain) Human
prostate cancer

Apoptosis NA NA

Abbreviations: MV, measles virus; CVB3, coxasackievirus B3; NDV, New castle disease virus; CEA, carcinoembryonic antigen; VSV, vesicular stomatitis virus
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hold the key to mount maximally a multifaceted attack
against cancers.

Conclusions

Although mechanism of ICD induction is a very complicated
process, we need to elucidate how dying cells become much
more stimulatory in shaping antitumor immune responses
than was ever expected. Notably, intermediate death
processes, including caspase activation, mitochondrial
degradation by autophagy, ROS production, and oxidative
modification of DAMPs, have been found to fine-tune the
balance between antitumor tolerance and immunity, providing
implications in manipulation of ICD.

Four forms of PCD, apoptosis, autophagy, necroptosis, and
pyroptosis, may jointly decide the fate of cells of malignant
cells. However, in terms of immunogenicity, investigations of
only apoptotic cell death in cancer cells have just begun.
Therefore, further elucidation of determinants of respective
PCD-inducing pathway and characterization of resultant ICD
should aid to develop novel anticancer strategies. A recent
review advocates a list of characteristics for an ideal ICD
inducer,27 as follows: (1) efficiently activates apoptosis or
necrosis leading to emission of multiple DAMPs and TLR
agonists;133,134 (2) irrelevant in drug-efflux pathways;135

(3) can induce ER stress;134 (4) has negligible suppressive
or inhibitory effects on immune cells;136 (5) counteracts
immunosuppressive responses;136,137 and (6) directly targets
not only the primary tumor but also metastases.138 No ideal
ICD inducer exists, but it is important to seek for ideal
combinatorial therapies that could achieve these properties.
Of the currently known relevant ICD inducers, those that
meet most of these properties include mitoxantrone,
hypericin-PDT, and shikonin. However, diverse oncolytic
viruses could be the promising ICD inducer as we gain more
knowledge about the properties yet to be investigated.
Evidently, they can destroy conventional therapy-resistant
CSCs,139 possibly through their ability to induce distinctive
PCD and/or modification to express genes that target
CSC-specific signaling pathways underpinning their cell
survival.140

Gaining more detailed insights into the mechanisms of ICD
induction, to be perceived by the immune system, will not only
ameliorate the development of promising anticancer agents or
combinatorial therapies but also offer useful knowledge in
various life science fields including virology, immunology, and
clinical medicine.
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