
2010; Urs et al, 2012). The combined
efforts of molecular pharmacologists,
biochemists, and behavioral pharma-
cologists to decipher these complex
relationships between the molecular
signatures of GPCRs and how various
GPCR conformations ultimately trans-
duce cellular responses into behavior-
al output are an active area of study
for both Academia and Industry.
These new discoveries are likely to
provide novel therapeutic strategies
for treating psychiatric diseases.
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Obesity, Food, and

Addiction: Emerging

Neuroscience and

Clinical and Public

Health Implications

Obesity is considered among the top
three leading causes of preventable
death and illness in the United States
(Danaei et al, 2009). In the United
States and elsewhere, obesity’s preva-
lence has risen considerably since
the 1980s, with one-third of US adults
now obese (http://www.win.niddk.nih.
gov/statistics/). How health care
approaches obesity is changing, with
the American Medical Association
recently defining obesity as a disease
(http://www.bostonglobe.com/editorials/
2013/06/28/ama-obesity-declaration-
makes-third-america-ill/02nZ0a90
RtlKE3hOWy59KK/story.html). Although
the reasons why rates have risen are not
entirely known and remain debated, the
individual and societal costs necessitate
an improved understanding. In this
context, examining food and eating
behaviors from interdisciplinary per-
spectives seems important in addressing
an obesity epidemic.

Historically, obesity has been viewed
from a metabolic perspective, with a

focus on energy balance (Ziauddeen
et al, 2012). More recently, it has been
questioned whether obesity might be
conceptualized within an addiction
framework and whether certain foods
may be addictive (Gearhardt et al,
2011a). Over time, a motivating factor
for food consumption has shifted from
sustenance and energy balance to
pleasurable/hedonic purposes. Thus,
motivational factors (positive-reinfor-
cement-related anticipatory pleasure or
negative-reinforcement-related stress
reduction) might link to obesity simi-
larly as in drug addictions. Addition-
ally, metabolic factors implicated in
homeostatic regulation may relate dif-
ferently to these constructs in obese as
compared with lean individuals.

To examine directly, we studied 25
obese and 25 matched lean individuals
using a guided-imagery fMRI task
that included individualized cues
relating to personal stressors, favorite
foods, or neutral-relaxing situations
(Jastreboff et al, 2013). Obese as
compared with lean individuals showed
increased activation in cortico-striato-
limbic structures (striatum, insula,
inferior frontal gyrus and amygdala)
to favorite-food cues, and activations of
thalamus and striatum correlated with
subjective craving in obese but not lean
individuals. Similarly, stress-related

Favorite-Food Cue Stress Cue

Figure 1. Overlaps in the relationships in obese individuals between brain activations and insulin
resistance (HOMA-IR) and brain activations and food craving. During favorite-food cue exposure,
individuals with obesity show thalamic activations that correlate both with HOMA-IR and food
craving (left, green color). During stress cue exposure, individuals with obesity show insular and
striatal (in putamen) activations that correlate both with HOMA-IR and food craving (right, orange
color). Brain slices are located at Talaraich levels of z¼ 6 (left) and z¼ 4 (right), respectively. Right
side of the brain is displayed on the left. Additional details of the original research can be found in
Jastreboff et al (2013).
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activations in the striatum and insula
correlated with food craving in obese
but not lean individuals. Together,
these findings suggest important differ-
ences in obese and lean individuals
with respect to activation patterns in
motivational neurocircuitry that may
promote eating behaviors.

Importantly, metabolic measures
were also collected. Brain activations
during all three conditions correlated
with a homeostatic measure of insulin
resistance (HOMA-IR) in obese but
not lean individuals in regions includ-
ing the insula, inferior frontal gyrus,
striatum, and thalamus. Furthermore,
regional brain activations (eg, in the
thalamus during the favorite-food cue
condition and striatum and insula
during the stress condition—Figure 1)
were found to mediate the relationship
between HOMA-IR and food craving in
obese (but not lean) individuals. These
findings suggest that interventions that
target motivations rather than energy
balance per se may be particularly
relevant to combating obesity in the
current environment.

The current study helps integrate
findings from multiple disciplines.
Such integrative research may help
address current debates about how
best to conceptualize and treat obesity
and ultimately lead to improved treat-
ment strategies. Additionally, identify-
ing clinically relevant subgroups with
obesity (eg, those with binge-eating
disorder, a condition hypothesized
to show particular similarities with
addictions (Gearhardt et al, 2011b),
including in brain activations relating
to reward processing (Balodis et al,
2013)), may help resolve current
debates and target interventions.
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Targeting Emotion
Circuits with Deep Brain
Stimulation in Refractory
Anorexia Nervosa

There is an urgent need to develop

novel therapies for patients with ano-

rexia nervosa (AN). A condition that

is heterogeneous, highly resistant to

treatment, and associated with strik-

ing rates of morbidity and mortality,

few therapeutic advances specifically

for AN have been made in the past 150

years. A re-orientation in the last two

decades toward neuroscientific expla-

nations for AN offers hope that an

increased understanding of the illness’

neural roots will lead to better treat-

ments (Kaye et al, 2009).
Deep brain stimulation (DBS) is

a neurosurgical procedure that tar-
gets critical nodes in dysfunctional
neural circuits driving pathological
behaviors (Lozano and Lipsman,
2013; Mayberg et al, 2005). DBS’
efficacy in disorders like Parkinson’s
Disease has driven its investigation
in other circuit-based conditions,
including major depression (Lozano
and Lipsman, 2013). Several factors
led us to consider DBS in refrac-
tory AN. First, the primarily limbic
structures implicated in the disorder,
largely by functional neuroimaging,
are consistent with the clinical obser-
vations that AN is predominantly a
disorder of emotional processing.
Further, the ability of DBS to safely
and effectively access limbic nodes in
mood- and anxiety-related circuits
suggested that it could be applied to
AN, a disorder marked by high rates
of depressed mood and affective
dysregulation.

The subcallosal cingulate (SCC) has
a key role in modulating emotional
states and projects cortically, to med-
ial- and orbitofrontal cortex, as
well as subcortically to nucleus ac-
cumbens. Our group has also shown
that SCC neurons participate directly
in emotion processing, responding
preferentially to affective-laden stimuli
and decisions (Lipsman et al, 2013a).
The SCC is thus both structurally and
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