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Abstract

Purpose of review—Soon after the discovery of HIV-infected humans, rhesus macaques in a
colony at the New England Primate Research Center showed similar signs of a progressive
immune suppression. The discovery of the Simian Immunodeficiency Virus (SIV)-associated
disease opened the door to study an AIDS-like illness in nonhuman primates (NHP). Even after
three decades, this animal model remains an invaluable tool to provide a greater insight into HIV
immunopathogenesis. In this review, recent progress in deciphering pathways of
immunopathogenesis in SIV-infected NHP is discussed.

Recent findings—The immense diversity of mutations in SIV stocks prepared at different
laboratories has recently been realized. The massive expansion of the enteric virome is a key
finding in SIV-induced immunopathogenesis. Defining the function of host restriction factors, like
the recently discovered SAMHDL, helps to evaluate the impact of the innate immune responses on
virus replication. Utilization of pyrosequencing and defining molecular mechanisms of MHC class
I restriction helps to understand how the virus evades CD8+ T cell responses. The definition of
MHC class | molecules in different NHP species provides new animal models to study SIV
immunopathogenesis. T follicular helper cells have gained major interest in characterizing
humoral immune responses in SIV infection and AIDS vaccine strategies. The ability of natural
hosts to remain disease-free despite ongoing replication of SIV is continuing to puzzle the field.

Summary—The HIV research field continues to realize the immense complexity of the host
virus interaction. NHP present an invaluable tool to make progress towards an effective AIDS
vaccine.
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INTRODUCTION

Even after three decades of its original discovery, the HIV epidemic is one of the major
societal health problems that humans are facing [1,2]. During the last decades, progress has
been made on multiple major fronts to understand the biology of the virus and its
immunopathogenesis in infected individuals, and to develop treatment modalities and
generate possible AIDS vaccine candidates. However, the intricate interaction between HIV
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and the human host has still not been fully understood and an effective AIDS vaccine is still
out of reach [3]. The discovery of SIV has greatly helped the field to provide a valuable
animal model to study an AIDS-like disease in NHP [4-6]. The major focus of this review is
to discuss recent progress for a better understanding of immunopathogenesis and the role of
innate and adaptive immune responses in SIV-infected NHP (Figure 1).

PATHOLOGIC IMPACT OF SIV INFECTION

Mucosal transmission in humans and NHP entails a significant bottleneck for the virus
resulting in a limited number of transmitted/founder viruses [7,8]. Moreover, the complexity
of SIV mutants gets further complicated by the particular way how and where virus stocks
are prepared [9,10].

Very early following transmission, AIDS virus infection leads to massive pathologic
changes in mucosal tissues, e.g., gastrointestinal, cervico-vaginal and penile tissues [11].
This includes local inflammation and epithelial cell injury [12] resulting in microbial
translocation [13]. While preexisting mucosal inflammation may enhance the pathogenicity
of the virus infection [14], probiotic/prebiotic supplementation can improve the
gastrointestinal immunity in SIV-infected macaques [15]. As the virus relentlessly replicates
during primary SIV infection, it also attracts more “fuel into the fire” in form of additional
CD4+ target cells and dendritic cells that results in further immune activation [16]. Blocking
the a4f7 integrin gut-homing associated influx of these cells mitigates the severity of the
infection resulting in significantly decreased viral loads [17].

The pathologic impact of enteric bacteria has been well characterized [18,19]. However,
surprisingly SIV infection in rhesus macaques is also associated with a massive expansion of
the enteric virome [20]. One can assume that the increased inflammation in the
gastrointestinal tissues supports the increased replication of the enteric virome. In addition,
following SIV infection cellular immune responses are likely not as efficient as they should
be in containing the replication of these viruses.

Next to mucosal sites, chronic SIV infection has a global pathologic impact on practically all
organ systems in infected individuals. Thus, with increasing severity of the infection the
brain, lung, and heart will be functionally impaired [21,22]. The neurologic impact of SIV
infection may in part be due to alterations in morphology and cytokine secretion of brain
macrophages [23-25]. Monocytes may be primed by SIV infection to apoptosis, and some
subsets of this lineage of cells are particularly conducive to SIV replication [26,27].

INNATE IMMUNE RESPONSES

Following the discovery of the Friend virus susceptibility gene 1 it was first realized that
host cells could constitutively express genes encoding inhibitory factors that protect these
cells against viral replication [28]. In HIV or SIV infection of humans and NHP four major
restriction factors have been identified: apolipoprotein B mRNA-editing catalytic
polypeptide-like 3 (APOBEC3), tetherin, tripartite motif 5a (TRIM5a), and sterile alpha
motif and histidine-aspartic-domain containing protein 1 (SAMHDZ1) that either impair
accessory proteins (Vif, Vpu, and Vpx) that enhance virus replication in an optimized
manner or interfere with the Gag capsid [29,30]. The efficacy of TRIMb5a is virus isolate-
specific in rhesus macaques [31,32]. Its impact on SIVSmEG60 is by far more evident than
on SIVmac251. The relative expression of APOBEC3 (upregulated by interferon production
during early SIV and HIV infection) is inversely correlated with virus replication [33]. The
fourth major discovered restriction factor, SAMHD1 that renders human myeloid-lineage
cells refractory to HIV-1 infection, has recently sparked intensive research activities [34,35].
Its activity in viral restriction is highly dependent on nuclear localization of this protein [36].
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The significance of the contribution of natural killer (NK) cells to containment of SIV
replication remains controversial. Anti-CD16 antibody treatment had little impact on viral
replication [37]. However, recent investigations have shown that the NK cell repertoire in
SIV infection is not only heterogeneous but also plastic resulting in an expansion of the
CD16 negative NK cell subset with cytotoxic potential [38]. Moreover, the genetic
background in expression of the killer cell immunoglobulin-like receptor (KIR) repertoire is
associated with virus containment [39-41]. Investigations of the RVV144 AIDS vaccine trial
have suggested that some of its immunologic correlates may be due to antibody-dependent
cell-mediated cytotoxicity (ADCC). The ADCC assay has recently been modified and
optimized for use in NHP studies [42-44]. While the ADCC activity emerges coincidently
with gp140-binding antibodies, it may not reach its full potential because of selective
impairment of Fc receptor expression on NK cells [45,46].

Both in HIV-infected humans and SIV-infected NHP early virus replication is accompanied
by an intensive cytokine storm [47,48]. It still remains to be seen which of these cytokines
may actually be beneficial for the host rather than providing support to virus replication.
Attempts to support the host’s immune system only by cytokine administrations were either
short-lived or have failed [49,50]. However, when these approaches were previously done
(i.e., for IL-15) in combination with antiretroviral therapy much more favorable results were
obtained in T cell restoration [51]. The complexity of the role of the NHP immune system
(including its cellular components, soluble secreted proteins, and genetic background) on
viral containment can probably only be fully assessed by systems biology approaches
[52,53]. However, the relatively small number of NHP usually studied under similar
experimental conditions may limit the feasibility of these kinds of investigations.

CD8+ T CELL RESPONSES

There is little doubt that CD8+ T cells play a central role in viral containment of SIV
infection in NHP [54]. Moreover, the expression of certain MHC class | molecules is
associated with more efficient viral containment. However, some CD8+ T cell responses
like CD8+ FoxP3+ T regulatory cells may actually be detrimental for the viral containment
[55,56]. Moreover, the inability of CD8+ T cells to effectively control virus replication may
also be due to a functional impairment by a reduction of key cell surface molecules like the
CD8 molecule [57]. Ultimately, most SIV-infected rhesus macaques succumb to disease
progression due to viral escape and inability of the CD8+ T cell responses to recognize the
mutated peptides. Already early after SIV infection, viral escape mutants from CD8+ T cells
are likely first generated in lymph nodes [58]. Mutant epitope-specific CD8+ T cells that are
present at the time when viral mutant epitope sequences are detected at extremely low
frequencies fail to contain the later accumulation and fixation of the mutant epitope
sequences in the viral quasispecies [59]. The utilization of pyrosequencing has recently
shown that escape within and outside the CD8+ T cell epitope is by far more complex than
previously appreciated [60,61].

Historically, Indian rhesus macaques have been utilized intensively to determine MHC class
I-specific CD8+ T cell responses in SIV infection [62]. Recent advances in characterizing
MHC class | molecules will permit studying epitope-specific immune responses in
additional NHP species such as Mauritian cynomolgus macaques, pigtail macaques, Chinese
rhesus macaques, and Burmese rhesus macaques [63-66].

CD4+ T CELL RESPONSES

Similar to humans, CD4+ T cells are the major target and source of SIV replication in NHP.
The magnitude of SIV replication in infected rhesus macaques appears to be limited by the
size of the preexisting Th17 cell compartment [67]. The lymphoid tissue fibrosis, the loss of

Curr Opin HIV AIDS Author manuscript; available in PMC 2014 July 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Schmitz and Korioth-Schmitz Page 4

the fibroblastic reticular cell network and loss of I1L-7 produced by this network is a
cumulative process that contributes to T cell depletion and disease progression [68,69].

The underlying mechanisms in CD4+ T cell loss and disease progression have been
intensively scrutinized in the last decades. Conventional wisdom would say that disease
progression is necessarily related to loss of CD4+ T cells in mucosal tissues and associated
with microbial translocation. However, interestingly a SIVmac239 mutant virus that did not
lead to acute depletion of mucosal CD4+ T cells and microbial translocation showed a
similar pathogenicity as the wild-type virus. The authors concluded that immune activation
unrelated to gut damage can be sufficient for the development of AIDS [70].

While naive CD4+ T cells are dispensable for memory CD4+ T cell homeostasis, the
progressive loss of central memory CD4+ T cells results in decline of effector memory
CDA4+ T cells and overt disease in chronic SIV infection [71,72].

There are major efforts in the field to understand the pathomechanisms involved in relatively
impaired humoral immune responses following SIV infection and poor production of
neutralizing antibodies following vaccination. Logically, one of the most critical cell subset
that provides help to humoral immune responses, the CD4+ T follicular helper cell, has
recently been brought into the spotlight of several investigations [73-77]. As shown for
germinal center CD4+ T cells in HIV-infected humans [78], T follicular helper cells were
infected with SIV in rhesus macaques. However, accumulation of these cells was associated
with increased numbers of germinal center B cells and SIV-specific antibodies [73]. Tracing
this subset of T cells will be very valuable both in humans and NHP to correlate their
number and function with pathogenesis and optimize vaccine strategies. It remains to be
seen whether this T cell subset has a more easily accessible correlate in peripheral blood or
whether investigations of lymphatic tissues such as lymph nodes are absolutely necessary to
study these cells.

B CELL RESPONSES

B cell responses in the HIV infection face highly variable, rapidly mutating viruses with an
incredible phylogenetic diversity with two types (HIV-1 and HIV-2) and further
differentiation of HIV-1 into a major group M and several minor groups: an outlier group O,
a “non-M, non-O” group N, and a group P that was found to be closely related to gorilla SIV
[79]. Group M is subdivided into genetically distinct subgroups or clades A-K with
occasional circulating recombinant forms (CRF) due to mixture of genetic material from
different subgroups. Thus, a major objective in HIV vaccine development has been to elicit
broadly neutralizing antibodies. Following the initial discovery of HIV, little progress has
been made to detect and isolate such antibodies. However, recently the field has made major
advances to identify new broadly neutralizing antibodies [80-82]. The combined use of these
kinds of antibodies in passive immunization strategies has a dramatic effect on HIV viremia
[83]. Although neutralizing humoral immune responses are quite limited in magnitude and
breadth in early infection, these responses have been shown to impede virus replication and
select for escape mutations [84].

Keeping this progress in mind, the question is where can the NHP model help to advance the
field? However first, one has to realize that the classical viruses used in NHP (i.e.
SIVmac251 or its clone SIVmac239) are exceedingly difficult to neutralize. This is in part
due to the presence of gp41 carbohydrates that effectively shield the virus from antibodies
[85]. Moreover, there are pathogenic events that prevent the production of IgA-specific
immune responses in SIV-infected NHP, an observation also seen in HIV-infected humans
[86]. Binding antibodies and antibodies to variable regions (resulting in type-specific
antibodies) are readily being made. Thus, the envelope variable region 4 is the first target of
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neutralizing antibodies in SIVmac251-infected rhesus macaques [87]. NHP can be utilized
to further the knowledge about the dynamics of memory B cell generation [88] and to apply
techniques for identification of Env specific B cells [89,90]. Passive immunization strategies
using antibodies or antibody-like molecules can help to selectively assess dosing, affinity
and avidity to sufficiently suppress virus replication, as recently shown for the antibody-like
molecule CD4-1gG2 [91].

The most pressing task, however, is to assess AIDS vaccine candidates in preclinical trials
and determine their correlates of protection after vaccination [92]. Neutralization resistant
viruses like SIVmac251 have effectively been combated by vaccine strategies that include
multiple epitopes [93] or vaccine strategies that elicit effector memory CD8+ T cells [94]. In
order to study AIDS vaccines expressing HIV proteins in NHP, chimeric viruses need to be
generated that overcome virus-specific restriction in the NHP host of choice and represent
the different HIV clades that can infect humans. These efforts have been ongoing since a
while in a number of laboratories, including our own, and several R5-tropic SIV/HIV
chimeric viruses are already available or in the pipeline [95].

NATURAL HOSTS OF SIV INFECTION

There are at least 30 different species of NHP that harbor SIV viruses but do not develop
overt signs of disease regularly seen in HIV-infected humans or non-natural host NHP such
as SIV-infected Indian rhesus macaques [96,97]. Natural hosts such as African green
monkeys and sooty mangabeys are capable of sustaining high levels of viremia, but they
experience only brief signs of immune activation during primary SIV infection [98-100].
While adaptive immune responses certainly can be detected following SIV infection [101],
the role of these immune responses in maintaining a disease-free course of infection in
natural hosts remains uncertain [102]. As such, the question why SIV infection in natural
hosts is nonpathogenic is still not sufficiently resolved. An answer to this question has the
potential to develop new treatment modalities for HIV-infected humans.

VIRAL RESERVOIR AND ITS IMPLICATION FOR VACCINE DEVELOPMENT

The virus diversity following mucosal transmission is exceedingly limited; in most cases the
infection only starts with a single transmitted/founder virus, as has been confirmed in rhesus
macaques by single genome amplification (SGA) and deep sequencing methodologies [8].
Intensive research is currently being conducted to determine whether transmitted/founder
viruses represent a special breed of viruses on which the AIDS vaccine development should
focus. However, within a few weeks an incredible diversity prevails that is mostly driven by
the adaptive immune mechanisms attempting to contain the viremia. Virus diversity and
escape are even seen when aggressive antiretroviral treatment (highly active antiretroviral
therapy; HAART) is initiated from peak viremia onward in SIV-infected animals [103]. As
the infection takes its course, the virus simultaneously replicates and hides in very complex
ways. Active replication is most prominent in activated CD4+ T cells. However, other cell
types including macrophages and dendritic cells certainly also contribute as target cells to
viremia. Next to active replication, a latent reservoir of infected resting cells gets established
early after infection [103-105]. Moreover, as a huge portion of the total body viral mass,
virus particles get captured on extracellular surfaces of follicular dendritic cells in germinal
centers where they can get access to highly activated CD4+ T cells, critical for the
generation of humoral immune responses. Viral reservoirs are basically established in every
anatomical compartment of the body, including locations with more limited access to
adaptive immune responses (e.g., in the brain).

An effective HIV vaccine will need to have an impact on virus replication as early as
possible, in the best case scenario resulting in abortive or sterile protection at the port of
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try. Once the virus has successfully entered its host, disease progression may be slowed

down until viral escape mutants evade the immune system and/or treatment modalities.

CONCLUSION

The NHP model of AIDS has made major advances on a number of fronts including

de
an

ciphering the pathogenesis in different cell types and organ systems and unraveling innate
d adaptive immune responses. It is expected that investigations of B cell responses to the

virus and in preclinical AIDS vaccine studies will be the center piece of scientific efforts.
Despite limitations that are inherently present in any animal model, the NHP model of AIDS
remains an invaluable tool to move the HIV field forward and to reach its ultimate goal to

de

velop an effective AIDS vaccine.
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FIGURE 1.

Key aspects of SIVV immunopathogenesis. Successful pathogenic infection with SIV
typically results in a progressive loss of CD4+ T cells. The interaction of SIV with the host’s
immune system triggers innate immune responses followed by virus-specific adaptive
cellular and humoral immune responses. Rapidly occurring mutations lead to immune
evasion. Already early following infection, viral reservoirs are being established that protect
the virus from immune control. Chronic immune activation contributes to the functional
impairment of the immune system. As the disease progresses, adaptive immune responses
are unsuccessful in containing the virus replication, and overt signs of a chronic immune
suppression become evident.
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