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Abstract

he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting
alphaproteobacterial ‘Candidatus Liberibacter asiaticus’ and allied plant pathogens, which cause the devastating citrus
disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ
called bacteriome: the betaproteobacterium ‘Candidatus Profftella armatura’ in the syncytial cytoplasm at the center of the
bacteriome, and the gammaproteobacterium ‘Candidatus Carsonella ruddii’ in uninucleate bacteriocytes. Here we report
that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L.
americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding
gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order
Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage
acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other
Liberibacter lineages. KA/KS analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes
are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their
insect vector’s symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial
populations.
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Introduction

The Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae) is

an important agricultural pest that transmits a serious citrus

disease, Huanglongbing (HLB) or greening disease. This insect is

widely distributed in Asia, and is spreading into other citrus

growing regions worldwide [1]. The causative agents of HLB are

considered to be three species of a fastidious phloem-inhabiting

alphaproteobacterial lineage of the genus Candidatus Liberibacter:

L. asiaticus, L. americanus, and L. africanus [2,3]. D. citri vectors L.

asiaticus and L. americanus in Asia and the Americas, and the African

citrus psyllid Trioza erytreae (Hemiptera: Triozidae) vectors L.

africanus in Africa [1,2,3,4]. Similar diseases have been found in

potatoes, tomatoes and other solanaceous crops infected with L.

solanacearum (also known as L. psyllaurous) [5]. These Liberibacter

species are very fastidious, but L. crescens, the species recovered

from mountain papaya, has recently been reported to be readily

culturable [6]. Complete genome sequences have been determined

for L. asiaticus [7], L. solanacearum [5], and L. crescens [6], whereas

draft genome sequence is available for L. americanus [8].

In its abdomen, D. citri possesses a large yellow symbiotic organ

called the bacteriome, where two distinct symbionts are harbored

[9]. The betaproteobacterium ‘Candidatus Profftella armatura’ is

located in the syncytial cytoplasm at the center of the bacteriome,

whilst the gammaproteobacterium ‘Candidatus Carsonella ruddii’ is

found in uninucleate bacteriocytes on the surface of the

bacteriome. Our previous study revealed that Profftella is a toxin-

producing defensive symbiont that potentially protects D. citri from

natural enemies, while Carsonella_DC is a nutritional symbiont that

provides the host with essential amino acids, which are scarce in

the psyllid’s diet of phloem sap [10].

Here we report that the Liberibacter lineage horizontally acquired

a putative transporter gene from a bacterium closely related to the

extant Profftella.
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Materials and Methods

HGT candidates in the Profftella genome were extracted by

BLASTP searches [11] against NCBI nr database, using deduced

amino acid sequences of all protein coding genes on the Profftella

genome as queries. Amino acid sequences were aligned using

MAFFT 6.847 [12], followed by manual refinement. Amino acid

sites corresponding to alignment gap(s) were omitted from the data

set. The best fitting amino acid substitution model for the

alignment was estimated using ProtTest3 [13]. For the present

analysis, ProtTest selected LG with a gamma distribution (+G), a

proportion of invariable sites (+I) and empirical base frequencies

(+F) as the best fitting substitution model, followed by WAG with

the options +I +G +F. Phylogenetic trees were inferred by the

Maximum Likelihood (ML) [14] and the Bayesian Inference (BI)

[15] methods. ML trees were constructed using RAxML7.2.1 [16]

with LG + G + I + F model. The support values for the internal

nodes were inferred by 1,000 bootstrap replicates. In the BI, we

used the program MrBayes 3.1.2 [15]. Since the LG model is not

implemented in MrBayes, WAG as the next best available model

was used with the options +I +G +F. In total, 18,000 trees were

obtained (Nruns = 2, Ngen = 900000, Samplefreq = 100), and the

first 2,000 of each run were considered as the ‘‘burn in’’ and

discarded. The posterior probability of each node was used as the

support value of the node. We checked that the potential scale

reduction factor was approximately 1.00 for all parameters and

that the average standard deviation of split frequencies converged

towards zero.

KS and KA values were calculated as described previously [17].

Statistical significance of the obtained KA/KS value was tested

against a bootstrap distribution of KA/KS values, which was

generated by 10,000 bootstrap resamplings of codons from the

original alignment. When KS values calculated from resampled

alignments were close to saturation values (larger than 2.0 per site),

the KS values was set as 2.0 for the estimation of KA/KS value.

To analyze the structural organization, the genomic sequences

of L. asiaticus str. psy62 [accession no. NC_012985], L. asiaticus str.

gxpsy [NC_020549], L. solanacearum CLso-ZC1 [NC_014774], L.

americanus PW_SP [AOFG01000001-22], and L. crescens BT-1

[NC_019907] were obtained from GenBank.

Results

BLASTP searches against the NCBI nr database demonstrated

that the putative LysE protein (accession no: YP_008343788) of

Profftella is significantly similar to its counterparts of Liberibacter spp.

The top BLAST hit was the ‘‘putative homoserine/homoserine

lactone efflux protein’’ of L. asiaticus str. psy62 and str. gxpsy

(accession nos: YP_003065395 and YP_007599438, respectively.

E = 2e-47 for the both strains). Subordinate hits were ‘‘putative

homoserine/homoserine lactone efflux protein’’ of L. americanus

(WP_007557425, E = 2e-43) and L. solanacearum (YP_004063007,

E = 3e-42), followed by LysE superfamily proteins, such as ‘‘lysine

transporter LysE’’, ‘‘threonine transporter RhtB’’, and ‘‘homoser-

ine/homoserine lactone efflux protein’’, of various betaproteo-

bacterial species belonging to the order Burkholderiales. Putative

orthologs of the Profftella lysE were observed in L. asiaticus, L.

americanus, and L. solanacearum, but not in L. crescens, the most basal

Liberibacter lineage currently known [6]. The LysE of Profftella was

40–43% identical to its orthologs of Liberibacter spp (Fig. 1). No

other HGT candidates were found between Profftella and

Liberibacter spp.

Molecular phylogenetic analysis demonstrated that the LysE of

Profftella forms a highly supported clade with the proteins of

Liberibacter spp. (Fig. 2). The Profftella-Liberibacter subclade was

placed within a clade that largely consisted of the LysE sequences

of betaproteobacteria and gammaproteobacteria that are para-

phyletic to Betaproteobacteria [18]. Moreover, this subclade formed a

clade with proteins from betaproteobacteria of the order

Burkholderiales, to which Profftella belongs [19]. This phylogenetic

pattern, together with the presence/absence of the orthologous

genes in Liberibacter spp., is most simply explained by the hypothesis

that the Liberibacter lineage acquired the transporter gene from the

Profftella lineage via horizontal gene transfer (HGT) after L. crescens

diverged from other Liberibacter lineages. The structural organiza-

tions of the lysE flanking regions were partially conserved among

genomes of L. asiaticus, L. americanus and L. solanacearum (Fig. 3),

which were all assembled de novo without reference to one another

[5,6,7,8], further supporting a single acquisition of this gene in the

Liberibacter lineage.

The KA/KS ratio between lysE genes of L. asiaticus and L.

solanacearum was significantly lower than 1 (KA = 0.24, KS = 1.61,

KA/KS = 0.15, p , 0.0001). Whereas the KS values both between L.

asiaticus and L. americanus and between L. solanacearum and L.

americanus were saturated (. 3.00), the KA values were still as low as

0.42 and 0.39, respectively. These results support the hypothesis

that the lysE genes of Liberibacter spp. are under purifying selection

and thus are functional.

Figure 1. Alignment of amino acid sequences of LysEs. Residues conserved in all lineages, three lineages, and two lineages are shaded black,
dark gray, and light gray, respectively.
doi:10.1371/journal.pone.0082612.g001
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Discussion

The present study demonstrated that the Liberibacter lineage

horizontally acquired a lysE-type transporter gene from the

Profftella lineage, an endosymbiont of their vector insect. KA/KS

analyses further supported the hypothesis that the genes encoded

in the Liberibacter genomes are functional. Although their true

functions are yet to be identified, LysE superfamily proteins of

various bacteria are generally involved in exporting substrates,

playing important roles in resistance to toxic substances, in

maintenance of optimum intracellular concentration of metabo-

lites, and in excretion of regulatory molecules [20,21]. Thus, it is

probable that Liberibacter have acquired novel functions through

this HGT. Whereas HGTs are rampant among bacteria [22,23],

such transfers of genes are rare in intracellular bacteria that are

harbored in insects’ symbiotic organ and are seemingly seques-

tered from external microbial populations [24,25,26]. Apparently,

Profftella, the putative donor lineage of the lysE gene, is this type of

endosymbiont. In this context, infection style of Liberibacter, the

putative accepter of the gene, would be noticeable. As Liberibacter

spp. are transmitted by psyllids in a persistent manner, exhibiting

near systemic infection of various organs and tissues [27], they

may also intrude into the bacteriome of the vector psyllids, having

opportunity of HGT with endosymbionts therein. The present

findings highlight the previously unrecognized possible evolution-

ary importance of HGT between plant pathogens and their

vector’s mutualists that are confined in symbiotic organs.
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