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Abstract

Addressing the neural mechanisms underlying complex learned behaviors requires training animals in well-controlled
tasks, an often time-consuming and labor-intensive process that can severely limit the feasibility of such studies. To
overcome this constraint, we developed a fully computer-controlled general purpose system for high-throughput
training of rodents. By standardizing and automating the implementation of predefined training protocols within the
animal’s home-cage our system dramatically reduces the efforts involved in animal training while also removing
human errors and biases from the process. We deployed this system to train rats in a variety of sensorimotor tasks,
achieving learning rates comparable to existing, but more laborious, methods. By incrementally and systematically
increasing the difficulty of the task over weeks of training, rats were able to master motor tasks that, in complexity
and structure, resemble ones used in primate studies of motor sequence learning. By enabling fully automated
training of rodents in a home-cage setting this low-cost and modular system increases the utility of rodents for
studying the neural underpinnings of a variety of complex behaviors.
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Introduction

Studies exploring the neural mechanisms underlying higher-
order cognitive and learning phenomena, including decision
making[1], motor skill execution[2], and perceptual
discrimination[3,4], have traditionally been done in non-human
primates. Costs and regulations, however, make high-
throughput experiments on monkeys difficult to justify[5].
Rodents, with their increasingly well-understood cognitive and
learning capabilities, have emerged as an alternative model
system for studying a variety of complex behaviors[6–15]. Rats
and mice share the basic mammalian brain architecture with
primates, and though cortical specializations may differ[16–18],
recent studies suggest that many of the well-characterized
cortical functions in primates have equivalents in
rodents[7,9,12,13,15,19]. Sophisticated tools for measuring
and manipulating brain activity[20–23] together with the many
transgenic lines and disease models available in rodents
further incentivize their use in mechanistic studies. Yet one of
the main barriers for research on complex behaviors, both in
rodents and primates, lies in training animals - a process
typically done under close supervision of researchers who
frequently modify protocols and procedures on an animal-by-

animal basis to improve learning rates and performance. This
approach is labor-intensive and time-consuming, and makes
the interaction between animal and researcher an integral part
of the training process, possibly confounding comparisons of
experimental outcomes across animals and labs[24].

Here we describe a method and experimental infrastructure
that fundamentally transforms this traditionally arduous
process, making it effortless, rigorous and amenable to high-
throughput approaches. Our solution combines two main
ingredients.

1. Automation of the training process. Automation allows
implementation of rigorously defined training protocols on
a large scale without the vagaries and efforts associated
with human-assisted training[25]. Such improvements in
the quality and quantity of behavioral data enables
powerful research approaches for addressing complex and
slow-to-learn behaviors [19].

2. Training within the animal’s home-cage. Implementing
automated training within the animal’s home-cage
eliminates the need for day-to-day handling of trained
animals, making long training processes fully automated
and largely effortless. Live-in home-cage training also
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enables long-term tethering of animals, making long-term
uninterrupted neural recordings feasible.

While certain aspects of animal training have been
automated, either through the use of custom-developed
software or commercially available systems[19,26–30], most
solutions lack the flexibility required to tackle broader sets of
questions or behaviors. Existing solutions do not accommodate
either complete automation of multi-stage training processes
involving large numbers of animals or long-term neural
recordings in the context of training. Thus the significant human
involvement currently required for experiments on complex
behaviors still represents a considerable impediment to large-
scale rodent studies.

To further improve the efficiency of the training process, we
developed a fully Automated Rodent Training System (ARTS)
for reward-based learning (Figure 1). Our low-cost system is
flexible, extensible, remotely administrable, and allows for
simultaneous training of large cohorts of animals. ARTS is
designed for deployment in animal facilities found in biomedical
research centers, and requires no more human supervision
than standard animal care. Training occurs in custom-designed
home-cages that can be outfitted with a variety of sensors,
manipulanda, water ports, and effectors (e.g. sensory
stimulation devices), customized to the nature of the behavioral
task (Figure 1A; see Video S1 for a demonstration).

Below, we outline the general architecture and logic of ARTS
and its current implementation and describe, validate, and
benchmark its use for motor learning in rats.

System Architecture

Flexible and modular software architecture for control
of high-throughput animal training

The heart of our automated rodent training system is the
software platform that interacts with individual home-cages and
executes pre-specified training protocols (Figure 1B, Figures
S1- S3 in File S1). To allow for maximum flexibility and
generality, the software suite is modular and hierarchical, with
two different components controlling distinct aspects of the
training process (Figure 1B). At the top of the hierarchy is the
Trainer, which monitors overall performance and implements
user-defined training protocols for individual behavioral boxes
A ‘protocol’ is defined as a set of training stages and
performance criteria for automatically transitioning between
them (see Figures S5, S6, and Methods S1 in File S1 for
details). Each training stage is specified in the form of a finite
state machine (FSM), a widely employed and intuitive
abstraction for specifying behavioral tasks that consists of
states linked by transitions[31]. Behavioral or environmental
events, such as lever presses, nose pokes, or elapsed time,
can trigger transitions between states, each of which can be
associated with a set of actions (e.g. reward being dispensed,
LEDs turning on/off).

The Trainer executes training protocols by supplying FSMs
specifying reward contingencies and trial structure to lower
level Clients, each of which controls a behavioral box. With this
flexible and general program structure, automating a training

protocol in ARTS reduces to having the Trainer supply the
Client with the right FSMs at the right times.

Data acquired by the Client during the execution of an FSM,
including high-resolution timing data and video, is stored in a
central database. This allows multiple users to concurrently
and efficiently read and write data to and from the database
using SQL - an intuitive database language supported by all
major programming languages. Centralized data storage also
allows for easy backup, aggregation, analysis, and distribution
of large amounts of behavioral data. A software package for
ARTS complete with a user’s manual can be downloaded from
our server.

Software Implementation
The entire software suite for ARTS is written in C#.Net, a

simple, general-purpose, object-oriented programming
language. The software (both source code and pre-compiled
binaries) along with detailed step-by-step instructions on
setting up the system can be downloaded from http://
olveczkylab.fas.harvard.edu/ARTS (the system is co-branded
OpCon in the website and internally). Both the Client and
Trainer can easily be extended to accommodate virtually any
behavioral task or training protocol by simply writing add-on
custom-scripts in any .NET compatible language, including C#,
F#, J#, VB, and C++. Writing or using these plugins does not
require a detailed understanding of the underlying software (the
plugins and scripts included in the source code can serve as a
starting point). Importantly, the software supports numerous
extensions to basic FSMs, like custom plugins and concurrent
execution of multiple FSMs[31], which enables specification of
behavioral paradigms with probabilistic cues and complex
reward contingencies.

In addition to the core components of ARTS (Client, Trainer,
and the database), a suite of supporting software adds further
functionality, making it a complete end-to-end high-throughput
automated training system (Figures S1-S3 in File S1). A
graphical user interface allows for easy and intuitive
specification of training protocols. Behavioral monitoring,
including querying the timing, duration, and saved video of
each behavioral ‘event’ is made possible by an interactive data
visualization tool. Furthermore, a suite of network services &
scripts enables remote control and monitoring (including live
streaming video onto the internet) of the system.

A cost-effective hardware solution
The hardware requirements of ARTS are modest, making it

cost-effective and easy to build and deploy (Figure 1, Figure S4
in File S1). Our current system contains 48 behavior boxes
controlled by 24 Client computers and two servers, all of which
are housed in a temperature and humidity controlled animal
facility. The reward port providing water reinforcement in each
behavior box is connected to the animal facility’s pressurized
water system through solenoid valves, allowing us to dispense
specific volumes of water by controlling the duration of valve
openings through the Client. Aquarium pumps (Jehmco LPH
60) are used to ventilate behavior boxes at a ratio of one pump
for every six boxes. To ensure acoustic and visual separation
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each box is placed in an enclosure (Figure S4A in File S1),
which is placed on the shelves of a standard wire racks.

Behavior boxes were custom designed using acrylic and
aluminum extrusions. The boxes have a removable front panel
holding all experimental equipment (sensors, indicators,
manipulanda, water dispensing valves etc.; Figure S4A in File

S1). The front panel is the only part of the system that needs to
be customized for a given experimental paradigm. To ensure
compatibility with invasive experiments (chronic
electrophysiology etc.), the normal lid of the box can be
exchanged with a custom lid having the experiment-specific

Figure 1.  A fully automated high-throughput training system for rodents.  A. Schematic of the hardware implementation.
Custom-made behavior boxes, housing individual rats, are outfitted with task-specific sensors, manipulanda, and effectors. Water
reward is delivered through a computer-controlled solenoid valve connected to the animal facility’s pressurized water supply. Client
computers (2 boxes per computer) directly control and monitor the behavior boxes via a data acquisition card, using rules supplied
by the Trainer. B. Logic of the software implementation. Training protocols and behavioral monitoring is implemented through a
flexible and hierarchical software architecture. Clients (c) control individual trials by directly interfacing to a behavior box. The
Trainer monitors overall performance and implements the training protocol by informing Clients about the rules and structure of
individual trials. The user controls and monitors training remotely over the internet via a graphical user interface. Green arrows
denote information flow regarding the training protocol; red arrows represent flow of behavior data.
doi: 10.1371/journal.pone.0083171.g001
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equipment (e.g. commutator etc.). The hardware cost for
building the boxes is ~$500/box.

Each low-cost Client computer runs Windows 7 and contains
an Intel quad-core processor (Core i5-750 - 2.66GHz/core),
4GB of DDR3 SDRAM, and a 1.5TB 5900 RPM hard disk and
controls and communicates with the behavior boxes at the ratio
of two boxes per computer. Behavioral data (e.g. from
manipulanda, lick sensors, and cameras) and signals for
controlling peripherals such as speakers and LEDs are
transferred between the box and the Client computer via a
National Instruments data acquisition system (NI PCIe 6323 -
DAQ card, 2 x RC68-68 – Ribbon Cable & 2 x CB-68LP –
Connector Block). The Client computers, in turn, communicate
with a central server, which runs the Trainer and hosts the
database (Figure 1). Server computers (Trainer) contain a
higher-end Intel quad-core processor (Core i7-950 – 3.06GHz/
core), 12GB of DDR3 SDRAM, 3 1TB 7200 RPM hard disks.
The servers run Windows Server 2008 R2 and host a SQL
Server 2008 R2 database.

The total cost of our current ARTS set-up (48 boxes),
including all hardware, computers, and electronics, is around
$67K, i.e. $1400/box (see Table S1 in File S1 for a breakdown
of the costs and the “Hardware” section of http://
olveczkylab.fas.harvard.edu/ARTS for a detailed list of the
components of ARTS). Video S1 shows ARTS deployed in our
animal facility. Detailed designs and specifications of the
hardware implementation are available upon request.

Scalability and Safety
The number of behavior boxes per Client computer is

primarily limited by the number of video cameras attached to
each box since acquisition/processing of video data is fairly
CPU intensive. ARTS supports multiple data acquisition cards
per Client computer allowing a large number of behavior boxes
to be controlled via a single computer if the Client does not
need to process video data. Likewise the network bandwidth is
dominated by uncompressed video data (17MBps per 30fps
640x480 webcam). The server can be scaled to support a
larger number of clients by increasing the amount of available
memory since this is the bottleneck for database performance.

In addition to free water at the end of every night (see
section Schedules and mode of reinforcement) multiple layers
of security checks are built into the system to prevent animals
from dehydrating. Water is only dispensed upon licking the
reward spout ensuring that the dispensed water is consumed.
The behavior monitoring GUI prominently displays water
consumption. A watchdog program continually monitors the
Client, Trainer and database to detect any failures and displays
this information in the monitoring GUI. Finally animals are
periodically examined and weighed by the animal care staff to
ensure they are adequately hydrated.

Behavioral Training Methods

We have used ARTS to train more than 150 rats in a variety
of behaviors including pressing a lever in precise temporal
sequences, pressing a set of levers in spatiotemporal
sequences on cue, and moving a joystick in various directions

on cue. In this report we focused on a subset of 67 female
Long Evans rats aged ~10-12 weeks at the start of the
experiment, 30 of which were trained to perform a simplified
version of the center-out task (Figures 2,3) and 39 on a precise
lever pressing task (Figure 4). Animals were kept on a daily
12h light cycle.

Ethics Statement
All experimental procedures were approved by the Harvard

University Institutional Animal Care and Use Committee
(protocol number: 29-15).

Schedules and mode of reinforcement
Naïve rats were water-deprived for 8-10 hours before being

transferred to their behavior boxes. After this, rats were trained
for the next several weeks automatically by ARTS with no
human involvement in the day-to-day training process. For the
tasks in Figures 2 and 3, rats had 30-minute training sessions
during their subjective night every 2 hours for a total of six
training sessions. For the task in Figure 4, rats had 2 60-minute
sessions per night. At the end of the night, ARTS automatically
dispensed free water up to their daily minimum (5ml per 100g
body weight). Rats also had a rest day every week during
which water was dispensed ad libitum. Blinking house lights, a
continuous 10s 1kHz pure tone and a few drops of water
marked the beginning of each training and free water session.

Center-out task
Rats were trained to move a 2D joystick left/right along two

arms of an inverted-Y shaped slit (Figure 2). The equilibrium
position of the joystick is at the top of the inverted-Y. Trial
availability was indicated by the center LED; a rat could
commence a trial by moving the joystick down by ~2 cm to the
point where the two arms of the inverted-Y meet. Then, the
left(right) LED turned on, and if the rat guided the joystick >5
cm along the left(right) arm of the slit, the trial was considered
successful and a reward tone (1000Hz for 100ms) presented.
The rat could then lick the reward spout to collect water and
commence the next trial. If the rat moved in the wrong
direction, a 7 second timeout was instituted before the next trial
could be initiated.

Precise lever pressing task
Rats were trained to press a lever twice with a 700 ms delay

between the presses. Animals could self-initiate the trial by
pressing the lever. After learning to associate lever pressing
with water, rats were rewarded for increasingly precise
approximations to the target sequence, i.e. 2 lever presses
separated by 700 ms. The reward contingencies were
automatically updated based on performance to ensure that, on
average, ~30-40% of the trials were rewarded. If the trial was
successful, a reward tone was played and water reward
dispensed upon licking of the reward spout. Animals had to
wait 1.2s before initiating the next trial if the inter-press interval
fell outside the rewarded range.
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Figure 2.  Complete automation of a complex multi-step training protocol for a version of the center-out movement task
(see Methods).  A. Training session structure. Animals were trained during six nightly 30-minute training sessions. The density
plots show the distribution of joystick presses for four representative animals in their third week of training. ‘Free’ water is only
available to rats earning less than a minimal amount of water during the nightly training session. B. Thirty rats were trained to
perform the center-out movement task in three successive stages, each with multiple sub-stages (see Methods S1 in File S1 for
details). Stage 1: touching the joystick for a reward tone and subsequently licking at the water spout to initiate water reward delivery.
Stage 2: moving the joystick down on cue. Stage 3: moving the joystick left and right. C. Stage and sub-stage completion times for
each rat. Six rats (indicated with asterisks) were dropped from the study due to poor learning. Inset shows the mean (and standard
error) of the number of completed sub-stages as a function of time. D. Time needed to complete one stage vs. another for the 24
successful rats.
doi: 10.1371/journal.pone.0083171.g002
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System Validation

ARTS is designed for fully automated training of complex
behaviors in a home-cage environment and thus represents a
significant departure from current practice. The day-to-day
interaction of the researcher with experimental animals and
training apparatus is eliminated as is the need for transferring
animals back-and-forth between procedural chambers and
holding rooms. Whether completely replacing the researcher
with contextual cues can successfully get animals to learn
complex tasks has not been evaluated. To ensure the
feasibility of our approach as a general purpose solution for
large-scale rodent training, we have done extensive testing and
characterization of the system, including training more than

hundred and fifty animals in a variety of sensorimotor tasks, a
subset of which we report on below.

Structure of fully automated training
A major challenge presented by home-cage training is

motivating animals to perform the behavioral task. In traditional
reward-based training paradigms[10,15,27], the experimenter
places a water- or food-deprived animal in the behavioral
apparatus and rewards correct behaviors with liquids or foods.
As hunger or thirst is satisfied, the researcher removes the
animal and commences deprivation anew. We automate this
process within the animal’s home-cage by dispensing water as
reward only during training sessions, the start and end of which
are indicated to the animal by a set of salient sensory cues
(e.g. flashing house lights). Time between sessions serves to

Figure 3.  Automated training of memory guided action sequences.  A. Structure of the behavioral task. An experimental block
starts with a visually guided trial (left), in which the center LED indicates trial initiation. Upon moving the joystick down, the left (right)
LED comes on. After a successful left (right) movement the LED turns off and the joystick is moved back to the center. A second
movement is then cued by the right (left) LED. Upon moving the joystick right (left) a water reward is delivered. Any erroneous
movement results in a timeout. After two consecutive correct trials, directional cues are not given and the movement sequence has
to be performed from memory (right). After two consecutive correct memory guided trials (or ten total trials – an incomplete block),
the next block commences with a new sequence. B. A sample run of 7 consecutive blocks from one animal. Each row represents
one trial, with the sequence of movements color coded as in ‘A’. Left column denotes the target sequence (L-left movement; R-right
movement). Shaded trials denote memory guided trials. Blocks denoted with asterisk correspond to perfect performance. Video S2
shows experimental blocks 5-7. C-D. Aggregate performance of 4 rats trained in the task as measured by the fraction of completed
blocks (C) and the number of memory guided trials until completion (D). Performance is compared to simulated chance (error-bars
denote 95% confidence level). Data from 679 blocks for Rat 1, 647 blocks for Rat 2, 472 blocks for Rat 3 and 392 blocks for Rat 4.
doi: 10.1371/journal.pone.0083171.g003
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deprive the animal of water and thus build up motivation for the
next session. We have deployed a variety of session
structures. For the center-out movement task described below
(Figure 2B), for example, animals had 6 30-minute training
sessions per day spaced at 2 hour intervals (Figure 2A),
whereas for the task in Figure 4, we employed 3 daily 60-
minute sessions, each separated by 4 hours. Whether a
particular session structure is superior to others has yet to be
rigorously tested, but our experience thus far suggests that this
is not a critical parameter.

Animals quickly learn to engage with the task (e.g.
manipulating a joystick) predominantly during specified training

sessions: in the third week of training in the center-out task, the
likelihood of a rat pressing the joystick was, on average, 24
times higher in-session than out-of-session (n = 24 rats; Figure
2A). To prevent poorly performing animals from dehydrating,
water is provided at the end of the night for animals that do not
receive the prescribed minimum daily water amount during
training.

Validation of ARTS: Center-out movement task
A standard paradigm for studying neural control of

movement in primates is the center-out reaching task[32,33],
which involves moving a manipulandum to one of several

Figure 4.  Fully automated live-in home-cage training is comparable to existing methods in terms of learning and
performance.  A. Rats were trained to spontaneously press a lever twice with a 700 ms delay between presses in an individually
housed live-in training paradigm (red, n = 24 rats) or in a socially housed setting in which they were transferred to the behavior
apparatus for daily training sessions (blue, n = 13 rats). B. Motivation as measured by the number of trials per day over time. C.
Learning performance as measured by the fraction of correct trials, defined as trials within 30% of the 700 ms target inter-press
interval, over time. Shaded regions in B and C represent standard error across animals.
doi: 10.1371/journal.pone.0083171.g004
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possible cued locations. Rats trained with traditional methods
can master a version of this task in a matter of weeks[15]. In
our implementation of the task, rats are required to move a
two-dimensional joystick along the arms of an inverted Y-
shaped slot with their forepaws (Figure 2B, Methods). Trials
are initiated by moving the joystick down the vertical arm of the
slot in response to an LED cue. A second LED then prompts
the animal to move the joystick either left or right. A correct trial
is indicated by a short tone followed by water reward. Thirty
rats were trained on the task in three sequential stages, each
containing multiple sub-stages (Figure S5 and Methods S1 in
File S1). All but one rat completed the first training stage
(touching the joystick for a reward tone and collecting water
reward) within 12 hours. Twenty-four out of 30 rats completed
the second (moving the joystick vertically down on cue) and
third (moving the joystick left and right) training stage to
criterion (Figure 2C, Methods). Despite being trained using the
same training protocol, animals learned at different rates (time
to complete all three stages = 148 ± 78 hrs (mean ± S.D.) from
start of training, range = 73 - 299 hrs, n = 24 rats).
Furthermore, learning rates on one training stage was not a
good predictor for mastery of other stages, which involved
different sets of cognitive, learning and motor control
challenges. The correlation coefficients between the time to
complete different stages were -0.05 (stage 1, 2), -0.18 (stage
2, 3), and -0.34 (stage 1, 3) respectively (n = 24 rats; Figure
2D). Faced with such a substantial variation in the speed of
learning across subjects and in distinct phases of learning,
studies on complex learning that use learning rate as a
behavioral readout will require large cohorts of animals trained
in identical tasks, an approach that will be much helped by
automated high-throughput training systems.

Validation of ARTS: Memory guided motor sequence
execution

Having the capacity to simultaneously and effortlessly train
large groups of animals, reduces the risk associated with - and
the investment made in – individual animals, making it feasible
to train even very challenging tasks, i.e. ones that only a small
fraction of animals may be capable of learning. We deployed
our automated training set-up to explore whether rats can
master sophisticated motor sequence learning paradigms
previously used only in primates[2]. In particular we were
interested in the extent to which rodents can execute action
sequences from working memory[34]. We trained the 4 best
rats in the center-out task (Figure 2) to make sequences of left/
right joystick movements from memory (Figure 3A, Figure S6 in
File S1). At the beginning of each block of trials, visual cues
(LEDs) were used to instruct the correct sequence of
movements. After 2 consecutive correct visually guided trials,
cues were removed and animals had to perform the same
movement sequence from memory. Rats progressed to the
next block (i.e. new sequence) after 2 consecutive correct
memory guided trials or 10 trials, whichever occurred first.

Figure 3B shows an example of the star performer in this
task once asymptotic performance was reached (see also
Video S2). The errors in the visually guided trials at the start of

some blocks are typically due to the animal performing the
sequence from the prior block.

To measure the extent of learning, we compared a week’s
performance on the task to simulated chance (Figures 3C,D),
modeled as random left/right movements during the memory
guided trials. All 4 rats completed significantly more blocks (i.e.
got 2 consecutive correct memory guided trials within a span of
10 trials) than expected by chance (Figure 3C, fraction of
completed blocks = 63% vs. 39% by chance; probability of
observing performance by chance < 2e-4). Furthermore, the
average number of memory guided trials required to complete
a block (which can range from 2 to 10) was substantially
smaller than chance levels for each animal (Figure 3D, 3.2 vs.
5.4 for chance; probability of observing performance by chance
< 1e-4). The best rat completed over 75% of the blocks with, on
average, only 3 memory guided trials per block. These results
validate rodents as a model for working memory guided motor
sequence generation, and ARTS as an efficient method for
training such complex behaviors.

Benchmarking home-cage training against existing
training methods

To benchmark the live-in training concept against more
traditional methods, we compared the performances of rats
trained in our home-cage set-up (n = 24 rats) with ones housed
in social groups and exposed to the behavior apparatus only
during daily training sessions (n = 13 rats) (Figure 4A). Both
groups were trained in identical behavioral boxes using the
same automated training protocol. Rats were trained to
spontaneously press a lever twice with a 700 ms delay
between presses (Figure 4A, Methods). Motivation to do the
task, as measured by the number of trials initiated per day, was
similar between the two groups (494 ± 243 (mean ± S.D.) trials
per day for automated training vs. 426 ± 123 trials per day for
manual training on day 15 of training; Figure 4B). Furthermore,
learning rates, as characterized by the fraction of ‘correct’ trials
(defined here as inter-press intervals within 30% of the 700 ms
target) at 20,000 trials was also comparable (83% ± 8% for
automated training vs. 76% ± 17% for manual training, p=0.22;
Figure 4C). Beyond demonstrating the feasibility and non-
inferiority of live-in training in terms of performance, our results
also validate the use of our automated training system in cases
when rats are transferred to behavior boxes only for the
duration of training. While home-cage training has the obvious
advantage of requiring no human involvement other than
standard animal care, there may be scenarios in which the
benefits of fully automated home-cage training outweigh the
negative effects of social isolation[35,36]. In such instances
ARTS can still automate all other aspects of training (as was
done for the socially housed cohort in the precise lever
pressing task, Figure 4). An added benefit of manually
transferring animals to the behavior box during training
sessions is that the same box can be multiplexed across many
animals increasing the throughput of the system[19,26].

A Fully Automated High-Throughput Training System
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Discussion

We present a cost-effective, modular, and fully automated
training system for rodents (ARTS, Figure 1) that dramatically
decreases the effort required for implementing operant learning
paradigms. Deploying the system in our animal facility enabled
high-throughput training of rats with performance and learning
rates similar to more traditional methods (Figure 4). While we
benchmarked our system in a variety of motor learning tasks
(Figures 2, 3 and 4), we believe that its flexibility, modularity,
and extensibility ensures that it can be used to automate
virtually any training protocol relying on reward-based learning.

Though we designed and benchmarked ARTS for rats, a
simple modification to the geometry of the home-cage should
make the system applicable also to mice, though the extent to
which mice are amenable to fully automated training in our
system remains to be seen.

Simple behavioral tests in rodents have revolutionized our
understanding of neurological function by allowing large-scale
phenotyping of experimental animals[37]. Automated training
further extends the power of rodent models in neuroscience by
enabling standardized high-throughput studies of more
complex behaviors[30]. Full automation also removes the
vagaries inherent to human-assisted training by requiring
explicit codification of all training steps, including contingencies
and criteria for progressing from one stage to the next
(example in Figures S5, S6 and Methods S1 in File S1). Such a
compact and complete description of the training process
makes reproducing and comparing experimental outcomes
across different animal cohorts and labs possible and
meaningful.

Automated training protocols not only standardize the
training process, but they ensure that incremental insights and
improvements to training strategy accumulate. Indeed, our
experience in setting up novel training tasks is that their
implementation improves with time, as inefficiencies and ‘bugs’
in the training protocol get sorted out. In contrast to human-
assisted training, where these experiential gains are largely
confined to the researcher, automated training ensures that
each improvement becomes part of an ever-evolving protocol.

Having well defined discrete training stages, each associated
with its distinct set of cognitive, learning, perceptual, or motor
control challenges, also enables increased specificity of the
behavioral analysis. For example, when we analyzed learning
rates in different phases of a multi-stage task we found no
correlation between them, meaning that facility with associative
learning aspects of a task, for example, may not translate into
success on motor learning aspects (Figure 2D). Breaking down
the learning process to its elementary components by
evaluating each training stage independently will permit a more
detailed phenotypic analysis and thus help better pinpoint how
specific manipulations, genetic or otherwise, impact learning
and performance of complex multi-faceted behaviors.

The advantages of home-cage training go beyond the
benefits of full automation. It eliminates animal handling and
the performance variability that goes with it[25] and fully
automated continuous long-term neural recordings in behaving

animals a feasible prospect. An initial practical concern with
home-cage training, however, was the possible impact of social
isolation on learning and performance[35,36]. In our
benchmarking, however, we did not see a difference in either
motivation or learning rates as compared to animals that were
housed socially and exposed to the behavioral chamber only
during training (Figure 4). It is possible that any detrimental
effect of social isolation is compensated for by other factors
unique to automated training, such as precise and regimented
training schedules. Further experiments are needed to fully
characterize the effects of social isolation on motivation and
learning in a home-cage setting, with the understanding that
different tasks may be impacted differently.

Lowering the barrier for training large number of animals on
complex behavioral tasks, as ARTS does, has the potential to
accelerate research towards understanding many fundamental
questions in neuroscience.

Supporting Information

Video S1.  A 2m30sec video highlighting the functionality
and features of ARTS, and showing its deployment in our
animal facility.
(MP4)

Video S2.  Video of a rat performing the task shown in
Figure 4. The video contains the stretch of trials corresponding
to Blocks 5-7 in Figure 4B. On the right of the movie file is seen
the joystick trajectory. Colored cues shown in the video
correspond to cues seen by the animal (obscured in the video).
Red square corresponds to the cue for initiating a trial. Green
square denotes the cue for pushing joystick to the right; blue
square for pushing the joystick to the left.
(MP4)
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